JPS59101605A - Optical waveguide - Google Patents

Optical waveguide

Info

Publication number
JPS59101605A
JPS59101605A JP20941482A JP20941482A JPS59101605A JP S59101605 A JPS59101605 A JP S59101605A JP 20941482 A JP20941482 A JP 20941482A JP 20941482 A JP20941482 A JP 20941482A JP S59101605 A JPS59101605 A JP S59101605A
Authority
JP
Japan
Prior art keywords
mask
substrate
etching
optical
optical waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20941482A
Other languages
Japanese (ja)
Inventor
Takeyuki Hiruma
健之 比留間
Hiroyoshi Matsumura
宏善 松村
Shinji Sakano
伸治 坂野
Koji Ishida
宏司 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20941482A priority Critical patent/JPS59101605A/en
Publication of JPS59101605A publication Critical patent/JPS59101605A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/136Integrated optical circuits characterised by the manufacturing method by etching

Abstract

PURPOSE:To obtain an optical waveguide by which the coupling efficiency of an optical fiber and an optical integrated circuit is good and a transmission loss by a bend, etc. of the waveguide is small, by providing a groove whose section is circular on a substrate, and packing this groove with an optical material whose refractive index is higher than that of the substrate. CONSTITUTION:When a tapered mask 3' is formed on a desired substrate 1 and etching is executed by making an argon ion incident vertically from the upper part, the substrate 1 and the mask 3' are etched by non-selectivity of etching. In this case, as for the end part of the mask 3', its dynamical strength is inferior to other part, therefore, it is etched quickly. Usually a substance whose etching rate is sufficiently smaller than the substrate 1 is used for the mask 3', and when etching is executed within the time when an interval L3 of the mask 3' is not varied, it is possible to dig a groove whose depth is D and whose section shape is semi-circular. In this case, thickness L1 of a non-tapered part of the mask 3' is reduced to thickness L1' by etching. In this regard, this semi- circular section structure can be changed by varying a taper angle psi of the mask 3' and a dispersion angle theta of an ion beam.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、光通信、光情報処理分野で用いられる光集積
回路に必要な光導波路に関する。特に光ファイバーとの
結合効率および伝送効率の良い光導波路に+y5するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an optical waveguide necessary for an optical integrated circuit used in the fields of optical communication and optical information processing. In particular, it adds +y5 to optical waveguides that have good coupling efficiency with optical fibers and transmission efficiency.

〔従来技術〕[Prior art]

近ヰ、光通信の実用化が急速に進展しており、光部品の
小形化、高信頼化に対する研究開発が盛んvlこ行われ
ている。光集積回路の主要構成要素である光導波路は、
気相成長法、液相成長法、拡散法、イオン注入法、化学
エツチング法、イオンビームエツチング法等を用いて作
製されている。しかし、これらの方法では、光導波路の
断面形状の制御が難しい。従来法についての一例を第1
図を用いて説明する。
In recent years, the practical application of optical communications has been rapidly progressing, and research and development efforts are being actively carried out to make optical components smaller and more reliable. Optical waveguides are the main components of optical integrated circuits.
It is manufactured using a vapor phase growth method, a liquid phase growth method, a diffusion method, an ion implantation method, a chemical etching method, an ion beam etching method, etc. However, with these methods, it is difficult to control the cross-sectional shape of the optical waveguide. An example of the conventional method is shown in the first example.
This will be explained using figures.

第1図は、イオンビームエツチング法により、光導波路
を作製する方法である。第1図(a)に示すように基板
1(例えばGaAS :屈折率=3.44)上にそれよ
りも屈折率の大きい薄膜2(例えば、MOCVDにより
作製した0、 5 μm厚のGaAs 高抵抗膜、屈折
率=3.445)を作製し、その上にレジストパターン
3(例えば1μm厚のAZ1350J)を形成する。そ
の上からAr(アルゴン)イオンを垂直に入射させ所定
の時間エツチングを行うと(b)図に示すようなパター
ンが倚られる。そのf(b)図に示すレジストを取り除
くと所望の導波路4が基板1の上に形成される。
FIG. 1 shows a method of manufacturing an optical waveguide by ion beam etching. As shown in FIG. 1(a), a thin film 2 having a higher refractive index (e.g. 0.5 μm thick GaAs made by MOCVD with high resistance) is deposited on a substrate 1 (e.g. GaAS; refractive index = 3.44). A resist pattern 3 (for example, AZ1350J with a thickness of 1 μm) is formed thereon. When Ar (argon) ions are perpendicularly injected from above and etched for a predetermined period of time, a pattern as shown in FIG. 3(b) is formed. When the resist shown in the f(b) diagram is removed, a desired waveguide 4 is formed on the substrate 1.

