JPS59102156A - Ultrasonic microscope - Google Patents
Ultrasonic microscopeInfo
- Publication number
- JPS59102156A JPS59102156A JP57211386A JP21138682A JPS59102156A JP S59102156 A JPS59102156 A JP S59102156A JP 57211386 A JP57211386 A JP 57211386A JP 21138682 A JP21138682 A JP 21138682A JP S59102156 A JPS59102156 A JP S59102156A
- Authority
- JP
- Japan
- Prior art keywords
- sample
- acoustic lens
- ultrasonic
- signal
- circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/44—Processing the detected response signal, e.g. electronic circuits specially adapted therefor
- G01N29/4454—Signal recognition, e.g. specific values or portions, signal events, signatures
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/04—Analysing solids
- G01N29/06—Visualisation of the interior, e.g. acoustic microscopy
Landscapes
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Acoustics & Sound (AREA)
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
Description
【発明の詳細な説明】
超音波顕微鏡は従来種々のものが提案されており、例え
ば第〕図に示す構成のものがある。この超音波顕微鏡に
おいては、高周波パルス発生器1で超高周波数のバース
ト波電気信号が発生され、この雷、気信号がサーキュレ
ータ2を介して圧電ト、ランスジューサ3に供給され、
ここで雷,気信号が超音波に変換され、この超音波が音
響レンズC超音波集束レンズ〕4および超音波伝達媒体
である液体5を介して、走査制御装置6によりX軸およ
びY軸方向に2次元的に移動する試料台7上に載置され
た試料8上に微小スポットとして投射される。また、試
料8からはその音響特性に応じて超音波が反射され、こ
の反射波は液体5を介して音響レンズ4で集音され、圧
電トランスジューサ3により電気信号に変換される。こ
の電気信号はサーキュレータ2を介してゲート回路9に
供給され、ここで試料の情報以外の不要な信号が除去さ
れる。DETAILED DESCRIPTION OF THE INVENTION Various types of ultrasonic microscopes have been proposed in the past, including one having the configuration shown in FIG. In this ultrasound microscope, an ultra-high frequency burst wave electric signal is generated by a high frequency pulse generator 1, and this lightning signal is supplied to a piezoelectric transducer 3 via a circulator 2.
Here, the lightning and air signals are converted into ultrasonic waves, and these ultrasonic waves are transmitted in the X-axis and Y-axis directions by a scanning controller 6 through an acoustic lens C (ultrasonic focusing lens) 4 and a liquid 5 as an ultrasonic transmission medium. A minute spot is projected onto a sample 8 placed on a sample stage 7 that moves two-dimensionally. Further, ultrasonic waves are reflected from the sample 8 according to its acoustic characteristics, and the reflected waves are collected by the acoustic lens 4 through the liquid 5 and converted into electrical signals by the piezoelectric transducer 3. This electrical signal is supplied to the gate circuit 9 via the circulator 2, where unnecessary signals other than sample information are removed.
ゲート回路9の出力信号は増幅・検波回路10で増幅、
検波され、試料からの反射波の強度に応じた検波信号を
得、この検波信号が走査制御装置6による試料台7の走
査と同期されて試料面上の対応する位置の輝度信号とし
てスキャンコンバータ11に記録され、この記録された
輝度信号が超音波像として陰極線管12上に表示される
。なお、高周波パルス発生器]、走査制御装置6、ゲー
ト、回路9およびスキャンコンバータ】]の動作は制御
回路]3により制御される。The output signal of the gate circuit 9 is amplified by the amplification/detection circuit 10.
Detected, a detection signal corresponding to the intensity of the reflected wave from the sample is obtained, and this detection signal is synchronized with the scanning of the sample stage 7 by the scan control device 6 and sent to the scan converter 11 as a luminance signal at the corresponding position on the sample surface. The recorded luminance signal is displayed on the cathode ray tube 12 as an ultrasonic image. The operations of the high-frequency pulse generator], the scan control device 6, the gate, the circuit 9, and the scan converter] are controlled by a control circuit]3.
