JPS59101561A - Air-fuel ratio controller of engine - Google Patents

Air-fuel ratio controller of engine

Info

Publication number
JPS59101561A
JPS59101561A JP21028682A JP21028682A JPS59101561A JP S59101561 A JPS59101561 A JP S59101561A JP 21028682 A JP21028682 A JP 21028682A JP 21028682 A JP21028682 A JP 21028682A JP S59101561 A JPS59101561 A JP S59101561A
Authority
JP
Japan
Prior art keywords
loop control
heating
fuel ratio
fuel
exhaust sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21028682A
Other languages
Japanese (ja)
Other versions
JPH048615B2 (en
Inventor
Yasuyuki Morita
泰之 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP21028682A priority Critical patent/JPS59101561A/en
Publication of JPS59101561A publication Critical patent/JPS59101561A/en
Publication of JPH048615B2 publication Critical patent/JPH048615B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1493Details
    • F02D41/1494Control of sensor heater

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To ensure the prompt and accurate action of an exhaust sensor so as to smoothly perform closed loop control and consequently accurately perform open loop control, by heating the exhaust sensor before the closed loop control using the exhaust sensor is started to be performed. CONSTITUTION:A heating controller 25 for actuating a heating device 24 of an exhaust sensor 17 comprises a pulse generator circuit 27, which receives a trigger signal (a) at each time when the running time from a timer 26 reaches a prescribed value and generates a pulse-state heating instruction signal (b), heating circuit 28 which operates receiving the heating instruction signal (b) and generates a heating signal (c), and a power supply 29. The heating instruction signal (b) is input to also a timing circuit 22, which outputs a timing signal (d) after delay of a prescribed time, and a fuel control circuit 19 is switched from the open loop control condition to the closed loop control condition, further reset to the open loop control condition after continuing the closed loop control by the prescribed period set in the fuel control circuit 19 itself.

Description

【発明の詳細な説明】 との発明は、エンジンの空燃比を理論空燃比よシもリー
ンな状態に制御する電子式の空燃比制御装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The invention relates to an electronic air-fuel ratio control device that controls the air-fuel ratio of an engine to a state leaner than the stoichiometric air-fuel ratio.

従来、排気通路に排気センサを設置して排気中の酸素濃
度を検出し、その検出信号に基づいて空燃比を理論空燃
比(14,7)近傍となるように燃料供給量を閉ループ
制御して、王元触謀によるHCおよびCOの酸化とNO
xの還元とを円滑に行なうシステムが広く知られている
Conventionally, an exhaust sensor is installed in the exhaust passage to detect the oxygen concentration in the exhaust gas, and based on the detection signal, the fuel supply amount is controlled in a closed loop so that the air-fuel ratio is close to the stoichiometric air-fuel ratio (14,7). , oxidation of HC and CO and NO by Wang Yuan
A system that smoothly performs the reduction of x is widely known.

これに対し、燃費の向上等の目的から、空燃比を理論空
燃比よシもリーンな状態に設定したい要請がある。とこ
ろが、リーンな状態で運転すると排気の温度が下がり、
排気センサの作動最低温度よシも低くなって、排気セン
サが円滑に作動しなくなる。そのだめ、このリーンな制
御においては上記した閉p−グ制御をそのまま利用する
ことができない。
On the other hand, there is a demand for setting the air-fuel ratio to a leaner state than the stoichiometric air-fuel ratio for the purpose of improving fuel efficiency and the like. However, when operating in lean conditions, the exhaust temperature decreases,
The minimum operating temperature of the exhaust sensor also decreases, making it difficult for the exhaust sensor to operate smoothly. Therefore, in this lean control, the above-mentioned closed pg control cannot be used as is.