従来法では、エツチングのマスクの断面形状が矩形ない
しは台形であったため、形成された光導波路の断面形状
は矩形になった。このため光ファイバーとの帖合倶失が
小さくかつ導彼路の曲げなどによる損失の小さい円形の
断面形状をもった光導波路を形成することができなかっ
た。
In the conventional method, the cross-sectional shape of the etching mask was rectangular or trapezoidal, so the cross-sectional shape of the formed optical waveguide was rectangular. For this reason, it has not been possible to form an optical waveguide having a circular cross-sectional shape with small coupling loss with the optical fiber and low loss due to bending of the guide path.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上述の問題点を別法するためになされ
たものであり、光ファイバーと光集積回〔発明の概要〕 上記目的を達成するための本発明の構成は、基板上に断
面が円形状の雛を設け、該t6に基板よりも屈折率の旨
い光学材料で充填することにある。
The object of the present invention has been made to solve the above-mentioned problems, and the present invention has an optical fiber and an integrated optical circuit. The purpose is to provide a circular chick and fill the t6 with an optical material having a better refractive index than the substrate.

本冗明は上記構成になるので、光ファイバーとの光の結
合効率や伝送効率が極めて良好になる。
Since the present invention has the above configuration, the coupling efficiency and transmission efficiency of light with the optical fiber are extremely good.

本発明では、予め二枚の基板それぞれに半円形状の冴波
路全形成しておき、後ち、接合させて円形すると容易に
形成される。
In the present invention, semicircular wave paths are formed on each of the two substrates in advance, and then they are joined together to form a circular shape easily.

また、本発明では断面が円形と(は必ずしも真円のみを
化すものでなく、半円四分円、三日月状、卵形、倒置、
あるいは、これらと他の形状と金組み合わせたものも含
むものである。
In addition, in the present invention, the term "circular" in cross section does not necessarily mean only a perfect circle, but also includes semicircular quarter circle, crescent shape, oval shape, inverted shape,
Alternatively, it also includes combinations of these and other shapes with gold.

ここでは、イオンビームエツチング法について説明する
が本質的な方法ではない。イオンビームエツチング法は
Arなど化学的に不活性な気体をプラズマ化し、これを
高電圧で加速して基板に入射させ、基板の表面を物理的
にエツチングする方法である。エツチングの速度は、物
質により、単結晶の場合にはその精品の方位によっても
異なる。
Although the ion beam etching method will be explained here, it is not the essential method. The ion beam etching method is a method in which a chemically inert gas such as Ar is turned into plasma, which is accelerated with a high voltage and made incident on a substrate, thereby physically etching the surface of the substrate. The rate of etching varies depending on the material and, in the case of a single crystal, depending on the orientation of the fine product.

基板表面に入射するイオンビームは充分に平行性が良い
場合でもどくわずかな角度分w!lをもつ。従って、エ
ツチングのマスクの断面形状にテーノくをつけておくと
、一部の傾いたイオンビームはテーパの内側へ入射して
基板をエツチングする。ただしテーパの内側へ入射する
イオンビームの量は、鯖仮に圭直に入射するイオンビー
ムの量よりも少ないのでテーパの陰になった部分のエッ
チ重は小きい。これを第2図を用いて評、111Iに説
明する。第2図(a)、 (b)は本発明を用いて製法
の一部工程の概略を示したもので前記第1図のレジスト
3のかわりにテーパをつけたマスク3′を用いて基板1
をエツチングした揚台の模式的な形状を示した。第2図
(a)中のθおよびψはそれぞれマスク3′のテーパ角
およびイオンビームの分散角である。テーパrつけたマ
スク3′を所望の基板1上に形成する。ここでテーパ部
の厚さをL2、テーパのついてない部分の厚さをLl、
マスクの間隔をL3とする。上からアルゴンイオンを垂
直に入射させてエツチングを行うとエツチングの非選択
性により基板1およびマスク3′がエツチングされてい
く。
Even if the ion beam that is incident on the substrate surface has sufficient parallelism, it will still fall at a small angle lol! It has l. Therefore, if a taper is added to the cross-sectional shape of the etching mask, some of the inclined ion beams will be incident on the inside of the taper and will etch the substrate. However, since the amount of the ion beam incident on the inside of the taper is smaller than the amount of the ion beam incident on the inside of the taper, the etch weight on the portion shaded by the taper is small. This will be evaluated using FIG. 2 and explained in 111I. 2(a) and 2(b) schematically show some steps of the manufacturing method using the present invention, in which a tapered mask 3' is used instead of the resist 3 in FIG.
The schematic shape of the lifting platform is shown. θ and ψ in FIG. 2(a) are the taper angle of the mask 3' and the dispersion angle of the ion beam, respectively. A tapered mask 3' is formed on a desired substrate 1. Here, the thickness of the tapered part is L2, the thickness of the non-tapered part is Ll,
Let the interval between the masks be L3. When etching is performed by vertically injecting argon ions from above, the substrate 1 and mask 3' are etched due to the non-selectivity of etching.