上述した超音波顕微鏡においては、圧電トランスジュー
サ3から音響レンズ4に放出された超音波は、音響レン
ズ4の凹面状のレンズ部と圧電トランスジューサ3との
間で多重反射し、これらの反射波が圧電トランスジュー
サ3でそれぞれ電気信号に変換されてサーキュレータ2
を経てゲート回路9に供給される。In the ultrasonic microscope described above, the ultrasonic waves emitted from the piezoelectric transducer 3 to the acoustic lens 4 undergo multiple reflections between the concave lens portion of the acoustic lens 4 and the piezoelectric transducer 3, and these reflected waves are generated by the piezoelectric Each is converted into an electrical signal by transducer 3 and sent to circulator 2.
The signal is supplied to the gate circuit 9 via.
第2図Aは、制御回路]3による制御の下で高周波パル
ス発生器1からある短期間の間超高周波のバースト波雷
、気信号を発生せしめた場合に、ゲート回路9に入力す
る信号の分布を示すもので、Poは高周波パルス発生器
1からサーキュレータ2を通って直接ゲート回路9に到
達する漏洩信号を表わし、Pl、P2およびP8は圧電
トランスジューサ3と音響レンズ4のレンズ部との間で
の第1゜第2および第8の反射波信号を表わす。このた
め、この種の超音波顕微鏡においては、例えば第1反射
波信号P0と第2反射波信号P2との間に試料反、耐波
信号Sが位置するように音響レンズ4を設計し、制御回
路13からゲート回路9に第2図Bに示すようなゲート
コントロール信号を供給して第2図Cに示すように試料
反射波信号Sのみを取出すようGこしている。FIG. 2A shows the signal input to the gate circuit 9 when the high frequency pulse generator 1 generates an extremely high frequency burst wave lightning signal for a short period of time under the control of the control circuit 3. Po represents the leakage signal that reaches the gate circuit 9 directly from the high-frequency pulse generator 1 through the circulator 2, and Pl, P2, and P8 represent the leakage signal between the piezoelectric transducer 3 and the lens part of the acoustic lens 4. represents the 1st degree second and eighth reflected wave signals at . Therefore, in this type of ultrasonic microscope, the acoustic lens 4 is designed so that the sample wave resistance signal S is located between the first reflected wave signal P0 and the second reflected wave signal P2, and the control circuit A gate control signal as shown in FIG. 2B is supplied from the gate circuit 13 to the gate circuit 9 so that only the sample reflected wave signal S is extracted as shown in FIG. 2C.
ここでゲート回路9の出力信号(第2図C)について着
目すると、試料からの反射波はその表面からの反射波と
内部からの反射波とから成っており、一般には第3図に
示すように試料表面からの反射波Slが内部からの反射
波S2よりも強く、増幅・検波回路]0はゲート回路9
の出力信号を増幅し、包路線検波し、そのピークを検出
するものである為、陰極線管に表示される像は試料の表
面からの超音波像となる。すなわち従来の超音波顕微鏡
の場合、超音波が最も強く反射される試料表面又は内部
の位置の像しか表示することができず、試料表面又は内
部の任意の位置の像を選択的に表示することができなか
った。Now, focusing on the output signal of the gate circuit 9 (Fig. 2C), the reflected wave from the sample consists of the reflected wave from the surface and the internal reflected wave, and generally as shown in Fig. 3. When the reflected wave Sl from the sample surface is stronger than the reflected wave S2 from inside, the amplification/detection circuit]
Since the output signal is amplified, envelope detection is performed, and its peak is detected, the image displayed on the cathode ray tube is an ultrasonic image from the surface of the sample. In other words, in the case of a conventional ultrasound microscope, it is only possible to display an image of the position on the sample surface or inside where ultrasonic waves are most strongly reflected, and it is not possible to selectively display an image of an arbitrary position on the sample surface or inside. I couldn't do it.
本発明の目的は、試料表面および内部の任意の位置の像
を選択的に表示しつるようにした超音波、顕微鏡を提供
せんとするにある。SUMMARY OF THE INVENTION An object of the present invention is to provide an ultrasonic microscope capable of selectively displaying images of arbitrary positions on the surface and inside of a sample.
