JP2004316569A - False deterioration signal generating device for air-fuel ratio sensor - Google Patents

False deterioration signal generating device for air-fuel ratio sensor Download PDF

Info

Publication number
JP2004316569A
JP2004316569A JP2003112824A JP2003112824A JP2004316569A JP 2004316569 A JP2004316569 A JP 2004316569A JP 2003112824 A JP2003112824 A JP 2003112824A JP 2003112824 A JP2003112824 A JP 2003112824A JP 2004316569 A JP2004316569 A JP 2004316569A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
ratio sensor
deterioration
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003112824A
Other languages
Japanese (ja)
Inventor
Shigeo Okuma
重男 大隈
Hidekazu Yoshizawa
秀和 吉澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Hitachi Unisia Automotive Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Unisia Automotive Ltd filed Critical Hitachi Unisia Automotive Ltd
Priority to JP2003112824A priority Critical patent/JP2004316569A/en
Publication of JP2004316569A publication Critical patent/JP2004316569A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To conduct control variable adjusting work under consideration of a deteriorated state of an air-fuel sensor at low cost and with high precision. <P>SOLUTION: As a new air-fuel ratio sensor is installed on an engine, the air-fuel ratio is forcedly changed in steps. Based on air-fuel ratio operation quantity and detection signals of the air-fuel ratio sensor at this time, parameters for a plant model from a fuel injection valve to the air-fuel ratio sensor is identified. Next, correction characteristics (transmission functions) for generating false deterioration signals representing response delay in the deteriorated state are set based on the parameters. The detection signals are corrected based on the correction characteristics to generate transitive delay corresponding to the deteriorated state. Air-fuel ratio feedback control is conducted based on the detection signals corrected. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の運転状態を検出するセンサにおいて、該センサが劣化した状態での検出信号を擬似的に発生させる擬似劣化信号発生装置に関する。