このときマスク3′の端の部分は他の部分に比べて力学
的強度が劣るために速くエツチングされる。
At this time, the end portions of the mask 3' are etched quickly because their mechanical strength is inferior to other portions.

通′にマスク3′には基板1よりも十分エツチングレー
トの小さい物質を用いて、マスク3′の間隔L3が変化
しない時間内でエツチングを行うと、第2図(b)に示
す深さDで断面形状が半円形の碑を掘ることができる。
Generally, if a material with a sufficiently lower etching rate than the substrate 1 is used for the mask 3' and etching is performed within a time period in which the spacing L3 of the mask 3' does not change, the depth D shown in FIG. 2(b) is obtained. You can dig a monument with a semicircular cross section.

このとき、第2図(a)のマスク3′の非テーパ部の厚
さLlはエツチングによって第2図(blに示す厚≧L
 l/に餓少する。なおこの半円形状の断面伯造はマス
ク3′のテーパ角ψ、イオンビームの分散角θを変化さ
せることにより菱えることができる。
At this time, the thickness Ll of the non-tapered part of the mask 3' in FIG. 2(a) is changed by etching so that the thickness shown in FIG.
I'm hungry for l/. Note that this semicircular cross-sectional shape can be increased by changing the taper angle ψ of the mask 3' and the dispersion angle θ of the ion beam.

本発明は、テーパのついたエツチングマスク3′を用、
いて、イオンビームエツチングにより半円形の断面形状
をもつ溝を基板1上に作製し、この溝に基板1より屈折
率の高い光学材料を蒸着あるいはエピタキシャル成長さ
せて埋め光導波路とする。あるいはこの光導波路の表面
を平坦にしたのち、両側から2つ張り合わせて断面が円
形の光導波路とすることを特徴とするものである。
The present invention uses a tapered etching mask 3',
Then, a groove having a semicircular cross section is formed on the substrate 1 by ion beam etching, and an optical material having a higher refractive index than the substrate 1 is deposited or epitaxially grown in this groove to form a buried optical waveguide. Alternatively, after the surface of this optical waveguide is flattened, two optical waveguides are pasted together from both sides to form an optical waveguide with a circular cross section.

〔発明の実施例〕 実施例1 以下本発明の実施例をスケ用いて詳細に説明する。[Embodiments of the invention] Example 1 Embodiments of the present invention will be described in detail below using a scale.

第3図には本発明による光導波路の断面図を示す。光集
積同浴基板となるn型GaAs基板lの上にテーパのつ
いたレジストパターン(第2図(a)のマスク3′を形
成する。テーパ部のレジストの厚さL2を2.0 μm
、 Lt ’z0.50 μm、テーパ角ψを70度、
パターンの間隔Ls’k1.Oμmnとして、0215
度の角度分散をもたせたArイオン全加速電圧500■
、低流・d度0.4mA/Crn2で22分曲指直人射
させて、基玖1に深さが1.0μmで新聞形状が半円形
の牌を長さ1.0 cm掘った。
FIG. 3 shows a cross-sectional view of an optical waveguide according to the present invention. A tapered resist pattern (mask 3' in FIG. 2(a)) is formed on an n-type GaAs substrate l that will become a photonic integrated bath substrate.The thickness L2 of the resist at the tapered part is 2.0 μm.
, Lt'z0.50 μm, taper angle ψ 70 degrees,
Pattern spacing Ls'k1. As Oμmn, 0215
Ar ion total acceleration voltage 500■ with angular dispersion of degrees
A tile with a semicircular newspaper shape and a depth of 1.0 μm was dug in Base 1 with a length of 1.0 cm using a direct shot with a curved finger for 22 minutes at a low current and a degree of 0.4 mA/Crn2.