本発明超音波顕微鏡は、超音波発生方向における音響レ
ンズの焦点と試料との相対位置を変え、前記の音響レン
ズの焦点を試料の表面上または試料の内部の所望位置に
移動せしめる手段と、前記の試料から反射された超音波
に相当する電気信号を包絡線検波する手段と、該包絡線
検波手段の出力信号から、前記の音響レンズの焦点が位
置する位置における試料情報に相当する部分のみを自動
的に抽出する手段とを具えたことを特徴とする。The ultrasonic microscope of the present invention includes means for changing the relative position between the focus of the acoustic lens and the sample in the ultrasonic generation direction, and moving the focus of the acoustic lens to a desired position on the surface of the sample or inside the sample; means for envelope-detecting an electrical signal corresponding to an ultrasonic wave reflected from the sample; and detecting only a portion corresponding to the sample information at the position where the focal point of the acoustic lens is located from the output signal of the envelope detection means. The method is characterized by comprising means for automatically extracting the information.
以下図面につき本発明を説明する。The invention will be explained below with reference to the drawings.
第3図は本発明超音波顕微鏡の一例を示す。この第3図
においては第1図と対応する素子に同一符号を付し、そ
の詳細な説明を省略する。FIG. 3 shows an example of the ultrasonic microscope of the present invention. In FIG. 3, elements corresponding to those in FIG. 1 are given the same reference numerals, and detailed explanation thereof will be omitted.
本発明によれは、音響レンズ4をこの音響レンズからの
超音波放出方向に駆動する機構(図示せず)を設け、こ
の駆動機構によりこの音響レンズ4の焦点が試料の表面
上に位置するこの音響レンズの位置を基準としてこの焦
点が試料内部の所望位置となるようにこの音響レンズを
移動させ、こ、の移動距離をセンサ装置2]により検出
し、このセンサ装置がこの移動距離に関連した時間に出
力パルスを発生するようにする。According to the present invention, a mechanism (not shown) is provided for driving the acoustic lens 4 in the direction in which ultrasonic waves are emitted from the acoustic lens. The acoustic lens is moved so that the focal point is at a desired position inside the sample with reference to the position of the acoustic lens, and the distance traveled is detected by the sensor device 2. Generate output pulses at certain times.
ゲート回路9から生じる信号は前述したように第3図に
示すようになっており、本発明ではこの信号を増幅・検
波回路10゛において増幅および包絡線検波する。この
回路10′の出力波形を第5図A !’l 示f。本発
明によればこの回路10′の出力信号のうち試料内部反
射波S2をサンプル・ホールド回路22においてセンサ
装置21の出力パルス(第5図B)によりサンプル・ホ
ールドし、このサンプル・ホールドした値(第5図C)
を試料内の所望位置の輝度信号としてスキャンコンバー
タ]]内に記録し、この信号を前述したようにして陰極
線管]2で表示せしめる。As mentioned above, the signal generated from the gate circuit 9 is as shown in FIG. 3, and in the present invention, this signal is amplified and envelope-detected in the amplification/detection circuit 10'. The output waveform of this circuit 10' is shown in FIG. 5A! 'l Show f. According to the present invention, the sample internal reflection wave S2 of the output signal of this circuit 10' is sampled and held in the sample and hold circuit 22 using the output pulse of the sensor device 21 (FIG. 5B), and this sampled and held value is (Figure 5C)
is recorded as a luminance signal at a desired position within the sample in the scan converter], and this signal is displayed on the cathode ray tube 2 as described above.
増幅・検波回路10′から生じる信号(第5図A)をセ
ンサ装置21の出力パルス(第5図B)によりサンプリ
ングすることにより得られる値が試料内の所望位置(焦
点位置)の情報に相当するようにする為のセンサ装置2
]の構成方法を以下に説、明する。The value obtained by sampling the signal generated from the amplification/detection circuit 10' (Fig. 5A) using the output pulse of the sensor device 21 (Fig. 5B) corresponds to information on the desired position (focal position) within the sample. Sensor device 2 for making
] will be explained below.
