JP2001323838A - Element temperature measuring device for air-fuel ratio sensor and heater control device - Google Patents

Element temperature measuring device for air-fuel ratio sensor and heater control device

Info

Publication number
JP2001323838A
JP2001323838A JP2000144428A JP2000144428A JP2001323838A JP 2001323838 A JP2001323838 A JP 2001323838A JP 2000144428 A JP2000144428 A JP 2000144428A JP 2000144428 A JP2000144428 A JP 2000144428A JP 2001323838 A JP2001323838 A JP 2001323838A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
sensor
internal resistance
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2000144428A
Other languages
Japanese (ja)
Inventor
Hajime Hosoya
肇 細谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Unisia Jecs Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unisia Jecs Corp filed Critical Unisia Jecs Corp
Priority to JP2000144428A priority Critical patent/JP2001323838A/en
Publication of JP2001323838A publication Critical patent/JP2001323838A/en
Abandoned legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To minimize influence on air-fuel ratio detecting performance and measure the element temperature of an air-fuel ratio sensor in the case of detecting air fuel ratio by reading in the output of the air-fuel ratio sensor in the specified crank angle cycle (or the specified time cycle). SOLUTION: The sensor output Vs is read in for detecting the air-fuel ratio in the specified crank angle cycle (REF), and just after the read in, the specified voltage for measuring the internal resistance is applied to a sensor element. During applying the voltage, the sensor output Vs is read in to measure the internal resistance, and the internal resistance of the sensor element relating to the element temperature of the air-fuel ratio sensor is measured on the basis of the read in data. The current supply amount to a heater for heating the sensor element mounted on the air-fuel sensor is feedback controlled so that the element temperature becomes the target temperature.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、内燃機関の排気系
に装着されて空燃比制御に用いられる空燃比センサ(酸
素センサを含む)の素子温度を計測する素子温度計測装
置、及び、計測された素子温度に基づいて空燃比センサ
に備えられるセンサ素子加熱用のヒータを制御するヒー
タ制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an element temperature measuring apparatus for measuring an element temperature of an air-fuel ratio sensor (including an oxygen sensor) mounted on an exhaust system of an internal combustion engine and used for air-fuel ratio control. The present invention relates to a heater control device that controls a heater for heating a sensor element provided in an air-fuel ratio sensor based on the element temperature.

【0002】[0002]

【従来の技術】内燃機関の空燃比制御装置として、空燃
比センサにより排気中の酸素濃度などに基づいて実際の
空燃比を検出し、これが目標空燃比となるように、機関
への燃料供給量をフィードバック制御するものが知られ
ている。
2. Description of the Related Art As an air-fuel ratio control device for an internal combustion engine, an air-fuel ratio sensor detects an actual air-fuel ratio based on the oxygen concentration in exhaust gas and the like, and supplies a fuel to the engine such that the actual air-fuel ratio becomes a target air-fuel ratio. Is known that performs feedback control on the control.

【0003】ところで、上記の空燃比フィードバック制
御を行うためには、空燃比センサが活性化していること
が前提条件となり、空燃比センサは、その素子温度が所
定の活性温度に達することで活性化されるため、空燃比
センサには、センサ素子加熱用のヒータを装備させて、
ヒータへの通電制御により素子温度を目標温度に制御し
ている(例えば特開平8−278279号公報参照)。
In order to perform the above-described air-fuel ratio feedback control, a precondition is that the air-fuel ratio sensor is activated. The air-fuel ratio sensor is activated when its element temperature reaches a predetermined activation temperature. Therefore, the air-fuel ratio sensor is equipped with a heater for heating the sensor element,
The element temperature is controlled to the target temperature by controlling the energization of the heater (for example, see Japanese Patent Application Laid-Open No. 8-278279).

【0004】具体的には、センサ素子の内部抵抗を計測
して、これより推定される素子温度に基づき、これが目
標温度となるように、ヒータへの通電量をフィードバッ
ク制御している。
[0004] Specifically, the internal resistance of the sensor element is measured, and the amount of current supplied to the heater is feedback-controlled based on the element temperature estimated from the sensor element so that the element temperature becomes the target temperature.

【0005】[0005]

【発明が解決しようとする課題】ところで、空燃比セン
サの素子温度と関連するセンサ素子の内部抵抗の計測の
ため、センサ素子に内部抵抗計測用の所定の電圧を印加
して、そのときのセンサ出力に基づいて内部抵抗を計測
する場合、内部抵抗計測中(内部抵抗計測用電圧の印加
中)は、センサ出力を空燃比制御に使用できないので、
センサ出力を空燃比制御に反映させないようにする必要
がある。
By the way, in order to measure the internal resistance of the sensor element related to the element temperature of the air-fuel ratio sensor, a predetermined voltage for measuring the internal resistance is applied to the sensor element, and the sensor at that time is applied. When measuring the internal resistance based on the output, the sensor output cannot be used for air-fuel ratio control while the internal resistance is being measured (while the internal resistance measurement voltage is being applied).
It is necessary not to reflect the sensor output on the air-fuel ratio control.