その後−ジスト分取り除き、基板1より屈折率の高い高
抵抗GaAS2をMOCVDで0.5.umの厚さにつ
けた。これに波長1.15μmのHe −N eレーザ
ー光を通したところ光は通常のリプ型光導波路と同じ原
理で高抵抗GaAs 2 gを透過し、伝導損失は0.
2dB/crnと非常に良好であった。
After that, the mist was removed, and high resistance GaAS2 having a refractive index higher than that of the substrate 1 was coated with 0.5% by MOCVD. It was applied to a thickness of um. When a He-Ne laser beam with a wavelength of 1.15 μm was passed through this, the light was transmitted through the high resistance GaAs 2 g using the same principle as a normal lip type optical waveguide, and the conduction loss was 0.
It was very good at 2 dB/crn.

実施例 失=例1と同様に作製した第3図に示す光導波路で高抵
抗のGa As膜2の狭面をエツチングして、中央の半
円形の部分のみ残し光導波路とした。これに波長1.1
5μmのHe −[’J eレーザー光を通したところ
伝送損失は0.3dB/crnと良好であった。なおさ
らに上からG ao −s A 142A S膜を厚さ
0.5μmエピタキシャル成長させた。これに波長1.
15μmのl(e −N eレーザー光を潰したところ
伝送損失は0.1dB/z改善できた。
Example Missing = An optical waveguide shown in FIG. 3 was prepared in the same manner as in Example 1, and the narrow surface of the high-resistance GaAs film 2 was etched, leaving only the central semicircular portion to form an optical waveguide. This has a wavelength of 1.1
When a 5 μm He-['J e laser beam was passed through it, the transmission loss was as good as 0.3 dB/crn. Further, a Gao-s A 142A S film was epitaxially grown to a thickness of 0.5 μm from above. Wavelength 1.
When the 15 μm l(e-N e laser beam was crushed), the transmission loss was improved by 0.1 dB/z.

実施例3 実施例1と同様に作製した第3図に示゛す光導波路で高
抵抗QaAS膜20膜面0表面チングして、中大部の半
円形部のみ残るようにした。これと同じものを2つはり
合わせて第4図に示す円形断面の光導波路4を作製した
。これに波長1.15μmのHe−Neレーザー光を通
したところ伝送損失は0.02dB/zと非常に良好で
あった。また光ファイバーとの粘合を行った所、結合損
失が0.1d13と少なかつ;to 実施例4 実施例1〜3においては1本の光導波路の作製について
説明したが本実施例においては方向性結合器について第
5図を用いて説明する。
Example 3 In the optical waveguide shown in FIG. 3, which was prepared in the same manner as in Example 1, the surface of the high-resistance QaAS film 20 was etched so that only a large semicircular portion remained. Two of the same materials were glued together to produce an optical waveguide 4 having a circular cross section as shown in FIG. When a He-Ne laser beam with a wavelength of 1.15 μm was passed through this, the transmission loss was very good at 0.02 dB/z. In addition, when bonding with the optical fiber was performed, the coupling loss was as small as 0.1d13; The coupler will be explained using FIG. 5.

第5図(a)に示すようにG a A S M板1上に
レジストバクン3を作成する。パタンの寸法Ll + 
L2 +L4 、 Lsはそれぞれ、Lt =0−50
μm+ L2”’ 2−07” m + L 4 ”’
 2.01’ m+ L 5−1.01’ mである。
As shown in FIG. 5(a), a resist bag 3 is created on the GaASM board 1. Pattern dimension Ll +
L2 +L4, Ls are each Lt = 0-50
μm+ L2"'2-07"m+L4"'
2.01' m+L 5-1.01' m.