第6図Aは、音響レンズ4の焦点が試料の表面上に位置
し、圧電トランスジューサ3から生じる超音波音響レン
ズ4および超音波伝達媒体5を通り、試料8の表面で反
射され、再び超音波伝達媒体5および音響レンズ4を通
って圧電トランスジューサ3で電気信号に変換される場
合を示す。ここにlは音響レンズの長さ、fは音響レン
ズの焦点距離、C1は音響レンズ内での音速、C2は超
音波伝達媒体内での音速を示す。この場合、増幅・検波
回路10′からサンプル・ホールド回路22に供給され
る信号の波形を第6図Gに破線で示す。In FIG. 6A, the focal point of the acoustic lens 4 is located on the surface of the sample, and the ultrasonic wave generated from the piezoelectric transducer 3 passes through the acoustic lens 4 and the ultrasonic transmission medium 5, is reflected at the surface of the sample 8, and the ultrasonic wave is transmitted again. A case is shown in which the signal passes through a transmission medium 5 and an acoustic lens 4 and is converted into an electrical signal by a piezoelectric transducer 3. Here, l is the length of the acoustic lens, f is the focal length of the acoustic lens, C1 is the speed of sound within the acoustic lens, and C2 is the speed of sound within the ultrasonic transmission medium. In this case, the waveform of the signal supplied from the amplification/detection circuit 10' to the sample/hold circuit 22 is shown by a broken line in FIG. 6G.
この第6図Cにおいて81′は試料表面の情報であり、
Stは制御回路13から生じるスタートパルスであり、
このスタートパルスにより高周波発生器1から高周波信
号を発生させるとともにセンサ料の表面情報がサンプル
・ホールド回路22に到達するまでの時間t工(第6図
C目ま、電気回路中での電気信号の伝送時間を無視しつ
る為、超音波が圧電トランスジューサ3から生じてから
再びこの圧電トランスジューサに入るまでの時間とみな
すことができる。従って次式が満足される。In this FIG. 6C, 81' is information on the sample surface,
St is a start pulse generated from the control circuit 13,
This start pulse causes the high-frequency generator 1 to generate a high-frequency signal, and the time it takes for the surface information of the sensor material to reach the sample-hold circuit 22 (Fig. Since the transmission time is ignored, it can be regarded as the time from when the ultrasonic wave is generated from the piezoelectric transducer 3 until it enters the piezoelectric transducer again.Therefore, the following equation is satisfied.
試料の内部の情報を得る為に本発明によれば、音響レン
ズ内生器点が第6図Bに示すようGこ試料内部の所望位
置Xに達するようにこの音響レンズ4を距離りだけ移動
させる。この場合、サンプルホールド回路22に供給さ
れる信号の波形を第6図Gに実線波形で示す。この第6
図Cにおいて、Soは試料表面の情報であり、S2は試
料内部の点Xの情報である。従って時間t2は超音波が
超音波伝達媒体5中を距離2hだけ通る時間に等しく式
%式%
(2)
が満足される。また第6図Bにおいて、試料8の表面の
情報がサンプル・ホールド回路22に到達、する時間か
ら、試料内の点Xの情報がサンプル・ホールド回路22
に到達するまでの時間、すなわち第6図Cにおける情報
S□および82間の時間t8は、超音波が試料の表面に
入射されてから点Xで反射してこの表面から出射される
までの時間に等しく、試料内の音速を08とした場合次
式が成立する。In order to obtain information inside the sample, according to the present invention, the acoustic lens 4 is moved by a distance such that the generator point within the acoustic lens reaches a desired position X inside the sample as shown in FIG. 6B. let In this case, the waveform of the signal supplied to the sample-and-hold circuit 22 is shown by the solid line waveform in FIG. 6G. This sixth
In Figure C, So is information on the sample surface, and S2 is information on point X inside the sample. Therefore, the time t2 is equal to the time during which the ultrasonic wave passes through the ultrasonic transmission medium 5 by a distance of 2h, and the formula % (2) is satisfied. In addition, in FIG. 6B, from the time when the information on the surface of the sample 8 reaches the sample-and-hold circuit 22, the information on the point X in the sample reaches the sample-and-hold circuit 22.