【0006】しかしながら、センサ出力に基づく空燃比
検出の周期と、内部抵抗計測の周期とが独立していて、
例えば空燃比検出を所定のクランク角周期で行い、内部
抵抗計測を所定の時間周期で行っている場合、特に高回
転側では、例えば空燃比検出タイミングの直前から、内
部抵抗計測が実施されると、複数回の空燃比検出タイミ
ングにおいて、空燃比検出が行えず、空燃比検出を行え
ない回数が増えて、空燃比制御性能が悪化するという問
題点があった。
However, the cycle of detecting the air-fuel ratio based on the sensor output is independent of the cycle of measuring the internal resistance.
For example, when the air-fuel ratio detection is performed at a predetermined crank angle cycle and the internal resistance measurement is performed at a predetermined time cycle, particularly on the high rotation side, for example, immediately before the air-fuel ratio detection timing, the internal resistance measurement is performed. However, at a plurality of air-fuel ratio detection timings, the air-fuel ratio cannot be detected, and the number of times the air-fuel ratio cannot be detected increases, and the air-fuel ratio control performance deteriorates.

【0007】本発明は、このような従来の問題点に鑑
み、空燃比制御性能への影響を最小限に抑えつつ、空燃
比センサの素子温度を計測することのできる空燃比セン
サの素子温度計測装置を提供し、併せてこれを用いてセ
ンサ素子加熱用のヒータを制御するヒータ制御装置を提
供することを目的とする。
The present invention has been made in consideration of the above-described conventional problems, and has been made in view of the above-mentioned problems. Accordingly, the present invention has been made in view of the above circumstances. It is an object of the present invention to provide a heater control device for controlling a heater for heating a sensor element by using the device.

【0008】[0008]

【課題を解決するための手段】このため、請求項1に係
る発明では、図1に示すように、所定の周期で、センサ
出力を読込んで、空燃比を検出する空燃比検出手段を備
える場合に、空燃比検出用のセンサ出力の読込み直後
に、センサ素子に内部抵抗計測用の所定の電圧を印加す
る内部抵抗計測用電圧印加手段と、前記電圧の印加中の
センサ出力を読込んで、これに基づいて空燃比センサの
素子温度と関連するセンサ素子の内部抵抗を計測する内
部抵抗計測手段と、を設けて、空燃比センサの素子温度
計測装置を構成する。
According to the first aspect of the present invention, as shown in FIG. 1, there is provided an air-fuel ratio detecting means for reading a sensor output at a predetermined cycle and detecting an air-fuel ratio. Immediately after reading the sensor output for detecting the air-fuel ratio, a voltage applying means for measuring the internal resistance to apply a predetermined voltage for measuring the internal resistance to the sensor element, and reading the sensor output during the application of the voltage, And an internal resistance measuring means for measuring the internal resistance of the sensor element related to the element temperature of the air-fuel ratio sensor based on the above.

【0009】請求項2に係る発明では、前記空燃比検出
手段は、所定のクランク角周期で、センサ出力を読込ん
で、空燃比を検出することを特徴とする。請求項3に係
る発明では、前記空燃比検出手段は、所定の時間周期
で、センサ出力を読込んで、空燃比を検出することを特
徴とする。
According to a second aspect of the present invention, the air-fuel ratio detecting means detects an air-fuel ratio by reading a sensor output at a predetermined crank angle cycle. The invention according to claim 3 is characterized in that the air-fuel ratio detection means detects an air-fuel ratio by reading a sensor output at a predetermined time period.

【0010】請求項4に係る発明では、上記の空燃比セ
ンサの素子温度計測装置を備える一方、空燃比センサに
備えられるセンサ素子加熱用のヒータに対し、素子温度
が目標温度となるように、ヒータへの通電量をフィード
バック制御するヒータ通電量制御手段を設けて、空燃比
センサのヒータ制御装置を構成する(図1参照)。
In the invention according to claim 4, while the device temperature measuring device for the air-fuel ratio sensor is provided, the heater for heating the sensor device provided in the air-fuel ratio sensor is set so that the device temperature becomes the target temperature. A heater control device for an air-fuel ratio sensor is provided by providing a heater power control unit for feedback-controlling the power supplied to the heater (see FIG. 1).

【0011】[0011]

【発明の効果】請求項1に係る発明によれば、空燃比検
出タイミングでの空燃比検出用のセンサ出力の読込み直
後に、センサ素子に内部抵抗計測用の所定の電圧を印加
して、この状態でのセンサ出力より内部抵抗を計測する
ため、空燃比検出タイミングにて内部抵抗計測中のため
に空燃比を検出できない回数を最小にでき、空燃比制御
性能への影響を最小にすることができる。
According to the first aspect of the invention, immediately after reading the sensor output for detecting the air-fuel ratio at the air-fuel ratio detection timing, a predetermined voltage for measuring the internal resistance is applied to the sensor element. Since the internal resistance is measured from the sensor output in the state, the number of times the air-fuel ratio cannot be detected because the internal resistance is being measured at the air-fuel ratio detection timing can be minimized, and the effect on the air-fuel ratio control performance can be minimized. it can.