そこで、所定時間ごとに短い所定期間だけ、排気センザ
を用いて理論空燃比となるように閉ループ制御を行ない
、そのときの燃料供給元°をリーン方向へ修正した修正
値を記憶しておき、上記所定期間以外の期間は上記修正
値に基づいて理論空り、内比から設定値だけリーン方向
ヘシフトした目標空燃比となるように燃料供給量を開ル
ープ制御するようにしたシステムが知られている(特開
昭56−44434号公報参照)。このシステムによれ
ば、所定時間ごとに行なわれる閉ループ制御によりエン
ジンの経年変化が検知されて、その度に上記修正値が新
たな値に置き換えて記1r1されるので、この修正値を
用いた上記開ループ制御、すなわち、リーンな状態の制
御が正確になされる利点が期待されるけれども、実際に
は、閉ル−プ制御に入るとき、排気の温度が急速に上昇
しないから排気センサが迅速に作動しないので、閉ルー
プ制御が円滑になされなくなり、したがって、開ループ
制御も正確になされない欠点がある。
Therefore, for a short predetermined period at predetermined intervals, closed-loop control is performed using an exhaust sensor to maintain the stoichiometric air-fuel ratio, and the correction value for correcting the fuel supply source ° in the lean direction at that time is memorized. A system is known in which, during periods other than the predetermined period, the amount of fuel supplied is open-loop controlled based on the above-mentioned corrected value so that the target air-fuel ratio is shifted toward the lean direction by a set value from the theoretical empty or internal ratio. (Refer to Japanese Unexamined Patent Publication No. 56-44434). According to this system, aging of the engine is detected through closed-loop control performed at predetermined intervals, and each time the above-mentioned correction value is replaced with a new value and recorded. Although open-loop control, that is, the advantage of accurate lean state control, is expected, in reality, when entering closed-loop control, the temperature of the exhaust gas does not rise rapidly, so the exhaust sensor is activated quickly. Since it does not operate, closed-loop control cannot be performed smoothly, and therefore, open-loop control cannot be performed accurately either.

この発明は上記従来の欠点を解消するためになされたも
ので、排気センサを用いる閉ループ制御が始まる前に排
気センサを加熱することにより、排気センサの迅速かつ
正確な作動を保証して開ループ制御を円滑に行なわせ、
その結果、開ループ制御を正確に行なわせるエンジンの
空燃比制御装置を提供することを目的とする。
This invention was made in order to eliminate the above-mentioned conventional drawbacks. By heating the exhaust sensor before the closed-loop control using the exhaust sensor begins, the present invention guarantees quick and accurate operation of the exhaust sensor and provides open-loop control. to be carried out smoothly,
As a result, it is an object of the present invention to provide an air-fuel ratio control device for an engine that allows accurate open-loop control.

以下、この発明の実施例を図面にしたがって説明する。Embodiments of the present invention will be described below with reference to the drawings.

第1図において、■は4サイクルガソリンエンジンで、
このエンジン11の吸気通路】2にはエアクリーナ】3
と燃料噴射弁のような燃料供給装置14とが設けられ、
排気通路15には排気16の酸素成分を検出する排気セ
ンサ17が設けられている。19は燃料制御回路で、所
定時間ごとに所定期間だけ上記排気センサ17からの検
出信号に基づいて、吸入混合気録の空燃比が理論空燃比
(14,7)となるように、燃料供給装置14からの燃
料供給量を閉ループ制御するとともに、上記所定期間以
外の期間は、記憶回路21で記憶された修正値に基づい
て、理論空燃比から設定値だけり−ン方向ヘシフトした
目標空燃比となるように、燃料供給装置14からの燃料
供給量を開ループ制御する・上記閉ループと開ループの
切り替えは、タイミング回路乙によりなされる。閉ルー
プ制御は、たとえば、走行時間が所定値に達するごとに
数分間だけ行なわれる。
In Figure 1, ■ is a 4-stroke gasoline engine,
The intake passage of this engine 11]2 has an air cleaner]3
and a fuel supply device 14 such as a fuel injection valve,
The exhaust passage 15 is provided with an exhaust sensor 17 that detects oxygen components in the exhaust gas 16. Reference numeral 19 denotes a fuel control circuit that controls the fuel supply system so that the air-fuel ratio of the intake air-fuel mixture becomes the stoichiometric air-fuel ratio (14, 7) based on the detection signal from the exhaust sensor 17 for a predetermined period at predetermined intervals. The fuel supply amount from 14 is controlled in a closed loop, and during periods other than the above-mentioned predetermined period, the target air-fuel ratio is shifted from the stoichiometric air-fuel ratio by the set value in the positive direction based on the correction value stored in the storage circuit 21. The amount of fuel supplied from the fuel supply device 14 is controlled in an open loop so that the switching between the closed loop and the open loop is performed by the timing circuit B. The closed-loop control is performed, for example, only for a few minutes each time the running time reaches a predetermined value.

