JPH0245757A - Ultrasonic probe - Google Patents

Ultrasonic probe

Info

Publication number
JPH0245757A
JPH0245757A JP63195315A JP19531588A JPH0245757A JP H0245757 A JPH0245757 A JP H0245757A JP 63195315 A JP63195315 A JP 63195315A JP 19531588 A JP19531588 A JP 19531588A JP H0245757 A JPH0245757 A JP H0245757A
Authority
JP
Japan
Prior art keywords
ultrasonic
focus
sample
light source
visible light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63195315A
Other languages
Japanese (ja)
Inventor
Yasuo Hayakawa
泰夫 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP63195315A priority Critical patent/JPH0245757A/en
Publication of JPH0245757A publication Critical patent/JPH0245757A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To easily make the focus of an ultrasonic wave coincident with the surface of a sample by fixing a 1st and a 2nd visible light source to the ultrasonic probe and making the light from the 1st visible light source and the light from the 2nd visible light source cross each other at the focus. CONSTITUTION:The laser beams 20b and 21b from the laser oscillators 20 and 21 enters optical fibers 22 and 23 and are emitted toward the focus F. The laser beams 20b and 21b, therefore, cross each other at the focus F. When the surface of the sample is at a position (a), the spots of the laser beams 20b and 21b are at a distance from each other and when the sample surface is at a position close to the focus F, the opposite ends of both spots overlap with each other. Then when the sample surface is at a position (c) coincident with the focus F, both spots are put one over the other to become one spot. Thus, the laser beams 20b and 21b of the two laser oscillators 20 and 21 are passed through the optical fibers 22 and 23 to cross each other at the focus F, thereby easily focusing the beams on the sample surface.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、超音波検査装置や超音波顕微鏡等に用いられ
る超音波探触子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an ultrasonic probe used in ultrasonic inspection devices, ultrasonic microscopes, and the like.

〔従来の技術〕[Conventional technology]

超音波検査装置は物体内の欠陥の有無等、物体内部の状
態を当該物体を破壊することなく観察する装置であり、
又、超音波顕微鏡も同じく物体内部を非破壊で観察する
とともに、物体表面の物性をも観察する装置である。こ
れらの装置では、超音波を放射するとともにその反射波
をこれに応じた電気信号に変換する超音波探触子が使用
される。
Ultrasonic inspection equipment is a device that observes the internal state of an object, such as the presence or absence of defects within the object, without destroying the object.
Furthermore, an ultrasonic microscope is also a device that non-destructively observes the inside of an object and also observes the physical properties of the surface of the object. These devices use ultrasonic probes that emit ultrasonic waves and convert the reflected waves into corresponding electrical signals.

以下、超音波顕微鏡の概略を図により説明する。The outline of the ultrasonic microscope will be explained below using figures.

第3図は従来の超音波顕微鏡の系統図である。FIG. 3 is a system diagram of a conventional ultrasound microscope.