【0012】請求項2に係る発明によれば、所定のクラ
ンク角周期でセンサ出力を読込んで空燃比を検出する場
合に、空燃比検出タイミングにて内部抵抗計測中のため
に空燃比を検出できない回数を最小にでき、空燃比制御
性能への影響を最小にすることができる。
According to the second aspect of the present invention, when the air-fuel ratio is detected by reading the sensor output at a predetermined crank angle cycle, the air-fuel ratio cannot be detected because the internal resistance is being measured at the air-fuel ratio detection timing. The number of times can be minimized, and the influence on the air-fuel ratio control performance can be minimized.

【0013】請求項3に係る発明によれば、所定の時間
周期でセンサ出力を読込んで空燃比を検出する場合も、
空燃比検出タイミングにて内部抵抗計測中のために空燃
比を検出できない回数を最小にでき、空燃比制御性能へ
の影響を最小にすることができる。
According to the third aspect of the present invention, when the air-fuel ratio is detected by reading the sensor output at a predetermined time period,
Since the internal resistance is being measured at the air-fuel ratio detection timing, the number of times the air-fuel ratio cannot be detected can be minimized, and the influence on the air-fuel ratio control performance can be minimized.

【0014】請求項4に係る発明によれば、上記のごと
く空燃比制御性能への影響を最小にしつつ、ヒータ制御
により、空燃比センサの素子温度を目標温度に収束させ
て、空燃比センサを所望の活性状態に維持することがで
きる。
According to the fourth aspect of the invention, the element temperature of the air-fuel ratio sensor is made to converge to the target temperature by the heater control while minimizing the influence on the air-fuel ratio control performance as described above. The desired active state can be maintained.

【0015】[0015]

【発明の実施の形態】以下に本発明の実施の形態につい
て説明する。図2は本発明の一実施形態を示す内燃機関
の空燃比フィードバック制御装置のシステム構成を示し
ている。
Embodiments of the present invention will be described below. FIG. 2 shows a system configuration of an air-fuel ratio feedback control device for an internal combustion engine according to an embodiment of the present invention.

【0016】内燃機関(以下エンジンという)1には、
各気筒毎に、吸気通路2又は燃焼室内に臨むように、燃
料噴射弁3が設けられ、各燃料噴射弁3の燃料噴射はコ
ントロールユニット4により制御される。
An internal combustion engine (hereinafter referred to as an engine) 1 includes:
A fuel injection valve 3 is provided for each cylinder so as to face the intake passage 2 or the combustion chamber. The fuel injection of each fuel injection valve 3 is controlled by the control unit 4.

【0017】コントロールユニット4は、例えば、エア
フローメータ5からの信号に基づいて検出される吸入空
気量Qaと、クランク角センサ6からの信号に基づいて
検出されるエンジン回転数Neとから、ストイキ(λ=
1)相当の基本燃料噴射量Tp=K×Qa/Ne(Kは
定数)を演算し、これを目標空燃比tλの他、排気通路
7に配置した空燃比センサ8からの信号に基づく空燃比
フィードバック補正係数αにより補正して、最終的な燃
料噴射量Ti=Tp×(1/tλ)×αを演算し、この
Tiに対応するパルス幅の燃料噴射パルスを、エンジン
回転に同期して、各燃料噴射弁3に出力する。
The control unit 4 calculates a stoichiometric value based on, for example, an intake air amount Qa detected based on a signal from the air flow meter 5 and an engine speed Ne detected based on a signal from the crank angle sensor 6. λ =
1) Calculate a corresponding basic fuel injection amount Tp = K × Qa / Ne (K is a constant), and calculate the air-fuel ratio based on a signal from an air-fuel ratio sensor 8 disposed in the exhaust passage 7 in addition to the target air-fuel ratio tλ. A final fuel injection amount Ti = Tp × (1 / tλ) × α is calculated by correcting with a feedback correction coefficient α, and a fuel injection pulse having a pulse width corresponding to this Ti is synchronized with the engine rotation. Output to each fuel injection valve 3.

【0018】ここで、空燃比センサ8は、排気通路7に
配置されて、排気中の酸素濃度に応じた信号を出力する
もので、コントロールユニット4は、空燃比センサ8か
らの信号に基づいて、エンジン1に供給されている混合
気の空燃比λを検出し、これが目標空燃比tλとなるよ
うに、空燃比フィードバック補正係数αを比例積分制御
などにより増減設定することで、空燃比λを目標空燃比
tλにフィードバック制御する。
Here, the air-fuel ratio sensor 8 is disposed in the exhaust passage 7 and outputs a signal corresponding to the oxygen concentration in the exhaust gas. The control unit 4 operates based on the signal from the air-fuel ratio sensor 8. The air-fuel ratio λ is detected by detecting the air-fuel ratio λ of the air-fuel mixture supplied to the engine 1 and increasing or decreasing the air-fuel ratio feedback correction coefficient α by proportional integral control or the like so that the air-fuel ratio λ becomes the target air-fuel ratio tλ. Feedback control is performed to the target air-fuel ratio tλ.