【0002】
【従来の技術】
従来から、内燃機関の排気中の酸素濃度に基づいて燃焼混合気の空燃比を検出する空燃比センサを排気管に設け、該空燃比センサで検出される実際の空燃比と目標空燃比との偏差に基づいて、機関への燃料供給量をフィードバック制御する空燃比フィードバック制御が知られている。
【0003】
また、特許文献1に開示される空燃比フィードバック制御においては、空燃比センサの劣化による時定数の変化を検出し、該時定数の変化に対応して目標空燃比を変更する構成が開示されている。
【0004】
【特許文献1】
特開平08−128347号公報
【0005】
【発明が解決しようとする課題】
ところで、上記のように空燃比センサの劣化時に対応する処理を最適に行わせるには、空燃比センサが劣化した状態での運転を実験的に行わせ、種々のパラメータを予め適合させる必要が生じる。
【0006】
そこで、従来では、前記適合作業のために、劣化した状態の出力特性を示す空燃比センサを製造し、該劣化空燃比センサを機関に装着して空燃比検出を行わせるようにしていた。
【0007】
しかし、劣化特性の空燃比センサを要求通りに製造することが難しく、劣化空燃比センサの製造コストが高くなってしまうという問題があった。
また、劣化空燃比センサを機関に装着して実験を行っている最中に、劣化空燃比センサの劣化度合いが進んでしまい、一定の劣化条件で適合作業を行わせることが困難であるという問題があった。
【0008】
本発明は上記問題点に鑑みなされたものであり、空燃比センサが劣化した状態に対応する制御パラメータの適合作業を、低コストにかつ精度良く行えるようにすることを目的とする。
【0009】
【課題を解決するための手段】
そのため、請求項1記載の発明では、空燃比操作量と空燃比センサの検出信号とに基づいて、空燃比変化が空燃比センサで検出されるまでの伝達特性を求め、この伝達特性を基準に、要求の劣化度合いに対応する検出信号の補正特性を設定し、該設定した補正特性で空燃比センサの検出信号を補正することで、要求の劣化度合いに対応する過渡遅れを強制的に生じさせる構成とした。
【0010】
かかる構成によると、空燃比変化が空燃比センサで検出されるまでの伝達特性を検出することで、新品状態における実際の空燃比検出の応答特性を求め、該応答特性(新品の空燃比センサにおける応答性)を基準として、劣化時に見合う応答性を擬似的に発生させるための検出信号の補正特性を設定する。
【0011】
そして、前記設定した補正特性で、空燃比センサの検出信号を補正することで、要求の劣化度合いに対応する過渡遅れを示す擬似劣化信号を発生させる。
従って、新品の空燃比センサを用いつつ、擬似的に劣化した空燃比検出信号を発生させることができ、かつ、新品の空燃比センサの実際の応答特性を基準として、擬似劣化させるための補正特性を設定するから、要求の劣化状態を高精度にシミュレーションすることができる。
【0012】
請求項2記載の発明では、空燃比をステップ変化させる空燃比操作量を強制的に与え、そのときの空燃比センサの検出信号に基づいて、空燃比変化が空燃比センサで検出されるまでの伝達特性を求める構成とした。
【0013】
かかる構成によると、空燃比を強制的にステップ変化させ、このステップ変化に見合う変化が空燃比センサの検出信号に表れるまでの伝達特性を求める。
従って、空燃比操作量に見合う検出信号の変化を容易に捉えることができ、伝達特性を精度良く求めることができる。
【0014】
請求項3記載の発明では、前記伝達特性を、機関に燃料を噴射する燃料噴射弁から空燃比センサまでを制御対象としたプラントモデルのパラメータの同定により求める構成とした。
【0015】
かかる構成によると、燃料噴射弁から空燃比センサまでを制御対象としたプラントモデルを設定し、空燃比操作量と空燃比センサの検出信号とに基づいて前記プラントモデルのパラメータを同定する。
【0016】
従って、燃料噴射弁から空燃比センサまでをモデル化して、要求の劣化度合いに見合う補正特性を精度良く設定させることができる。
【0017】
【発明の実施の形態】
以下に、本発明の実施形態を添付の図面に基づいて説明する。