図で、■は超音波探触子を示し、圧電素子2および音響
レンズ3により構成される。圧電素子2は電気的パルス
が印加されることにより超音波を出力するとともに、そ
の反射波をそれに応じた電気信号に変換する。音響レン
ズ3は圧電素子2からの超音波を一点Fに集束する機能
を有する。4は検査の対象となる試料、5は音響レンズ
3と試料4との間に介在する媒体を示す。6,7.8は
それぞれ超音波探触子lをY軸方向(試料4に対して上
下方向)、X軸方向、Y軸方向に駆動する走査部である
。9は圧電素子2に印加するパルスを発生する高周波パ
ルス発生器、10は高周波パルス発生器9からのパルス
を圧電素子2に与えるとともに圧電素子2からの信号は
高周波パルス発生器9には入力しないようにするサーキ
ュレータである。11は圧電素子2の信号をサーキュレ
ータ10を介して受信するオシロスコープであり、受信
信号の波形を表示する。12は圧電素子2の信号のうち
必要部分(検査対象部分)の波形のみをとり出すゲート
部、13はゲート部12でとり出した信号を増幅、検波
し、そのピーク値をホールドして出力する増幅検波部で
ある。14はスキャンコンバータであり、増幅検波部1
3のピーク値信号をA/D変換し、そのときの試料4の
座標位置(X、Y)に対応するメモリに格納するととも
に、これら格納された値をD / A変換する機能も有
する。15はスキャンコンバータ14のメモリに格納さ
れた値に基づいて所定の表示を行なう表示部である。1
6はこのような超音波顕微鏡の動作を制御する制御部を
示す。
In the figure, ■ indicates an ultrasonic probe, which is composed of a piezoelectric element 2 and an acoustic lens 3. The piezoelectric element 2 outputs an ultrasonic wave by applying an electric pulse, and converts the reflected wave into an electric signal corresponding to the ultrasonic wave. The acoustic lens 3 has a function of focusing the ultrasonic waves from the piezoelectric element 2 onto one point F. Reference numeral 4 indicates a sample to be inspected, and reference numeral 5 indicates a medium interposed between the acoustic lens 3 and the sample 4. 6, 7.8 are scanning units that drive the ultrasonic probe l in the Y-axis direction (vertical direction with respect to the sample 4), the X-axis direction, and the Y-axis direction, respectively. 9 is a high-frequency pulse generator that generates pulses to be applied to the piezoelectric element 2; 10 is a high-frequency pulse generator that applies pulses from the high-frequency pulse generator 9 to the piezoelectric element 2; however, the signal from the piezoelectric element 2 is not input to the high-frequency pulse generator 9; This is a circulator that does this. Reference numeral 11 denotes an oscilloscope that receives the signal from the piezoelectric element 2 via the circulator 10, and displays the waveform of the received signal. 12 is a gate section that extracts only the waveform of a necessary part (part to be inspected) of the signal from piezoelectric element 2; 13 is a gate section that amplifies and detects the signal taken out by gate section 12, holds its peak value, and outputs it. This is an amplification and detection section. 14 is a scan converter, and the amplification/detection section 1
It also has the function of A/D converting the peak value signal of No. 3 and storing it in the memory corresponding to the coordinate position (X, Y) of the sample 4 at that time, as well as D/A converting these stored values. Reference numeral 15 denotes a display unit that performs a predetermined display based on the values stored in the memory of the scan converter 14. 1
Reference numeral 6 indicates a control unit that controls the operation of such an ultrasonic microscope.

高周波パルス発生器9から出力されたパルスがサーキュ
レータ10を経て圧電素子2に印加されると、圧電素子
2は励起されて超音波を出力する。
When the pulse output from the high-frequency pulse generator 9 is applied to the piezoelectric element 2 via the circulator 10, the piezoelectric element 2 is excited and outputs ultrasonic waves.

この超音波は音響レンズ3、媒体5を経て試料4に入射
され、その反射波は再び媒体5および音響レンズ3を経
て圧電素子2に戻る。圧電素子2は、当該反射波をこれ
に比例する電気信号に変換してオシロスコープ11およ
びゲート部12に出力する。
This ultrasonic wave is incident on the sample 4 via the acoustic lens 3 and the medium 5, and its reflected wave returns to the piezoelectric element 2 via the medium 5 and the acoustic lens 3 again. The piezoelectric element 2 converts the reflected wave into an electrical signal proportional to the reflected wave and outputs it to the oscilloscope 11 and the gate section 12.

オシロスコープ11は、反射波の電気信号波形を時間軸
を横軸、大きさを縦軸として表示する。一方、ゲート部
12、増幅検波部13、スキャンコンバータ14は、圧
電素子2から出力された反射波信号を処理し、所要の信
号のみを適切な形態で表示部15に表示する。なお、試
料4におけるX−Y平面上の検査位置はX方向走査部7
およびY方向走査部8により超音波探触子1を駆動する
ことにより任意に選定することができる。
The oscilloscope 11 displays the electrical signal waveform of the reflected wave with the time axis as the horizontal axis and the size as the vertical axis. On the other hand, the gate section 12, the amplification/detection section 13, and the scan converter 14 process the reflected wave signal output from the piezoelectric element 2, and display only the required signals in an appropriate format on the display section 15. Note that the inspection position on the X-Y plane of the sample 4 is determined by the X-direction scanning section 7.
and can be arbitrarily selected by driving the ultrasound probe 1 with the Y-direction scanning unit 8.