【0019】また、空燃比センサ8としては、空燃比に
応じて出力電圧が連続的に変化することで空燃比をリニ
アに検出可能ないわゆる広域型空燃比センサであって、
図3に示すようにセンサ素子11加熱用のヒータ12を
備えるものを用いる。
The air-fuel ratio sensor 8 is a so-called wide-range air-fuel ratio sensor capable of linearly detecting the air-fuel ratio by continuously changing the output voltage according to the air-fuel ratio.
As shown in FIG. 3, a sensor device having a heater 12 for heating the sensor element 11 is used.

【0020】図3は空燃比センサ8のセンサ素子11及
びセンサ素子加熱用のヒータ12に対する制御回路を示
している。空燃比センサ8のセンサ素子11は、空燃比
に応じて出力電圧Vsが連続的に変化し、その出力Vs
はコントロールユニット4に入力される。
FIG. 3 shows a control circuit for the sensor element 11 of the air-fuel ratio sensor 8 and the heater 12 for heating the sensor element. The output voltage Vs of the sensor element 11 of the air-fuel ratio sensor 8 continuously changes according to the air-fuel ratio, and the output Vs
Is input to the control unit 4.

【0021】また、センサ素子11には、内部抵抗計測
用の所定の電圧Vcc(例えば5V)がスイッチング素子
13及び基準抵抗R0を介して印加されるようになって
いる。従って、内部抵抗計測時に、スイッチング素子1
3がONとなると、センサ素子11の出力Vsに内部抵
抗計測用の電圧分が重畳される。
Further, a predetermined voltage Vcc (for example, 5 V) for measuring the internal resistance is applied to the sensor element 11 via the switching element 13 and the reference resistance R0. Therefore, when measuring the internal resistance, the switching element 1
When 3 is turned on, the voltage for internal resistance measurement is superimposed on the output Vs of the sensor element 11.

【0022】ヒータ12には、バッテリ電圧VBを印加
するが、通電回路中にスイッチング素子14を設けてあ
る。コントロールユニット4内のCPU15は、内部抵
抗計測用電圧印加用のスイッチング素子13のON・O
FFを制御しつつ、所定のタイミングで、センサ素子1
1の出力Vsをフィルタ(平滑化回路)16及びA/D
変換器17を介して読込む。
The heater 12 is applied with a battery voltage VB, and is provided with a switching element 14 in an energizing circuit. The CPU 15 in the control unit 4 turns ON / O the switching element 13 for applying the voltage for measuring the internal resistance.
The sensor element 1 is controlled at a predetermined timing while controlling the FF.
1 is applied to a filter (smoothing circuit) 16 and an A / D
The data is read via the converter 17.

【0023】また、CPU15は、D/A変換器18を
介して、ヒータ制御用のスイッチング素子14のON・
OFFをデューティ制御することにより、ヒータ12へ
の通電量を制御する。
Further, the CPU 15 turns ON / OFF the switching element 14 for controlling the heater through the D / A converter 18.
By controlling the OFF duty, the amount of current supplied to the heater 12 is controlled.

【0024】次にCPU15の制御内容をフローチャー
トにより説明する。図4は空燃比検出ルーチンのフロー
チャートであり、所定クランク角周期で、具体的には、
クランク角センサ6からエンジン回転に同期して所定ク
ランク角毎に出力される基準クランク角信号REFの発
生に同期して、実行される。
Next, the control contents of the CPU 15 will be described with reference to a flowchart. FIG. 4 is a flowchart of the air-fuel ratio detection routine, and at a predetermined crank angle cycle, specifically,
The process is executed in synchronization with the generation of the reference crank angle signal REF output from the crank angle sensor 6 at every predetermined crank angle in synchronization with the engine rotation.

【0025】ステップ1(図にはS1と記す。以下同
様)では、内部抵抗計測中フラグF=1か否かを判定
し、F=1(内部抵抗計測中=内部抵抗計測用電圧の印
加中)の場合は、本ルーチンを終了する。内部抵抗計測
用電圧の印加中は、空燃比の検出ができないからであ
る。
In step 1 (referred to as S1 in the figure, the same applies hereinafter), it is determined whether or not the internal resistance measurement flag F = 1 or not, and F = 1 (internal resistance measurement = application of internal resistance measurement voltage). In the case of ()), this routine ends. This is because the air-fuel ratio cannot be detected during the application of the internal resistance measurement voltage.