なお、ここで数分間という意味は、後述する修j、E値
Q(m)は各領域(m−1〜9)で全て占き換え修正さ
れる方がよシ好ましいので、このためには、閉ループ制
御は数分間継続して行えば良いと考えられるからである
Note that the meaning of "several minutes" here means that it is preferable that the correction j and E value Q(m), which will be described later, are all reinterpreted and corrected in each area (m-1 to m-9), so for this purpose, This is because it is considered that closed loop control only needs to be performed continuously for several minutes.

上記記憶回路21は、閉ループ制御の際の燃料供給元を
修正した値を、その制御時点のエンジン運転状態に対応
して上記修正値として記憶するもので、この修正値のつ
くυ方はつぎのようである。
The storage circuit 21 stores a value obtained by correcting the fuel supply source during closed-loop control as the above-mentioned correction value in accordance with the engine operating state at the time of control. It is.

閉μmデ制御iのときは、排気センサ17からの検出信
号に基づいて、理論空燃比となるように燃料供給量が制
御されるのであるが、第2図に示すように、燃料供給量
は、リーン側とリッチ側へじぐざぐ状に増減される。」
二足燃料供給量の頂上および谷底の値をK (]、) 
、 K (2)・・・・として求めておき、これらK 
(’L) (Y= 1〜n)を用いて、Q、 +(ロ)
= Σ K(j、) / n x ai=1 o < a < i、。
In the closed μm de control i, the fuel supply amount is controlled to achieve the stoichiometric air-fuel ratio based on the detection signal from the exhaust sensor 17. As shown in FIG. 2, the fuel supply amount is , increases and decreases in a zigzag pattern from lean to rich. ”
The peak and trough values of the bipedal fuel supply are K (],)
, K (2)..., and these K
('L) Using (Y= 1 to n), Q, + (b)
= Σ K(j,) / n x ai=1 o < a < i,.

を求める。ここで、αは理論空燃比よりもリーンな方向
へ修正するだめの設定値である。
seek. Here, α is a set value for correcting the air-fuel ratio to leaner than the stoichiometric air-fuel ratio.

上記Q、0TI)を、その閉ループ制御時点でのエンジ
ン運転状態に対応させて、たとえば第3図に示すように
、エンジンの回転数および負荷に対応させてマツピング
処理したうえで、修正値として記憶しておく。これら修
正値Q(m) (m=1〜9)は、閉ループ制御が行な
われて上記K(1)が刷新されるごとに新しい値に置き
換えられるので、エンジンの経年変化が吸収されて、正
確な修正値Q(ITI)が得られる。
The above Q, 0TI) is mapped to correspond to the engine operating state at the time of closed loop control, for example, as shown in Fig. 3, and is mapped to the engine speed and load, and then stored as a modified value. I'll keep it. These correction values Q(m) (m=1 to 9) are replaced with new values each time the above K(1) is updated through closed-loop control, so changes over time of the engine are absorbed and accurate A corrected value Q(ITI) is obtained.

開ループ制御のときは、上記修正値Q(Ill)が第1
図の燃料制御回路】9へ入力され、理論空燃比から設定
値だけリーン方向へシフトした目標空燃比が得られるよ
うに、燃料供給装置14からの燃料供給量が制御される
During open loop control, the above correction value Q(Ill) is the first
9, the fuel supply amount from the fuel supply device 14 is controlled so as to obtain a target air-fuel ratio shifted in the lean direction by a set value from the stoichiometric air-fuel ratio.

以上の構成および作動は従来と同様であり、この発明の
特徴は、排気センサ17の加熱装置Uと、この加熱装置
Uを作動させるだめの加熱制御装置6とを設けた点にあ
る。
The above configuration and operation are the same as those of the prior art, and the present invention is characterized by the provision of a heating device U for the exhaust sensor 17 and a heating control device 6 for operating the heating device U.