上記超音波顕微鏡において、試料4の検査対象部位から
の最も精密な反射波信号を得るためには、超音波探触子
1からの超音波の焦点Fを当該検査対象部位と一致させ
ればよいのは明らかである。
In the above ultrasound microscope, in order to obtain the most precise reflected wave signal from the inspection target area of the sample 4, the focus F of the ultrasonic waves from the ultrasound probe 1 should coincide with the inspection target area. It is clear that

そのため、検査開始前に、まず超音波探触子1のY軸方
向の位置を調節して、試料4の表面に焦点Fを一致させ
る作業が行なわれる。そして、検査対象部位が試料4の
表面であれば、両者が一致した状態で検査を開始すれば
よく、又、検査対象部位が試料4の内部であれば、超音
波探触子をそれに合致させて下げた状態で検査を開始す
ればよい。
Therefore, before starting the inspection, the position of the ultrasonic probe 1 in the Y-axis direction is first adjusted so that the focal point F coincides with the surface of the sample 4. If the area to be inspected is the surface of the sample 4, the inspection can be started with both of them matching, and if the area to be inspected is the inside of the sample 4, the ultrasound probe should be aligned with it. You can start the test with the camera lowered.

このように、まず、焦点Fを試料4の表面に一致させる
作業が必要であるが、この作業は、超音波探触子1をY
軸方向に上下させながらオシロスコープ11で反射波波
形を観察することにより行なわれる。第4図(a)、(
b)は反射波波形の波形図であり、横軸に時間、縦軸に
反射波の大きさがとっである。各図で、Aは圧電素子2
が超音波を送出したときの送信波、Bは音響レンズ3と
媒体5の境界で反射するレンズ界面波、Cは試料4の表
面で反射する表面波、Dは試料4の内部のある面で反射
する界面波を示す。超音波探触子1を上下させ、これら
波形のうち表面波Cをみて、その大きさが最大となる位
置に超音波探触子1をセットすれば、この位置が試料4
の表面と焦点Fが一致する位置となる。なお、以上の説
明は超音波顕微鏡を例示した説明であるが、焦点Fを試
料表面に一致させることは、当然超音波検査装置等にお
いても必要である。
In this way, it is first necessary to align the focal point F with the surface of the sample 4.
This is done by observing the reflected waveform with an oscilloscope 11 while moving it up and down in the axial direction. Figure 4(a), (
b) is a waveform diagram of a reflected wave, in which the horizontal axis represents time and the vertical axis represents the magnitude of the reflected wave. In each figure, A is piezoelectric element 2
is the transmitted wave when transmitting an ultrasonic wave, B is the lens interface wave reflected at the boundary between the acoustic lens 3 and the medium 5, C is the surface wave reflected from the surface of the sample 4, and D is the wave at a certain surface inside the sample 4. Shows reflected interfacial waves. If you move the ultrasonic probe 1 up and down, look at the surface wave C among these waveforms, and set the ultrasonic probe 1 at the position where its magnitude is maximum, this position will be the sample 4.
This is the position where the surface of F coincides with the focal point F. Although the above description is an example of an ultrasonic microscope, it is of course necessary to align the focal point F with the sample surface in an ultrasonic inspection apparatus or the like.

〔発明が解決しようとする課題〕 上記のように、試料4の表面に焦点Fを一致させる場合
、オシロスコープ11で表面波Cの波形を観察するが、
第4図(a)に示すように表面波Cの波形が明瞭である
場合には、波形の大小の判断に多少の面倒さは伴うもの
の格別の問題はない。
[Problems to be Solved by the Invention] As described above, when the focal point F is made to coincide with the surface of the sample 4, the waveform of the surface wave C is observed with the oscilloscope 11.
If the waveform of the surface wave C is clear as shown in FIG. 4(a), there is no particular problem, although it may be somewhat troublesome to judge the size of the waveform.

しかしながら、例えば試料4の表面と界面との間隔が小
さい場合、第4図(b)に示すように表面波Cと界面波
りとが重なり、相互に干渉し合うので波形が乱れ、試料
40表面と焦点Fの一致を51認することが困難となる
場合がしばしば生じていた。
However, for example, when the distance between the surface of the sample 4 and the interface is small, the surface wave C and the interface wave overlap and interfere with each other, as shown in FIG. It often occurred that it was difficult to recognize the coincidence of the focal point F and the focal point F.