【0026】F=0の場合は、空燃比の検出が可能であ
るため、ステップ2へ進む。ステップ2では、空燃比を
検出すべく、センサ出力Vsを読込み、これに基づいて
空燃比λを検出する。この部分が空燃比検出手段に相当
する。
If F = 0, the flow proceeds to step 2 because the air-fuel ratio can be detected. In step 2, the sensor output Vs is read to detect the air-fuel ratio, and the air-fuel ratio λ is detected based on the sensor output Vs. This part corresponds to the air-fuel ratio detecting means.

【0027】ステップ3では、スイッチング素子13を
ONにして、センサ素子11への内部抵抗計測用電圧V
ccの印加を開始する。すなわち、空燃比検出用のセンサ
出力の読込み直後より、内部抵抗計測用電圧Vccの印加
を開始する。この部分が内部抵抗計測用電圧印加手段に
相当する。
In step 3, the switching element 13 is turned on, and the voltage V
Start applying cc. That is, immediately after the reading of the sensor output for detecting the air-fuel ratio, the application of the internal resistance measuring voltage Vcc is started. This portion corresponds to an internal resistance measuring voltage applying unit.

【0028】ステップ4では、内部抵抗計測用電圧の印
加開始からの時間経過を計測すべく、タイマTMを0に
リセットして、スタートさせる。ステップ5では、内部
抵抗計測中であることを示すべく、内部抵抗計測中フラ
グF=1にセットして、本ルーチンを終了する。
In step 4, the timer TM is reset to 0 and started to measure the elapsed time from the start of the application of the internal resistance measuring voltage. In step 5, the flag F = 1 is set to indicate that the internal resistance is being measured, and the routine ends.

【0029】図5は内部抵抗計測ルーチンのフローチャ
ートであり、所定時間毎に実行される。ステップ11で
は、タイマTMの値を読込む。そして、ステップ12で
はタイマTMが第1の所定時間T1に達した(TM=T
1)か否かを判定し、また、ステップ16では、タイマ
TMが第2の所定時間T2に達した(TM=T2)か否
かを判定する。T1<T2である。
FIG. 5 is a flowchart of an internal resistance measurement routine, which is executed at predetermined time intervals. In step 11, the value of the timer TM is read. Then, in step 12, the timer TM reaches the first predetermined time T1 (TM = T
1) is determined, and in step 16, it is determined whether the timer TM has reached a second predetermined time T2 (TM = T2). T1 <T2.

【0030】TM=T1の場合は、ステップ12からス
テップ13へ進んで、センサ素子11の内部抵抗を計測
すべく、センサ出力Vsを読込む。すなわち、内部抵抗
計測用電圧の印加中のセンサ出力Vsを読込む。
If TM = T1, the process proceeds from step 12 to step 13, where the sensor output Vs is read in order to measure the internal resistance of the sensor element 11. That is, the sensor output Vs during the application of the internal resistance measuring voltage is read.

【0031】尚、ここで読込んだセンサ出力Vsには、
空燃比に応じた発生電圧分の差による誤差を含んでいる
ので、これを補正すべく、内部抵抗計測用電圧の印加直
前の空燃比検出タイミングにて読込んだセンサ出力をV
s’とすると、例えば、Vs=Vs−Vs’として、補
正するとよい。
Note that the sensor output Vs read here includes:
Since an error due to the difference in the generated voltage corresponding to the air-fuel ratio is included, the sensor output read at the air-fuel ratio detection timing immediately before the application of the internal resistance measurement voltage is corrected to V
Assuming that s ′, for example, the correction may be performed as Vs = Vs−Vs ′.

【0032】そして、ステップ14では、読込んだ又は
読込み後に補正したセンサ出力Vsに基づいて、センサ
素子11の内部抵抗Rsを算出する。具体的には、セン
サ素子11に流れる電流をiとすると、 Vs=i×Rs Vcc−Vs=i×R0 であるので、両式より、 Rs=Vs/〔(Vcc−Vs)/R0〕 として、内部抵抗Rsを算出する。
In step 14, the internal resistance Rs of the sensor element 11 is calculated based on the read or corrected sensor output Vs. Specifically, assuming that the current flowing through the sensor element 11 is i, Vs = i.times.Rs Vcc-Vs = i.times.R0. Therefore, from both equations, Rs = Vs / [(Vcc-Vs) / R0]. , The internal resistance Rs is calculated.

【0033】ここで、ステップ13,14の部分が内部
抵抗計測手段に相当する。そして、ステップ15では、
センサ素子11の内部抵抗Rsより、テーブルを参照す
るなどして、素子温度Tsを算出する。素子温度Tsが
高くなるほど、内部抵抗Rsが減少するので、内部抵抗
Rsより、素子温度Tsを算出可能だからである。
Here, the steps 13 and 14 correspond to the internal resistance measuring means. Then, in step 15,
The element temperature Ts is calculated from the internal resistance Rs of the sensor element 11 by referring to a table or the like. This is because the higher the element temperature Ts, the lower the internal resistance Rs, so that the element temperature Ts can be calculated from the internal resistance Rs.