図1は、本発明に係る擬似劣化信号発生装置が適用される内燃機関のシステム構成図である。
【0018】
この図1において、内燃機関11の吸気管12には、吸入空気流量Qaを計測するエアフローメータ13及び吸入空気流量Qaを制御する吸気絞り弁14が設けられる。
【0019】
前記吸気絞り弁14下流のマニホールド部分には、気筒毎に電磁式の燃料噴射弁15が設けられる。
前記燃料噴射弁15は、後述するようにしてコントロールユニット50において設定される駆動パルス信号によって開弁駆動され、所定圧力に制御された燃料を噴射する。
【0020】
更に、機関11の冷却ジャケット内の冷却水温度Twを検出する水温センサ16が設けられる。
一方、排気マニホールド17の集合部近傍に、排気中の酸素濃度に基づいて吸入混合気の空燃比を検出する空燃比センサ18が設けられる。
【0021】
前記空燃比センサ18の下流側には、理論空燃比近傍において排気中のCO,HCの酸化とNOxの還元を良好に行って排気を浄化する三元触媒19が介装されている。
【0022】
ここで、前記空燃比センサ18の構造及び空燃比検出原理について説明する。
図2に前記空燃比センサ18の構造を示す。
前記空燃比センサ18の本体1は、例えば酸素イオン伝導性を有するジルコニアZr等の耐熱性多孔質絶縁材料等で形成され、該本体1には、ヒータ部2が設けられる。
【0023】
また、前記本体1には、大気(標準ガス)と連通する大気導入孔3、及び、ガス導入孔4及び保護層5を介して機関排気側と連通するガス拡散層6が設けられている。
【0024】
センシング部電極7A,7Bは、大気導入孔3とガス拡散層6とに臨んで設けられると共に、酸素ポンプ電極8A,8Bは、ガス拡散層6とこれに対応する本体1の周囲とに設けられる。
【0025】
前記センシング部電極7A,7Bの間には、ガス拡散層6内の酸素イオン濃度(酸素分圧)と大気中の酸素イオン濃度との比に応じた電圧が発生し、該電圧に基づいてガス拡散層6内の空燃比の理論空燃比に対するリッチ・リーンが検出される。
【0026】
一方、酸素ポンプ電極8A,8Bには、センシング部電極7A,7Bの間に発生する電圧、つまり、ガス拡散層6内のリッチ・リーンに応じて電圧が印加されるようになっている。
【0027】
前記酸素ポンプ電極部8A,8Bにおいては、所定の電圧が印加されると、これに応じてガス拡散層6内の酸素イオンが移動され、酸素ポンプ電極部8A,8B間に電流が流れる。
【0028】
ここで、酸素ポンプ電極部8A,8B間に、所定電圧を印加したときに該電極間を流れる電流値(限界電流)Ipは、排気中の酸素イオン濃度に影響されるので、電流値(限界電流)Ipを検出することで空燃比を検出できることになる。
【0029】
即ち、図3のテーブル(A)に示すように、酸素ポンプ電極間の電流・電圧と、空燃比との相関関係が得られ、センシング部電極7A,7Bのリッチ・リーン出力に基づいて酸素ポンプ電極部8A,8Bに対する電圧の印加方向を反転させることで、リーン領域とリッチ領域との両方の空燃比領域において、酸素ポンプ電極部8A,8B間を流れる電流値(限界電流)Ipに基づき、空燃比を検出できる。
【0030】
以上のような空燃比検出原理により、酸素ポンプ電極部間の電流値Ipを検出して、例えば図3のテーブル(B)を参照すれば、空燃比を広範囲に検出することができる。
【0031】
但し、空燃比センサ18の構造及び空燃比検出原理を上記のものに限定するものではなく、理論空燃比に対するリッチ・リーンのみを検出する所謂ストイキセンサであっても良い。
【0032】
ここで、前記図1の説明に戻る。
前記機関11には、クランク軸の角度を検出するクランク角センサ20が設けられており、コントロールユニット50では、該クランク角センサ20から機関回転と同期して出力されるクランク単位角信号を一定時間カウントして、又は、クランク基準角信号の周期を計測して機関回転速度Neを検出する。
【0033】
前記コントロールユニット50は、CPU,ROM,RAM,A/D変換器及び入出力インタフェイス等から構成されるマイクロコンピュータを含んでなり、前述の空燃比センサ18、エアフローメータ13、水温センサ16、クランク角センサ20等からの入力信号を受け、以下のようにして燃料噴射弁15の燃料噴射量を制御する。
【0034】