本発明の目的は、上記従来技術における課題を解決し、
超音波の焦点を容易に試料表面に一致させることができ
る超音波探触子を提供するにある。
The purpose of the present invention is to solve the problems in the above-mentioned prior art,
The object of the present invention is to provide an ultrasonic probe that can easily match the focus of ultrasonic waves to the sample surface.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するため、本発明は、超音波源および
音響レンズを備え、前記超音波源から放射された超音波
を前記音響レンズにより焦点に集束させる超音波探触子
において、第1の可視光源と、第2の可視光源と、前記
超音波探触子に固定され前記第1の可視光源の光と前記
第2の可視光源の光とを前記焦点で交叉させる導光手段
とを設けたことを特徴とする。
In order to achieve the above object, the present invention provides an ultrasonic probe that includes an ultrasonic source and an acoustic lens, and focuses ultrasonic waves emitted from the ultrasonic source to a focal point by the acoustic lens. A visible light source, a second visible light source, and a light guiding means fixed to the ultrasonic probe and causing the light from the first visible light source and the light from the second visible light source to intersect at the focal point. It is characterized by:

〔作 用〕[For production]

超音波探触子の焦点を試料表面に一致させる場合、第1
の可視光源と第2の可視光源とを発光させ、それらの光
を導光手段により導き試料表面に投射させる。超音波探
触子の焦点と試料表面とが一致していない場合、試料表
面に投射された第1の可視光源および第2の可視光源の
各光線のスポットは離れているが、当該焦点と試料表面
とが一致している場合、上記各スポットは一体となる。
When aligning the focus of the ultrasonic probe with the sample surface, the first
The visible light source and the second visible light source are caused to emit light, and the light is guided by the light guiding means and projected onto the sample surface. If the focus of the ultrasonic probe and the sample surface do not match, the spots of the respective light beams of the first visible light source and the second visible light source projected onto the sample surface are separated, but the focus and the sample surface do not match. If the surfaces coincide with each other, the above-mentioned spots become one.

これをみて焦点と試料表面の一致、不一致が判断される
By looking at this, it is determined whether the focus and the sample surface match or do not match.

〔実施例〕〔Example〕

以下、本発明を図示の実施例に基づいて説明する。 Hereinafter, the present invention will be explained based on illustrated embodiments.

第1図は本発明の実施例に係る超音波探触子の側面図で
ある。図で、第3図に示す部分と同一部分には同一符号
を付して説明を省略する。1′は本実施例の超音波探触
子を示す。20.21はレーザ発振器、20b、21b
はレーザ発振器20.21から出力されるレーザビーム
を示す。22.23は超音波探触子1′の適宜個所に固
定された光ファイバである。光ファイバ22はその一端
からレーザビーJ、20bを入力し、他端から出力する
。同じく光ファイバ23はその一端からレーザビーム2
1bを入力し、他端から出力する。光ファイバ22.2
3の当該各他端の中心軸(光軸)は、それぞれ焦点Fの
方向に一致せしめられる。a 、b 、C% dはそれ
ぞれ試料表面の想定位置を示す。なお、flは焦点距離
を示し、この焦点距離f、は音響レンズ3の輸率、レン
ズ材質および媒体5の音速によりその大きさが決定され
る。
FIG. 1 is a side view of an ultrasound probe according to an embodiment of the present invention. In the figure, parts that are the same as those shown in FIG. 3 are given the same reference numerals, and explanations thereof will be omitted. 1' indicates the ultrasonic probe of this embodiment. 20.21 is a laser oscillator, 20b, 21b
indicates the laser beam output from the laser oscillator 20.21. 22 and 23 are optical fibers fixed at appropriate locations on the ultrasound probe 1'. The optical fiber 22 inputs the laser beam J, 20b from one end thereof and outputs it from the other end. Similarly, the optical fiber 23 receives the laser beam 2 from one end thereof.
1b is input and output from the other end. Optical fiber 22.2
The central axes (optical axes) of each other end of the lens 3 are made to coincide with the direction of the focal point F, respectively. a, b, and C%d each indicate the assumed position on the sample surface. Incidentally, fl indicates a focal length, and the magnitude of the focal length f is determined by the transport number of the acoustic lens 3, the material of the lens, and the sound speed of the medium 5.

次に、本実施例の動作を、第2図(a)〜(d)に示す
レーザビームスポット投影図を参照しながら説明する。
Next, the operation of this embodiment will be explained with reference to the laser beam spot projection diagrams shown in FIGS. 2(a) to 2(d).

レーザ発振器20.21からのレーザビーム20b、2
1bはそれぞれ光ファイバ22.23に入り、その先端
から焦点Fに向けて放射される。
Laser beams 20b, 2 from laser oscillators 20.21
1b respectively enter the optical fibers 22 and 23 and are emitted from their tips toward the focal point F.

したがって、レーザビ・−ム2Qb、21bは一旦焦点
Fで交叉する。
Therefore, the laser beams 2Qb and 21b once intersect at the focal point F.