【0034】TM=T2の場合は、ステップ16からス
テップ17へ進んで、スイッチング素子13をOFFに
することで、センサ素子11への内部抵抗計測用電圧V
ccの印加を停止(終了)する。そして、ステップ18で
は、内部抵抗計測の終了を示すべく、内部抵抗計測中フ
ラグF=0にリセットする。
In the case of TM = T2, the process proceeds from step 16 to step 17 where the switching element 13 is turned off so that the internal resistance measuring voltage V
Stop (end) the application of cc. Then, in step 18, the internal resistance measurement in progress flag F is reset to 0 to indicate the end of the internal resistance measurement.

【0035】このような制御により、図6に示すような
処理が実現される。基準クランク角信号REFの発生に
同期して、センサ出力Vsを読込むことで、空燃比λを
検出する。そして、空燃比検出の直後に、内部抵抗計測
用電圧の印加を開始し、第1の所定時間T1後に電圧印
加中のセンサ出力Vsを読込むことで、これに基づいて
内部抵抗Rsを計測する。そして、第2の所定時間T2
後に内部抵抗計測用電圧の印加を終了して、センサ出力
Vsに基づく空燃比λの検出を可能とする。
By such control, the processing as shown in FIG. 6 is realized. The air-fuel ratio λ is detected by reading the sensor output Vs in synchronization with the generation of the reference crank angle signal REF. Immediately after the detection of the air-fuel ratio, the application of the internal resistance measurement voltage is started, and after a first predetermined time T1, the sensor output Vs during the voltage application is read, and the internal resistance Rs is measured based on the output. . Then, the second predetermined time T2
The application of the voltage for measuring the internal resistance is terminated later, and the detection of the air-fuel ratio λ based on the sensor output Vs becomes possible.

【0036】この場合、高回転領域では、図6に示すよ
うに、空燃比検出後の次のREF信号の発生時には、内
部抵抗計測中のため、空燃比の検出は行われないが、R
EF信号2回につき1回、空燃比の検出が行われるの
で、十分である。
In this case, in the high rotation region, as shown in FIG. 6, when the next REF signal is generated after the detection of the air-fuel ratio, the air-fuel ratio is not detected because the internal resistance is being measured.
It is sufficient because the air-fuel ratio is detected once every two EF signals.

【0037】また、空燃比検出タイミングの直前より内
部抵抗計測を開始した場合は、その後の2回のREF信
号の発生時に連続して空燃比を検出できない事態となる
が、空燃比検出の直後から内部抵抗計測を開始すること
で、最低でも、REF信号2回につき1回、空燃比の検
出が行われるようにすることができる。
If the internal resistance measurement is started immediately before the air-fuel ratio detection timing, the air-fuel ratio cannot be detected continuously when two subsequent REF signals are generated, but immediately after the air-fuel ratio detection. By starting the internal resistance measurement, the air-fuel ratio can be detected at least once every two REF signals.

【0038】図7はヒータ制御ルーチンのフローチャー
トであり、所定時間毎に実行される。本ルーチンがヒー
タ通電量制御手段に相当する。ステップ21では、図5
のルーチンにより算出されている最新の素子温度Tsを
読込む。
FIG. 7 is a flowchart of the heater control routine, which is executed at predetermined time intervals. This routine corresponds to the heater power control unit. In step 21, FIG.
The latest element temperature Ts calculated by the routine is read.

【0039】ステップ22では、実際の素子温度Tsと
目標温度との偏差に応じて、周知のPID制御により、
素子温度Tsを目標温度に近づけるように、ヒータデュ
ーティHDUTY(%)を算出する。
In step 22, according to the well-known PID control, according to the deviation between the actual element temperature Ts and the target temperature,
The heater duty HDUTY (%) is calculated so that the element temperature Ts approaches the target temperature.

【0040】具体的には、実際の素子温度Tsが目標温
度より低い場合は、ヒータ12への通電量(通電時間割
合)を増大させるように、ヒータデューティHDUTY
を増大させ、逆に、実際の素子温度Tsが目標温度より
高い場合は、ヒータ12への通電量(通電時間割合)を
減少させるように、ヒータデューティHDUTYを減少
させる。
More specifically, when the actual element temperature Ts is lower than the target temperature, the heater duty HDUTY is set so as to increase the amount of power supply (percentage of power supply) to the heater 12.
On the contrary, when the actual element temperature Ts is higher than the target temperature, the heater duty HDUTY is decreased so as to decrease the amount of current (current time ratio) to the heater 12.

【0041】ステップ23では、算出されたヒータデュ
ーティHDUTYを出力し、これによりスイッチング素
子14のON・OFFでヒータ12への通電量を制御し
て、素子温度Tsを目標温度に収束させる。
In step 23, the calculated heater duty HDUTY is output, whereby the amount of power to the heater 12 is controlled by turning on / off the switching element 14 so that the element temperature Ts converges to the target temperature.