レジスト3のテーバ角ψおよびイオンビームの分散角θ
をそれぞれ70度および15度にして、加速′電圧50
0V、’a流密1j[0,4mA/cm2で22分1a
jエツチングを行い、1/4円形の溝ヲsさx、oμm
長さ1.0□□□掘った。その後レジスト3を除去し、
(b)図に示すように基板1より屈折率の市いGaAs
の膜2を0.5μmの厚さにエピタキシャル成長させ、
エツチング六によって基板1と1/4円形の海部のエピ
膜2とが同一平面になるよう平坦化して、2本の平行な
光4波路を形成した。この2本の平行な光導波路の一方
に波長1.15μmのHe−Neレーザー光?入射した
ところ出力yIMにおけるパワーの比は1・=1になっ
ており良好な方向性結合器になっていた。
Taber angle ψ of resist 3 and dispersion angle θ of ion beam
are set to 70 degrees and 15 degrees, respectively, and the acceleration voltage is 50 degrees.
0V, 'a current density 1j [22 minutes 1a at 0.4 mA/cm2
Perform etching and make a 1/4 circular groove x, 0 μm.
I dug a length of 1.0□□□. Then remove resist 3,
(b) As shown in the figure, GaAs has a higher refractive index than the substrate 1.
Epitaxially grow the film 2 to a thickness of 0.5 μm,
The substrate 1 and the quarter-circular epitaxial film 2 were flattened by etching so that they were on the same plane, forming two parallel four-wave paths. A He-Ne laser beam with a wavelength of 1.15 μm on one of these two parallel optical waveguides? When the light was incident, the power ratio at the output yIM was 1.=1, indicating that it was a good directional coupler.

また、この方向性結合器を2つはり会わせて、(C)V
に示すような半円形の断面形状をもつ2本の平行な光4
波路4を作製した。この光導波路の一方に波長1.15
 p mのHe−Nev−ザー光を入射したところ出カ
嗣におけるパワー比はやはシ1:1になっており非常に
良好な方向性結合器になっていf?、、。
Also, by gluing two of these directional couplers together, (C)V
Two parallel lights 4 with a semicircular cross-sectional shape as shown in
Wave path 4 was created. On one side of this optical waveguide, a wavelength of 1.15
When pm He-Nev laser light was input, the power ratio at the output was 1:1, making it a very good directional coupler. ,,.

上6C実施し1」1〜4はアルゴンイオンを用いたドラ
イエツチングで実験を行った例を示したが、反応性イオ
ンビームエツチングによる実験でもまたウェットエツチ
ングでも同様な結果か得られた。
Examples 1 to 4 of the above 6C were conducted using dry etching using argon ions, but similar results were obtained in experiments using reactive ion beam etching and wet etching.

〔発明の効果〕〔Effect of the invention〕

以上の実施例で示したように、本発明によれは基板上の
光導波路と光ファイバーとの結合損失を矩形の断面形状
をもつ光導波路よりも小さくし、曲げなどによる伝送損
失も小さくすることができる。
As shown in the above embodiments, according to the present invention, the coupling loss between the optical waveguide on the substrate and the optical fiber can be made smaller than that of an optical waveguide with a rectangular cross-section, and the transmission loss due to bending etc. can also be reduced. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の矩形導波路の概略断面図、第2図は本発
明に使用した製造工程の一部を示した断1・・・基板、
2・・・高屈折率族、3・・・レジスト、3′第1図 (0−) (c) T Z 図 (b) 苓 、3  図 第 σ 図 (θ−) (b) <C)
FIG. 1 is a schematic cross-sectional view of a conventional rectangular waveguide, and FIG. 2 is a cross-sectional view showing part of the manufacturing process used in the present invention.
2...High refractive index group, 3...Resist, 3' Fig. 1 (0-) (c) TZ Fig. (b) Ryo, Fig. 3 σ Fig. (θ-) (b) <C)

Claims (1)

【特許請求の範囲】[Claims] 基板上に少なくとも2枚以上のテーパ型しジストハター
ンを形成し、ドライエツチング、ウェットエツチング法
により上記基板上に形成された溝を有する光導波路にお
いて、上記溝は断面が円形状であり、且つt板よりも屈
折率の高い光学材料で充填したことを特徴とする光導波
路。
In an optical waveguide having at least two or more tapered resist patterns formed on a substrate and a groove formed on the substrate by dry etching or wet etching, the groove has a circular cross section and t. An optical waveguide characterized by being filled with an optical material having a higher refractive index than the plate.
JP20941482A 1982-12-01 1982-12-01 Optical waveguide Pending JPS59101605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20941482A JPS59101605A (en) 1982-12-01 1982-12-01 Optical waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20941482A JPS59101605A (en) 1982-12-01 1982-12-01 Optical waveguide