」こ記加熱制御装置δは、走行時間を計測する外部のタ
イマかから走行時間が所定値に達するごとにトリガ信号
aを受けて、バ/l’ヌ状の加熱指令信号すを発生する
パルス発生回路Iと、上記加熱指令信号すを受けて作動
し、加熱信号Cを発生する加熱回路路と、電源対とから
なる、上記加熱指令信す1〕は上記タイミング回路ηに
も入力され、所定時間遅延されたのちタイミング信号1
が出力されて、燃料制御回路19が開ループ制御状態か
ら閉ループ制御状p1へと切り替えられ、さらに、燃料
制御回路】9自身に設定された所定期間だけ閉ループ制
御を続けたのち、開ループ制御状態へ復帰する。
The heating control device δ receives a trigger signal a every time the running time reaches a predetermined value from an external timer that measures the running time, and generates a pulse-shaped heating command signal. The heating command signal 1], which is composed of a generating circuit I, a heating circuit circuit that operates upon receiving the heating command signal S and generates a heating signal C, and a power supply pair, is also input to the timing circuit η, Timing signal 1 after being delayed for a predetermined time
is output, the fuel control circuit 19 is switched from the open loop control state to the closed loop control state p1, and after continuing the closed loop control for a predetermined period set in the fuel control circuit 9 itself, the fuel control circuit 19 is switched to the open loop control state p1. Return to.

上記各信号8.〜dの波形を第4図の(A)〜(0に示
す。第4図のω)は燃料制御回路19(第1図)の作動
を示す。第4図から明らかなように、タイミング信号6
は加熱指令信号すよりも所定時間t1だけ遅延されてお
り、上記タイミング信号d−を受けて燃料制御回路19
が所定期間1.だけ閉ループ制御を行ない、第5図に示
すように、燃料供給量を開ループ制御時よりも増加させ
て理論空燃比を得る。
Each of the above signals 8. -d waveforms are shown in (A) to (0) in Fig. 4. ω in Fig. 4 shows the operation of the fuel control circuit 19 (Fig. 1). As is clear from FIG. 4, the timing signal 6
is delayed by a predetermined time t1 from the heating command signal d-, and in response to the timing signal d-, the fuel control circuit 19
is the predetermined period 1. As shown in FIG. 5, the fuel supply amount is increased compared to the open loop control to obtain the stoichiometric air-fuel ratio.

第4図(Qの加熱信号Cは、閉ループ制御の開始前に第
1図の加熱装置別を作動させることによシ、排気センサ
17をあらかじめ作動最低温度(約300”C)以」二
に加熱しておくためのものであり、閉ループ制御中は排
気16の温度が上記作動最低温度具」二になるので上記
加熱は特に必要でない。したがって、上記加熱信号Cは
、閉ループ制御開始よりも所定時間前から少なくとも閉
ループ制御開始まで加熱装置Uを作動させるだけの時間
幅があれば十分であるが、種々の誤差を考慮すると、第
4図(Qに示すように、時間幅℃1を、t+ < ts
 < t+ + txとなるように設定するのが好まし
い。
FIG. 4 (Heating signal C of Q is generated by activating the heating device shown in FIG. During closed-loop control, the temperature of the exhaust gas 16 reaches the minimum operating temperature, so the above-mentioned heating is not particularly necessary. Therefore, the above-mentioned heating signal C is set at a predetermined level from the start of closed-loop control. It is sufficient if there is enough time to operate the heating device U from before the start of the closed-loop control, but considering various errors, as shown in Figure 4 (Q), the time width ℃1 is changed to t+ <ts
It is preferable to set so that < t+ + tx.