ここで、試料表面が図に一点鎖線で示す位置aにある場
合、試料表面に投射されるレーザビーム20))、21
bのスポットは、第2図(a)に示すように互いに離れ
た位置となり、又、試料表面がさらに焦点に近い位置す
にある場合には第2図(b)に示すように両スポットは
その対向端が重なった状態となる。そして、試料表面が
丁度焦点Fと一致した位WCにある場合、両スポットは
第2図(C)に示すように重なって1つのスポットとな
る。又、試料表面が焦点Fよりさらに離れた位置dにあ
ると、両スポットは第2図(d)に示すように再び離れ
た位置となるが、この場合、レーザビーム20bのスポ
ットとレーザビーム21bのスポットとは位置a、bの
場合と逆になる。
Here, when the sample surface is at position a shown by the dashed line in the figure, the laser beams 20)), 21
The spots b are located far apart from each other as shown in Figure 2(a), and if the sample surface is located closer to the focal point, both spots are separated as shown in Figure 2(b). The opposing ends are in an overlapping state. When the sample surface is located at WC to exactly coincide with the focal point F, both spots overlap to form one spot as shown in FIG. 2(C). Moreover, when the sample surface is at a position d further away from the focal point F, both spots are again separated as shown in FIG. 2(d), but in this case, the spot of the laser beam 20b and the spot of the laser beam 21b The spots are opposite to those at positions a and b.

このように、本実施例では、2つのレーザ発振器のレー
ザビームをそれぞれ光ファイバを通して焦点で交叉させ
るようにしたので、試料表面に投射されるレーザビーム
の各スポットをみながら超音波探触子を上下動させ、両
スポッI・が重なった位置で超音波探触子を停止させれ
ばよく、超音波反射波の波形とは無関係に、きわめて容
易に試料表面に対する焦点合せを行なうことができる。
In this way, in this example, the laser beams from the two laser oscillators are passed through optical fibers and crossed at the focal point, so the ultrasonic probe can be moved while observing each spot of the laser beam projected onto the sample surface. It is sufficient to move the ultrasonic probe up and down and stop it at the position where both spots I. overlap, and it is possible to very easily focus the probe on the sample surface, regardless of the waveform of the reflected ultrasonic wave.

なお、上記実施例の説明では、レーザ発振器および光フ
ァイバを用いる例について説明したが、通常の光源とレ
ンズを用いることもできる。又、使用する光源を異なる
色とすれば、焦点合せをより容易に行なうことができる
Although the above embodiments have been described using a laser oscillator and an optical fiber, a normal light source and lens may also be used. Furthermore, if the light sources used are of different colors, focusing can be performed more easily.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明では、2つの可視光源の光を
超音波の焦点で交叉するようにしたので、試料表面への
焦点合せを、超音波反射波形とは無関係に容易に行なう
ことができる。
As described above, in the present invention, since the light from two visible light sources is made to intersect at the focal point of the ultrasound, focusing on the sample surface can be easily performed regardless of the ultrasound reflected waveform. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に係る超音波探触子の側面図、
第2図(a)、(b)、(c)、(d)はレーザビーム
のスポットの投影図、第3図は超音波顕微鏡の系統図、
第4図(a)、(b)は超音波反射波の波形図である。 1′・・・・・・超音波探触子、2・・・・・・圧電素
子、3・・・・・・音響レンズ、20.21・・・・・
・レーザ発振器、20b、21b・・・・・・レーザビ
ーム、22.23・・・・・・光ファイバ、。 F・・・・・・焦点。 (C) o、−20b、 21 b
FIG. 1 is a side view of an ultrasound probe according to an embodiment of the present invention;
Figures 2 (a), (b), (c), and (d) are projection diagrams of laser beam spots; Figure 3 is a system diagram of an ultrasound microscope;
FIGS. 4(a) and 4(b) are waveform diagrams of ultrasonic reflected waves. 1'... Ultrasonic probe, 2... Piezoelectric element, 3... Acoustic lens, 20.21...
-Laser oscillator, 20b, 21b...Laser beam, 22.23...Optical fiber. F...Focus. (C) o, -20b, 21 b

Claims (3)