【0042】尚、上記実施形態では、空燃比の検出を所
定のクランク角周期で、すなわちREF信号の発生に同
期して行うようにしているが、空燃比の検出を所定の時
間周期で行う場合(すなわち、図4のルーチンを時間同
期で行う場合)にも、本発明を適用できる。
In the above embodiment, the detection of the air-fuel ratio is performed at a predetermined crank angle cycle, that is, in synchronization with the generation of the REF signal. The present invention is also applicable to a case where the routine of FIG. 4 is performed in time synchronization.

【0043】また、上記実施形態では、センサ素子11
の内部抵抗Rsを計測し、これに基づいて素子温度Ts
を算出し、ヒータ制御に際して、素子温度Tsが目標温
度となるようにフィードバック制御するようにしている
が、内部抵抗Rsにより素子温度Tsが定まるので、素
子温度Tsを算出することなく、ヒータ制御に際して、
内部抵抗Rsが目標内部抵抗となるようにフィードバッ
ク制御するようにしてもよい。
In the above embodiment, the sensor element 11
Of the element temperature Ts based on the measured internal resistance Rs.
Is calculated in the feedback control so that the element temperature Ts becomes the target temperature in the heater control. However, since the element temperature Ts is determined by the internal resistance Rs, the element temperature Ts is calculated without calculating the element temperature Ts. ,
Feedback control may be performed so that the internal resistance Rs becomes the target internal resistance.

【0044】このようにする場合は、実際の内部抵抗R
sが目標内部抵抗より大きいときに、素子温度が低いの
で、ヒータ12への通電量を増大させるように、ヒータ
デューティHDUTYを増大させ、逆に、実際の内部抵
抗Rsが目標内部抵抗より小さいときに、素子温度が高
いので、ヒータ12への通電量を減少させるように、ヒ
ータデューティHDUTYを減少させる。
In this case, the actual internal resistance R
When s is greater than the target internal resistance, the element temperature is low. Therefore, the heater duty HDUTY is increased so as to increase the amount of current supplied to the heater 12, and conversely, when the actual internal resistance Rs is smaller than the target internal resistance. Next, since the element temperature is high, the heater duty HDUTY is reduced so as to reduce the amount of current supplied to the heater 12.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の構成を示す機能ブロック図FIG. 1 is a functional block diagram showing a configuration of the present invention.

【図2】 本発明の一実施形態を示すエンジンの空燃比
フィードバック制御装置のシステム図
FIG. 2 is a system diagram of an air-fuel ratio feedback control device for an engine showing an embodiment of the present invention.

【図3】 空燃比センサのセンサ素子及びヒータに対す
る制御回路図
FIG. 3 is a control circuit diagram for a sensor element and a heater of the air-fuel ratio sensor.

【図4】 空燃比検出ルーチンのフローチャートFIG. 4 is a flowchart of an air-fuel ratio detection routine.

【図5】 内部抵抗計測ルーチンのフローチャートFIG. 5 is a flowchart of an internal resistance measurement routine.

【図6】 空燃比検出及び内部抵抗計測のタイムチャー
FIG. 6 is a time chart of air-fuel ratio detection and internal resistance measurement.

【図7】 ヒータ制御ルーチンのフローチャートFIG. 7 is a flowchart of a heater control routine.

【符号の説明】[Explanation of symbols]

1 エンジン 3 燃料噴射弁 4 コントロールユニット 6 クランク角センサ 7 排気通路 8 空燃比センサ 11 センサ素子 12 ヒータ 13 スイッチング素子 14 スイッチング素子 15 CPU Reference Signs List 1 engine 3 fuel injection valve 4 control unit 6 crank angle sensor 7 exhaust passage 8 air-fuel ratio sensor 11 sensor element 12 heater 13 switching element 14 switching element 15 CPU