第1図の加熱装置別は、第6図に示すように、発熱コイ
/l’力)らなるもので、排気センサ17の検出素子部
17aを加熱するように配設されておシ、加熱回路あか
らの加熱信号Cによシ通電されて発熱する。上記排気セ
ンサ17は、排気通路】5内と大気中との酸素濃度差に
より起電力を発生し、これを検出信号θとして出力する
もので、その検出素子部17aの内外面に、大気に対す
る排気16の酸素濃度を検出するための白金の薄膜31
 、32を有している。
As shown in FIG. 6, the heating device shown in FIG. It is energized by the heating signal C from the circuit and generates heat. The exhaust sensor 17 generates an electromotive force due to the difference in oxygen concentration between the inside of the exhaust passage [5] and the atmosphere, and outputs this as a detection signal θ. 16 Platinum thin film 31 for detecting oxygen concentration
, 32.

上記構成において、第1図の燃料制御回路は、常時は前
述した開ループ制御を行なって、理論空燃比から設定イ
(αだけリーン方向ヘシフトした目標空燃比となるよう
に、燃料供給装置14からの燃料供給量を制御している
。この状態で、タイマにが走行時間を計測し、この走行
時間が所定値に達するごとにトリガ信号aを出力する。
In the above configuration, the fuel control circuit shown in FIG. 1 normally performs the open-loop control described above, and from the stoichiometric air-fuel ratio to the target air-fuel ratio shifted by α in the lean direction. In this state, a timer measures the running time and outputs a trigger signal a every time this running time reaches a predetermined value.

このトリガ信号aを受けて加熱制御回路器のバ/I/7
.発生回路nが作動し、加熱指令信号すを出力する。こ
の加熱指令信号)を受けて加熱回路路が作動し、加熱信
号Cを出力して、閉ループ制御開始よりも所定時間1+
 (第4図参照) +1iJから閉ループ制御開始直後
まで加熱装置別を作動させ、第6図のuh気センサ17
の検出素子・部17aを加熱する。
In response to this trigger signal a, the heating control circuit bar/I/7
.. Generating circuit n operates and outputs a heating command signal. In response to this heating command signal), the heating circuit is activated, outputs the heating signal C, and for a predetermined period of time 1+ from the start of the closed loop control.
(See Figure 4) The separate heating devices are operated from +1iJ until immediately after the start of closed loop control, and the uh air sensor 17 in Figure 6 is activated.
The detection element/section 17a is heated.

開ループ制御中は排気16の温度が排気センサ17の作
動最低温度(300’C)  以下になっているが、上
記加熱により上記検出素子部17aが上記作動最低温度
以上に保たれる。この状態で、第1図のタイミング回路
υが上記加熱指令信号すを受けて所定時間tまたけ遅延
されたタイミング信号dを出力し、燃料制御回路19を
閉ル−プ制御に切シ替え、理論空燃比が得られるように
燃料供給装置14からの燃料供給量を制御する。しだが
って、閉ループ制御に入ったときには、排気センサ17
が既に作動最低温度以上になっているので、排気センサ
17が迅速かつ正確に作動し、閉μmグ制御が円滑に行
なわれる。したがって、閉ループ制御の際の燃料供給量
を修正した修正値を用いて行なう開ループ制御が正確に
なされる。
During open loop control, the temperature of the exhaust gas 16 is below the minimum operating temperature (300'C) of the exhaust sensor 17, but the heating keeps the detection element section 17a above the minimum operating temperature. In this state, the timing circuit υ of FIG. 1 receives the heating command signal and outputs a timing signal d delayed by a predetermined time t, and switches the fuel control circuit 19 to closed loop control. The amount of fuel supplied from the fuel supply device 14 is controlled so that the stoichiometric air-fuel ratio is obtained. Therefore, when entering closed loop control, the exhaust sensor 17
Since the exhaust gas sensor 17 is already at or above the minimum operating temperature, the exhaust sensor 17 operates quickly and accurately, and close μm control is performed smoothly. Therefore, open-loop control can be performed accurately using the corrected value that corrects the fuel supply amount during closed-loop control.