前記コントロールユニット50は、エアフローメータ13で検出される吸入空気流量Qaと、クランク角センサ20の信号から求められる機関回転速度Neとから基本燃料噴射パルス幅Tp=k×Qa/Ne(kは定数)を演算すると共に、低水温時に強制的にリッチ側に補正する水温補正係数Kw、始動及び始動後増量補正係数Kas、空燃比フィードバック補正係数LAMBDA、電圧補正分Ts、目標空燃比に対応する目標当量比Z等により、最終的な燃料噴射パルス幅Ti=Tp×(1+Kw+Kas+・・・)×LAMBDA×Z+Tsを演算する。
【0035】
そして、この燃料噴射パルス幅Tiが駆動パルス信号として前記燃料噴射弁15に送られて、前記燃料噴射パルス幅Tiから電圧補正分Tsを除いた有効噴射パルス幅Teに比例する量の燃料が噴射される。
【0036】
上記空燃比フィードバック補正係数LAMBDAは、空燃比センサ18が検出する実際の空燃比の目標空燃比からのズレを補正するための係数であり、これによって基本燃料パルス幅Tpを補正することで、実際の空燃比を目標空燃比(例えば理論空燃比)に一致させる。
【0037】
前記空燃比フィードバック補正係数LAMBDAは、空燃比センサ18で検出される実際の空燃比と目標空燃比との偏差に基づく比例・積分・微分制御によって設定される。
【0038】
ここで、前記コントロールユニット50には、本発明に係る空燃比センサの擬似劣化信号発生装置としての機能が内蔵されており、該擬似劣化信号発生装置を選択的に機能させることができるようになっている。
【0039】
即ち、前記空燃比センサ18の検出信号をそのまま用いて通常に空燃比フィードバック制御を行わせる状態と、機関制御仕様の開発・設計時において各種の制御変数を適合する作業のために、前記空燃比センサ18の検出信号を擬似劣化信号発生装置で処理して空燃比フィードバック制御を行わせる状態とに、スイッチ操作で切り換えられるようになっている。
【0040】
また、空燃比センサ18の擬似劣化信号を発生させるに当たって、コントロールユニット50に対して外部から劣化度合いの要求を指示できるようになっている。
【0041】
尚、前記劣化度合いは、例えば、走行距離10万km相当,走行距離20万km相当などの車両走行距離で指定される。
また、擬似劣化信号発生装置を機能させる場合の空燃比センサ18は、新品でかつ標準的な出力特性の空燃比センサであり、劣化した状態の出力特性を示す劣化空燃比センサは用いない。
【0042】
図4のフローチャートは、前記擬似劣化信号発生装置の処理内容を示すものであり、ステップS1では、空燃比センサ18の検出信号を擬似的に劣化させる要求があるか否かを判断し、擬似劣化要求がある場合には、ステップS2へ進む。
【0043】
ステップS2では、燃料噴射弁15から空燃比センサ18までを制御対象としたプラントモデルのパラメータの同定が完了しているか否かを判断する。
パラメータ同定が完了していない場合には、ステップS3へ進み、同定の実行条件が成立しているか否かを判断する。
【0044】
前記同定の実行条件としては、各部品やシステムの故障判定がなされていないこと、空燃比センサ18が活性状態であることなどを判断する。
同定の実行条件が成立している場合には、ステップS4へ進み、機関が定常運転状態であるか否かを判断する。
【0045】
例えば、吸入空気量Qの単位時間当たりの変化量ΔQを求め、この変化量ΔQの絶対値が所定値以下である状態を定常運転状態と判断する。
機関が定常運転状態であれば、ステップS5へ進み、空燃比を強制的にステップ変化させる。該空燃比のステップ変化は、例えば周期的にリッチからリーンへリーンからリッチに反転させるようにする。
【0046】
尚、空燃比センサ18の応答劣化を、空燃比の強制的なステップ変化が空燃比センサ18で検出されるまでの遅れ時間として診断する機能が備えられる場合には、係る応答劣化診断を実行させることで、ステップ的な空燃比変化を発生させることができる。
【0047】
ステップS6では、前記空燃比のリッチ・リーン切り換え信号(空燃比操作量)とそのときの空燃比センサ18の検出信号に基づいて、前記プラントモデルのパラメータの同定を行う。
【0048】
前記プラントモデルは、例えば、排気輸送によるむだ時間が補償される2次のARXモデル(Auto−Regressive eXogeneousモデル)で記述し、該モデルのパラメータを、逐次最小2乗法(recursive least−squares method)で同定する。
【0049】
かかる同定によりステップS2で同定完了と判断されるようになると、ステップS7へ進み、同定完了後の初回であるか否かを判断し、初回であれば、ステップS8へ進む。