Publications (1)

Publication Number Publication Date
JPS59101605A true JPS59101605A (en) 1984-06-12

Family

ID=16572482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20941482A Pending JPS59101605A (en) 1982-12-01 1982-12-01 Optical waveguide

Country Status (1)

Country Link
JP (1) JPS59101605A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995006270A1 (en) * 1993-08-23 1995-03-02 Alliedsignal Inc. Polymer microstructures which facilitate fiber optic to waveguide coupling
EP1435533A1 (en) * 2002-12-30 2004-07-07 STMicroelectronics S.r.l. Waveguide manufacturing method and waveguide
US6810195B2 (en) 2002-12-19 2004-10-26 Cornining Incorporated Securing optical elements and optical devices
US6816653B2 (en) 2003-02-25 2004-11-09 Corning Incorporated Passive alignment of optical fibers with optical elements
US6928226B2 (en) 2002-03-14 2005-08-09 Corning Incorporated Fiber and lens grippers, optical devices and methods of manufacture
KR100664307B1 (en) 2004-08-13 2007-01-04 삼성전자주식회사 Shadow mask, and, The method of fabricating vertically tapered structure by using the shadow mask

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995006270A1 (en) * 1993-08-23 1995-03-02 Alliedsignal Inc. Polymer microstructures which facilitate fiber optic to waveguide coupling
US6928226B2 (en) 2002-03-14 2005-08-09 Corning Incorporated Fiber and lens grippers, optical devices and methods of manufacture
US6810195B2 (en) 2002-12-19 2004-10-26 Cornining Incorporated Securing optical elements and optical devices
EP1435533A1 (en) * 2002-12-30 2004-07-07 STMicroelectronics S.r.l. Waveguide manufacturing method and waveguide
US6816653B2 (en) 2003-02-25 2004-11-09 Corning Incorporated Passive alignment of optical fibers with optical elements
KR100664307B1 (en) 2004-08-13 2007-01-04 삼성전자주식회사 Shadow mask, and, The method of fabricating vertically tapered structure by using the shadow mask
US7425275B2 (en) 2004-08-13 2008-09-16 Samsung Electronics Co., Ltd. Shadow mask and method of fabricating vertically tapered structure using the shadow mask

Similar Documents

Publication Publication Date Title
US5574742A (en) Tapered beam expander waveguide integrated with a diode laser
JPH04243216A (en) Production of optical waveguide and optical integrated element and production thereof
KR100471383B1 (en) Spot size converter, Method for manufacturing the same and spot size converter intergrated photodetector
JPH0521904A (en) Semiconductor optical controlling element and manufacture thereof
CN113848609A (en) Photonic integrated coupling structure and photonic integrated device
JPS59101605A (en) Optical waveguide
JP2002071981A (en) Optical element
JPH0618737A (en) Production of optical waveguide
CN109283619A (en) The spot-size converter and preparation method thereof led based on ELECTRODE WITH BILAYER POLYMERIC object wave
JP2601173B2 (en) Semiconductor optical waveguide and method of manufacturing the same
CA2020246C (en) Tapered semiconductor waveguides and method of making same
JPS57183091A (en) Manufacture of optical integrated circuit
JPS63108305A (en) Coupling method for optical waveguide
JPH0264605A (en) Manufacture of optical waveguide
JPH02287408A (en) Waveguide type optical branching element
JPS5728390A (en) Semiconductor laser
JPS59159107A (en) Optical waveguide
CN101101345A (en) Absorption type gain-coupling distributed feedback bragg grating production method
JPS63169093A (en) Semiconductor laser
JPS61182027A (en) Non-linear optical waveguide element
JPH05157919A (en) Semiconductor optical waveguide and its production
JPH04308803A (en) Formation of optical waveguide
JPS59210681A (en) Manufacture of semiconductor laser
JP2002071992A (en) Method of manufacturing optical semiconductor element
JPS60260008A (en) Optical directional coupler and its production