以上説明したように、この発明は、排気センサ17の素
子部17aを加熱する加熱装置別と、閉ループ制御開始
よシも所定時間tl前から少なくとも閉ループ制御開始
まで上記加熱装置別を作動させる加熱制御装置3とを設
けた構成であるから、排気センザ17を用いる閉ループ
制御が始まる時点では排気センサ17が十分加熱されて
いるので、排気センサI7の作動が迅速かつ正確になり
、閉ループ制御が円滑に行なわれ、その結果、開ループ
制御が正確になされる効果がある。
As explained above, the present invention provides heating control that operates the heating device for heating the element portion 17a of the exhaust sensor 17 and the heating device for operating the heating device from a predetermined time tl before the start of the closed-loop control at least until the start of the closed-loop control. Since the exhaust sensor 17 is sufficiently heated when the closed loop control using the exhaust sensor 17 starts, the exhaust sensor I7 operates quickly and accurately, and the closed loop control is smoothly performed. As a result, open loop control can be performed accurately.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す系統図、第2図は閉
ループ、制御の特性を示す特性図、第3図は開ループ制
御に用いる修正値Q(ホ)のマツピング方法を示す説明
図、第4図は各部の信号を示す信号波形図、第5図は開
ループ制御および閉ループ制御における燃料供給量を示
す特性図、第6図は排気センサを示す縦断面図である。 11・・・エンジン、14・・・燃料供給装置、1G・
・・排気、17・・・排気センサ、17a・・・検出素
子部、19・・・燃料制御回路、21・・・記憶回路、
U・・・加熱装置、δ・・・加熱制御装置、Q(m)・
・・修正値、tl・・・所定時間、t!・・・所定期間
。 8    剥ν1 2 第2図        第3図 第4図 第5図 II仔1111 t
Fig. 1 is a system diagram showing an embodiment of the present invention, Fig. 2 is a characteristic diagram showing closed-loop control characteristics, and Fig. 3 is an explanation showing a mapping method of correction value Q(E) used in open-loop control. 4 is a signal waveform diagram showing signals of various parts, FIG. 5 is a characteristic diagram showing fuel supply amount in open loop control and closed loop control, and FIG. 6 is a longitudinal sectional view showing an exhaust sensor. 11...Engine, 14...Fuel supply device, 1G.
...Exhaust, 17...Exhaust sensor, 17a...Detection element section, 19...Fuel control circuit, 21...Memory circuit,
U...Heating device, δ...Heating control device, Q(m)・
...correction value, tl...predetermined time, t! ...predetermined period. 8 Peel ν1 2 Fig. 2 Fig. 3 Fig. 4 Fig. 5 II child 1111 t

Claims (1)

【特許請求の範囲】[Claims] (1)  エンジンの排気の成分を検出する排気センサ
と、所定時間ごとに所定期間だけ上記排気センサからの
検出信号に基づいて空燃比が理論空燃比となるように燃
料供給量を閉ループ制御するとともに、上記所定期間以
外の期間は、記憶回路で記憶された修正値に基づいて、
理論空燃比から設定値だけリーン方向ヘシフトした目標
空燃比となるように燃料供給量を開μmブ制御する燃料
制御回路とを具備し、上記記憶回路は、上記閉ループ制
御の際の燃料供給量を修正した値をその制御時点のエン
ジン運転状態に対応して修正値として記憶するように構
成されたエンジンの空燃比制御装置において、排気セン
サの素子部を加熱する加熱装置と、閉ループ制御開始よ
シも所定時間前から少なくとも閉ループ制御關始まで上
記加熱装置を作動させる加熱制御装置とを設けたことを
特徴とするエンジンの空燃比制御装置。
(1) An exhaust sensor detects the components of engine exhaust gas, and the amount of fuel supplied is controlled in a closed loop so that the air-fuel ratio becomes the stoichiometric air-fuel ratio based on the detection signal from the exhaust sensor for a predetermined period every predetermined time. , during periods other than the above predetermined period, based on the correction values stored in the storage circuit,
and a fuel control circuit that controls the fuel supply amount by micrometers so that the target air-fuel ratio is shifted by a set value in the lean direction from the stoichiometric air-fuel ratio, and the memory circuit controls the fuel supply amount during the closed-loop control. An engine air-fuel ratio control device configured to store a corrected value as a corrected value corresponding to the engine operating state at the time of control includes a heating device that heats the element part of the exhaust sensor and a system for starting closed-loop control. An air-fuel ratio control device for an engine, comprising: a heating control device that operates the heating device from before a predetermined time until at least the start of closed-loop control.
JP21028682A 1982-11-30 1982-11-30 Air-fuel ratio controller of engine Granted JPS59101561A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21028682A JPS59101561A (en) 1982-11-30 1982-11-30 Air-fuel ratio controller of engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21028682A JPS59101561A (en) 1982-11-30 1982-11-30 Air-fuel ratio controller of engine