【特許請求の範囲】[Claims] (1)超音波源および音響レンズを備え、前記超音波源
から放射された超音波を前記音響レンズにより焦点に集
束させる超音波探触子において、第1の可視光源と、第
2の可視光源と、前記超音波探触子に固定され前記第1
の可視光源の光と前記第2の可視光源の光を前記焦点で
交叉させる導光手段とを設けたことを特徴とする超音波
探触子
(1) An ultrasonic probe that includes an ultrasonic source and an acoustic lens, and in which the ultrasonic waves emitted from the ultrasonic source are focused by the acoustic lens, including a first visible light source and a second visible light source. and the first
An ultrasonic probe characterized in that it is provided with a light guide means for causing the light from the visible light source and the light from the second visible light source to intersect at the focal point.
(2)請求項(1)において、前記第1の可視光源の光
および前記第2の可視光源の光は異なる色であることを
特徴とする超音波探触子
(2) The ultrasonic probe according to claim (1), wherein the light from the first visible light source and the light from the second visible light source have different colors.
(3)請求項(1)において、前記導光手段は、前記第
1の可視光源の光を導く第1の光ファイバおよび前記第
2の可視光源の光を導く第2の光ファイバで構成されて
いることを特徴とする超音波探触子
(3) In claim (1), the light guiding means includes a first optical fiber that guides the light from the first visible light source and a second optical fiber that guides the light from the second visible light source. An ultrasonic probe characterized by
JP63195315A 1988-08-06 1988-08-06 Ultrasonic probe Pending JPH0245757A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63195315A JPH0245757A (en) 1988-08-06 1988-08-06 Ultrasonic probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63195315A JPH0245757A (en) 1988-08-06 1988-08-06 Ultrasonic probe

Publications (1)

Publication Number Publication Date
JPH0245757A true JPH0245757A (en) 1990-02-15

Family

ID=16339117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63195315A Pending JPH0245757A (en) 1988-08-06 1988-08-06 Ultrasonic probe

Country Status (1)

Country Link
JP (1) JPH0245757A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10313277A1 (en) * 2003-03-24 2004-10-28 Schott Glas Photoresist outputting device for microlithography, has homogenizing device in photoresist flow between filter and outlet opening
JP2012021952A (en) * 2010-07-16 2012-02-02 Yutaka Nagai Ultrasonic microscope
CN107192873A (en) * 2017-07-27 2017-09-22 北京中科飞龙传感技术有限责任公司 Non-contact voltage transducer system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10313277A1 (en) * 2003-03-24 2004-10-28 Schott Glas Photoresist outputting device for microlithography, has homogenizing device in photoresist flow between filter and outlet opening
JP2012021952A (en) * 2010-07-16 2012-02-02 Yutaka Nagai Ultrasonic microscope
CN107192873A (en) * 2017-07-27 2017-09-22 北京中科飞龙传感技术有限责任公司 Non-contact voltage transducer system

Similar Documents

Publication Publication Date Title
CN111812037A (en) Laser composite system and method integrating cleaning, polishing and ultrasonic detection
CN109682759A (en) A kind of laser-ultrasound excitation and detection system and method for realizing that ultrasonic quickly scanning and fixed point focus
JP6210754B2 (en) Scanning optical microscope
US20150265157A1 (en) Method and apparatus for a photoacoustic probe using a multimode fiber
CN109799191B (en) Optical non-contact detection device and method for sound disturbance of rough surface of solid material
JPH0245757A (en) Ultrasonic probe
CN212340975U (en) Laser composite system integrating cleaning, polishing and ultrasonic detection
JP2001340979A (en) Laser processing apparatus
JP2001510889A (en) Ultrasonic microscope
JPH1068901A (en) Two-dimensional scanner device
JPH0245756A (en) Ultrasonic probe
CN112230424B (en) Optical tweezers
CN108051369A (en) A kind of contactless full optics opto-acoustic imaging devices and its method
Xu et al. A fiber-optic diagnostic technique for mechanical detection of the laser–metal interaction underwater
JPS6021447A (en) Automatic focusing apparatus of ultrasonic wave microscope
JPH09229639A (en) Automatic hole diameter measuring device
JPS63269054A (en) Apparatus for confirming ultrasonic beam incident state
JPH02276961A (en) Laser ultrasonic flaw detector
JPH09113240A (en) Method and device for detecting three-dimensional information of light transmitting substance
JP2517065B2 (en) Light irradiation device
CN114018822B (en) Remote laser nondestructive flaw detection device and method
JPS59102156A (en) Ultrasonic microscope
JPH0686070U (en) Ultrasonic inspection device
JPH01123102A (en) Device for measuring trench depth
JPS5841346A (en) Bubble detector for acoustic lens used for ultrasonic microscope