The time it takes to reach , that is, the time t8 between the information S□ and 82 in Figure 6C, is the time from when the ultrasonic wave is incident on the surface of the sample until it is reflected at point X and emitted from this surface. If the sound velocity in the sample is 08, then the following equation holds true.
h
t −□ ・・・・・ (3)
c8
スタートパルスStの発生瞬時から試料内の点Xの情報
S2がサンプル・ホールド回路22に到達するまでの時
間Tは第6図Gから明らかなように
T−t −t +t ・・・・・ (4)1
2 8
となり、この式(4)に式(1)、(2)および(3)
を代入することにより、次式(5)が得られる。h t -□ ... (3) c8 As is clear from Fig. 6G, the time T from the instant the start pulse St is generated until the information S2 of the point X in the sample reaches the sample/hold circuit 22 is To T-t -t +t... (4)1
2 8 , and this equation (4) is replaced by equations (1), (2), and (3).
By substituting , the following equation (5) is obtained.
この式(5)におけるC□+ 02 + Ca 、lお
よびfは予め設定しうる為、センサ装置21により既知
の方法で音響レンズ4の移動距離りを測定すれば、この
センサ装置2]において式(5)の演算を容易に達成す
ることができ、この時間Tで第5図Bに示すようなサン
プリングパルスを発生させればよい。Since C□+02+Ca, l, and f in this equation (5) can be set in advance, if the moving distance of the acoustic lens 4 is measured using a known method using the sensor device 21, the equation The calculation in (5) can be easily accomplished by generating a sampling pulse as shown in FIG. 5B at this time T.
上述したところから明らかなように本発明によレバ、音
響レンズ4の焦点位置を試料内或いは試料上の所望位置
に合わせることにより、この所望位置の試料情報を自動
的に陰極線管に表示せしめることができる。As is clear from the above, according to the present invention, by adjusting the focus position of the lever and acoustic lens 4 to a desired position within or on the sample, sample information at this desired position can be automatically displayed on the cathode ray tube. I can do it.
本発明は上述した例のみに限定されず、幾多の変更を加
えうること勿論である。例えば、音響レンズを移動させ
る代りに、試料台7を同一方向に移動させるようにする
ことができる。また、センサ装置21が音響レンズの移
動量を検出せずに所望の移動量を外部からこの装置2]
に与え、この装置21が前述した演算処理のみを自動的
に行なうようにすることもできる。It goes without saying that the present invention is not limited to the above-mentioned example, and can be modified in many ways. For example, instead of moving the acoustic lens, the sample stage 7 can be moved in the same direction. In addition, the sensor device 21 does not detect the amount of movement of the acoustic lens, and the desired amount of movement is detected from the outside of this device 2].
It is also possible that the device 21 automatically performs only the arithmetic processing described above.
、4、図面の簡単な説明
第1図は従来の超音波顕微鏡を示す説明図、第2図は第
1図の作動を説明する為の波形図、第8図は第2図Gの
波形を詳細に示す波形図、第4図は本発明超音波顕微鏡
の一例を示す説明図、
第5図は第4図の作動を説明する為の波形図、第6図は
本発明の詳細な説明する為の線図である。, 4. Brief explanation of the drawings Figure 1 is an explanatory diagram showing a conventional ultrasound microscope, Figure 2 is a waveform diagram to explain the operation of Figure 1, and Figure 8 is a waveform diagram of Figure 2G. A waveform diagram showing details, FIG. 4 is an explanatory diagram showing an example of the ultrasonic microscope of the present invention, FIG. 5 is a waveform diagram for explaining the operation of FIG. 4, and FIG. 6 is a detailed explanation of the present invention. This is a diagram for
]・・・高周波パルス発生器
2・・・サーキュレータ 3・・・圧電トランスジュ
ーサ4・・・音響レンズ
5・・・液体(超音波伝達媒体)
6・・・走査制御装置 7・・・試料台8・・・試
料 9・・・ゲート回路10、]θ″・・
・増幅・検波回路
1]・・・スキャンコンバータ12・・・陰極線管]3
・・・制御回路 21・・・センサ装置22・
・・サンプル・ホールド回路。]... High frequency pulse generator 2... Circulator 3... Piezoelectric transducer 4... Acoustic lens 5... Liquid (ultrasonic transmission medium) 6... Scanning control device 7... Sample stage 8 ...Sample 9...Gate circuit 10,]θ''...