Publications (2)

Publication Number Publication Date
JPS59101561A true JPS59101561A (en) 1984-06-12
JPH048615B2 JPH048615B2 (en) 1992-02-17

Family

ID=16586878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21028682A Granted JPS59101561A (en) 1982-11-30 1982-11-30 Air-fuel ratio controller of engine

Country Status (1)

Country Link
JP (1) JPS59101561A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61116043A (en) * 1984-11-09 1986-06-03 Nissan Motor Co Ltd Air-fuel ratio control device for internal-combustion engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5294930A (en) * 1976-02-04 1977-08-10 Bosch Gmbh Robert Device for controlling fuellair mixture in internal combustion engine
JPS5346523A (en) * 1976-10-08 1978-04-26 Nissan Motor Co Ltd Controlling method and apparatus for air-fuel ratio
JPS5644434A (en) * 1979-09-19 1981-04-23 Nippon Denso Co Ltd Control of air-fuel ratio
JPS57105530A (en) * 1980-12-23 1982-07-01 Toyota Motor Corp Air-fuel ratio controlling method for internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5294930A (en) * 1976-02-04 1977-08-10 Bosch Gmbh Robert Device for controlling fuellair mixture in internal combustion engine
JPS5346523A (en) * 1976-10-08 1978-04-26 Nissan Motor Co Ltd Controlling method and apparatus for air-fuel ratio
JPS5644434A (en) * 1979-09-19 1981-04-23 Nippon Denso Co Ltd Control of air-fuel ratio
JPS57105530A (en) * 1980-12-23 1982-07-01 Toyota Motor Corp Air-fuel ratio controlling method for internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61116043A (en) * 1984-11-09 1986-06-03 Nissan Motor Co Ltd Air-fuel ratio control device for internal-combustion engine

Also Published As

Publication number Publication date
JPH048615B2 (en) 1992-02-17

Similar Documents

Publication Publication Date Title
US3949551A (en) Method and system for reducing noxious components in the exhaust emission of internal combustion engine systems and particularly during the warm-up phase of the engine
CA2068053A1 (en) Method of on-board detection of automotive catalyst degradation
JPS59101561A (en) Air-fuel ratio controller of engine
JP3524373B2 (en) Heater control device for air-fuel ratio sensor
JPH0379542B2 (en)
JPH08165943A (en) Internal combustion engine control device
US4911130A (en) Air-fuel ratio controller of internal combustion engine
JP3277690B2 (en) Control device of heating means for air-fuel ratio sensor
JPH07198679A (en) Control device for oxygen concentration sensor
JPS6123376B2 (en)
JPH10111269A (en) Oxygen concentration detector
JPH0742884B2 (en) O lower 2 in sensor air-fuel ratio control device for vehicle engine Sensor deterioration warning device
JPH11229861A (en) Exhaust secondary air control device
JP2668080B2 (en) Air-fuel ratio control method for internal combustion engine
JPH02104942A (en) Device for feeding mixed fuel of internal combustion engine
JPS6312855A (en) Air-fuel ratio controller for internal combustion engine
JPS6329857Y2 (en)
JPH10205374A (en) Exhaust emission control device of internal combustion engine
JP2600822B2 (en) Air-fuel ratio control device for internal combustion engine
JPS6156413B2 (en)
JPS61237858A (en) Control device for air-fuel ratio in internal-combustion engine
JPH0531247Y2 (en)
JPH06242063A (en) Controller of o2 sensor equipped with heater
JP2001323838A (en) Element temperature measuring device for air-fuel ratio sensor and heater control device
JPH0422865A (en) Air fuel ratio controller