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】内燃機関の排気系に装着される空燃比セン
サの素子温度計測装置であって、 所定の周期で、センサ出力を読込んで、空燃比を検出す
る空燃比検出手段を備える場合に、 空燃比検出用のセンサ出力の読込み直後に、センサ素子
に内部抵抗計測用の所定の電圧を印加する内部抵抗計測
用電圧印加手段と、 前記電圧の印加中のセンサ出力を読込んで、これに基づ
いて空燃比センサの素子温度と関連するセンサ素子の内
部抵抗を計測する内部抵抗計測手段と、 を設けたことを特徴とする空燃比センサの素子温度計測
装置。
1. An element temperature measuring device for an air-fuel ratio sensor mounted on an exhaust system of an internal combustion engine, comprising an air-fuel ratio detecting means for reading a sensor output at a predetermined cycle and detecting an air-fuel ratio. Immediately after reading the sensor output for air-fuel ratio detection, an internal resistance measurement voltage applying means for applying a predetermined voltage for internal resistance measurement to the sensor element, and reading the sensor output during application of the voltage, And an internal resistance measuring means for measuring an internal resistance of the sensor element related to an element temperature of the air-fuel ratio sensor based on the element temperature measurement apparatus.
【請求項2】前記空燃比検出手段は、所定のクランク角
周期で、センサ出力を読込んで、空燃比を検出すること
を特徴とする請求項1記載の空燃比センサの素子温度計
測装置。
2. The device temperature measuring device for an air-fuel ratio sensor according to claim 1, wherein said air-fuel ratio detecting means detects an air-fuel ratio by reading a sensor output at a predetermined crank angle cycle.
【請求項3】前記空燃比検出手段は、所定の時間周期
で、センサ出力を読込んで、空燃比を検出することを特
徴とする請求項1記載の空燃比センサの素子温度計測装
置。
3. The device temperature measuring device for an air-fuel ratio sensor according to claim 1, wherein said air-fuel ratio detecting means detects an air-fuel ratio by reading a sensor output at a predetermined time period.
【請求項4】請求項1〜請求項3のいずれか1つに記載
の空燃比センサの素子温度計測装置を備える一方、 空燃比センサに備えられるセンサ素子加熱用のヒータに
対し、素子温度が目標温度となるように、ヒータへの通
電量をフィードバック制御するヒータ通電量制御手段を
設けたことを特徴とする空燃比センサのヒータ制御装
置。
4. An element temperature measuring device for an air-fuel ratio sensor according to any one of claims 1 to 3, wherein an element temperature is lower than a heater for heating a sensor element provided in the air-fuel ratio sensor. A heater control device for an air-fuel ratio sensor, further comprising a heater power control unit that feedback-controls a power supply to a heater so as to reach a target temperature.
JP2000144428A 2000-05-17 2000-05-17 Element temperature measuring device for air-fuel ratio sensor and heater control device Abandoned JP2001323838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000144428A JP2001323838A (en) 2000-05-17 2000-05-17 Element temperature measuring device for air-fuel ratio sensor and heater control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000144428A JP2001323838A (en) 2000-05-17 2000-05-17 Element temperature measuring device for air-fuel ratio sensor and heater control device

Publications (1)

Publication Number Publication Date
JP2001323838A true JP2001323838A (en) 2001-11-22

Family

ID=18651088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000144428A Abandoned JP2001323838A (en) 2000-05-17 2000-05-17 Element temperature measuring device for air-fuel ratio sensor and heater control device

Country Status (1)

Country Link
JP (1) JP2001323838A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7017567B2 (en) * 2000-05-17 2006-03-28 Hitachi, Ltd. Device and method for measuring element temperature of air-fuel ratio sensor, and device and method for controlling heater of air-fuel ratio sensor
JP2006105136A (en) * 2004-10-07 2006-04-20 Robert Bosch Gmbh Control method and device for electrical heating of lambda sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7017567B2 (en) * 2000-05-17 2006-03-28 Hitachi, Ltd. Device and method for measuring element temperature of air-fuel ratio sensor, and device and method for controlling heater of air-fuel ratio sensor
JP2006105136A (en) * 2004-10-07 2006-04-20 Robert Bosch Gmbh Control method and device for electrical heating of lambda sensor
JP2012163110A (en) * 2004-10-07 2012-08-30 Robert Bosch Gmbh Control method and device for electric heating of lambda sensor

Similar Documents

Publication Publication Date Title
JPH0742587A (en) Air-fuel ratio control device for internal combustion engine
JPS627374B2 (en)
JP2004204772A (en) Diagnostic device for air-fuel ratio sensor
US6712054B2 (en) Device and method for measuring element temperature of air-fuel ratio sensor, and device and method for controlling heater of air-fuel ratio sensor
JPH065047B2 (en) Air-fuel ratio controller
JP3982624B2 (en) Heater control device
JP3764841B2 (en) Element temperature measuring device and heater control device for air-fuel ratio sensor
JP3764842B2 (en) Heater control device for air-fuel ratio sensor
JP2001323838A (en) Element temperature measuring device for air-fuel ratio sensor and heater control device
JP3277690B2 (en) Control device of heating means for air-fuel ratio sensor
JPH01232139A (en) Air-fuel ratio control device for internal combustion engine
JPH08165943A (en) Internal combustion engine control device
JP2002022699A (en) Element temperature inferring device for air-fuel ratio sensor
JPH01227832A (en) Air-fuel ratio control device for internal combustion engine
JP2004197693A (en) Air/fuel ratio control system of internal combustion engine
JP2516086B2 (en) Intake air flow rate measuring device for internal combustion engine
JPH01232143A (en) Air-fuel ratio control device for internal combustion engine
JP2004316569A (en) False deterioration signal generating device for air-fuel ratio sensor
JPH07238854A (en) Fuel feeding control device of internal combustion engine
JP4361702B2 (en) Control device for internal combustion engine
JP2596054Y2 (en) Air-fuel ratio feedback control device for internal combustion engine
JP2005054770A (en) Error detection device for air-fuel ratio sensor
JP2001021524A (en) Simulated temperature calculation device of exhaust system part of internal combustion engine and electric heater control device of air-fuel ratio sensor for internal combustion engine
JPS63249046A (en) Air/fuel ratio detector
JPH01124758A (en) Air fuel ratio controller for internal combustion engine

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050930

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20051028