・Amplification/detection circuit 1]...scan converter 12...cathode ray tube] 3
...Control circuit 21...Sensor device 22.
...Sample/hold circuit.
第1図 第2図 C−m−」へ−m− 第3図 第4図Figure 1 Figure 2 C-m-” to-m- Figure 3 Figure 4
Claims (1)
の相対位置を変え、前記の音響レンズの焦点を試料の表
面上または試料の内部の所望位置に移動せしめる手段と
、前記の試料から反射された超音波に相当する電気信号
を包絡線検波する手段と、該包結線検波手段の出力信号
から、前記の音響レンズの焦点が位置する位置における
試料情報に相当する部分のみを自動的に抽出する手段と
を具えたことを特徴とする超音波顕微鏡。L means for changing the relative position between the focus of the acoustic lens and the sample in the direction of ultrasonic generation, and moving the focus of the acoustic lens to a desired position on the surface of the sample or inside the sample; Means for envelope detection of an electric signal corresponding to an ultrasonic wave; and means for automatically extracting only a portion corresponding to sample information at a position where the focal point of the acoustic lens is located from the output signal of the envelope detection means. An ultrasonic microscope characterized by comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57211386A JPS59102156A (en) | 1982-12-03 | 1982-12-03 | Ultrasonic microscope |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57211386A JPS59102156A (en) | 1982-12-03 | 1982-12-03 | Ultrasonic microscope |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59102156A true JPS59102156A (en) | 1984-06-13 |
JPH0457975B2 JPH0457975B2 (en) | 1992-09-16 |
Family
ID=16605094
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57211386A Granted JPS59102156A (en) | 1982-12-03 | 1982-12-03 | Ultrasonic microscope |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59102156A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS617465A (en) * | 1984-06-20 | 1986-01-14 | Mitsubishi Electric Corp | Ultrasonic wave tester |
FR2602043A1 (en) * | 1986-07-24 | 1988-01-29 | France Etat | Process for non-destructive measurement of the profile of a surface |
-
1982
- 1982-12-03 JP JP57211386A patent/JPS59102156A/en active Granted
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS617465A (en) * | 1984-06-20 | 1986-01-14 | Mitsubishi Electric Corp | Ultrasonic wave tester |
JPH0552461B2 (en) * | 1984-06-20 | 1993-08-05 | Mitsubishi Electric Corp | |
FR2602043A1 (en) * | 1986-07-24 | 1988-01-29 | France Etat | Process for non-destructive measurement of the profile of a surface |
Also Published As
Publication number | Publication date |
---|---|
JPH0457975B2 (en) | 1992-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4138895A (en) | Switchable depth of focus pulse-echo ultrasonic-imaging display system | |
US4168628A (en) | Pulse-echo ultrasonic-imaging display system having time-varied effective aperture | |
JPH03500454A (en) | Ultrasonic reflection transmission imaging method and device excluding artificial structures | |
JPH0255949A (en) | Ultrasonic microscope | |
JPS59102156A (en) | Ultrasonic microscope | |
JP2634831B2 (en) | Ultrasonic microscope | |
JPH0136585B2 (en) | ||
JPH0461306B2 (en) | ||
JPS59104548A (en) | Ultrasonic microscope | |
JPS6333167Y2 (en) | ||
JPH0255950A (en) | Ultrasonic microscope | |
JPS5950937B2 (en) | ultrasound microscope | |
SU1518784A1 (en) | Method of forming acoustic images | |
JPH0245757A (en) | Ultrasonic probe | |
JPS6322546B2 (en) | ||
JPS6238983B2 (en) | ||
JPS5987662U (en) | ultrasound microscope | |
JPH056144B2 (en) | ||
JPH0245756A (en) | Ultrasonic probe | |
JPH0158458B2 (en) | ||
JPS594662B2 (en) | Ultrasonic probe position detection method and device | |
JPH0381098B2 (en) | ||
JPH0381097B2 (en) | ||
JPS6037892B2 (en) | acoustic image display device | |
JPS6037893B2 (en) | acoustic image display device |