【0050】
ステップS8では、前記同定されたパラメータ(プラントモデル)に基づき、劣化状態に見合う応答性を示すように検出信号を補正するための伝達関数(時定数)を、予め設定される劣化度合い毎に設定し、該設定結果を各劣化度合いに対応するテーブルデータとして記憶させる。
【0051】
即ち、前記同定されたパラメータ(プラントモデル)は、空燃比センサ18が新品の状態での応答性を示し、また、予め設定される劣化度合いは、例えば新品時に対して時定数が所定割合だけ増した状態として規定できるから、前記同定されたパラメータ(プラントモデル)に基づき、予め設定される劣化度合い毎に検出信号を補正するための補正特性としての伝達関数(時定数)を設定できる。
【0052】
ステップS7で初回でないと判断された場合は、各劣化度合いに対応して検出信号を補正するための伝達関数(時定数)が既に記憶されていることになるから、ステップS8を迂回してステップS9へ進む。
【0053】
ステップS9では、要求されている劣化度合い(例えば、走行距離10万km相当,走行距離20万km相当など)を読み込む。
そして、ステップS10では、前記ステップS9で読み込んだ要求の劣化度合いに対応して記憶されている、検出信号を補正するための伝達関数(時定数)を検索する。
【0054】
ステップS11では、前記検索した伝達関数(時定数)に基づいて空燃比センサ18の検出信号を補正して、要求の劣化状態に見合う過渡遅れを強制的に生じさせ、ステップS12では、前記過渡遅れを強制的に生じさせた検出信号を擬似劣化信号として出力する。
【0055】
前記補正は、アナログ回路による処理で行わせることができると共に、ディジタル信号処理(演算処理)によって行わせることもできる。
前記擬似劣化信号は、空燃比フィードバック制御に用いられ、これにより、新品の空燃比センサ18を用いながら、空燃比センサ18が劣化した状態での空燃比フィードバック制御状態がシミュレーションされる。
【0056】
そして、このときの機関運転状態(排気性状など)から、劣化状態を考慮した各種パラメータの適合を行わせる。
上記のように、新品の空燃比センサ18の検出信号を擬似的に劣化させる構成であれば、劣化特性の空燃比センサを製造する必要がなく、要求の応答劣化度合いでの空燃比検出を行わせることができ、空燃比センサが劣化した状態での適合作業を、低コストにかつ精度良く行える。
【0057】
更に、空燃比センサ18の実際の応答特性を基準として、擬似劣化させるための補正特性を設定するから、要求の劣化状態を高精度にシミュレーションすることができる。
【0058】
尚、擬似劣化信号発生装置を前記コントロールユニット50に内蔵させるのではなく、空燃比センサ18とコントロールユニット50との間に、別体の擬似劣化信号発生装置を介装させる構成としても良い。
【0059】
また、空燃比センサの応答劣化がリッチ変化方向とリーン変化方向とで異なる場合には、補正特性をリッチ変化方向とリーン変化方向とで個別に設定させれば良い。
【0060】
ここで、上記実施形態から把握し得る請求項以外の技術思想について、以下にその効果と共に記載する。
(イ)請求項1〜3のいずれか1つに記載の空燃比センサの擬似劣化信号発生装置において、
前記補正特性をリッチ変化方向とリーン変化方向とでそれぞれ個別に設定することを特徴とする空燃比センサの擬似劣化信号発生装置。
【0061】
かかる構成によると、空燃比センサの劣化特性がリッチ変化方向とリーン変化方向とで異なる場合に、これに対応する補正を行って、実際の劣化状態に近い擬似劣化信号を発生させることができる。
(ロ)請求項1〜3のいずれか1つに記載の空燃比センサの擬似劣化信号発生装置において、
前記要求の劣化度合いが、走行距離に基づいて指定されることを特徴とする空燃比センサの擬似劣化信号発生装置。
【0062】
かかる構成によると、センサの劣化度合いが、例えば10万km相当や20万km相当などの走行距離に基づいて指定され、該走行距離での標準的なセンサ劣化に見合う過渡遅れを強制的に生じさせる。
【0063】
従って、ある走行距離を走行した状態での空燃比センサの劣化状態をシミュレーションすることができ、走行距離を基準とする適合作業を容易に行える。
【図面の簡単な説明】
【図1】実施形態における内燃機関のシステム構成図。
【図2】空燃比センサの構造図。
【図3】空燃比センサの空燃比検出原理を説明するための図。
【図4】擬似劣化信号発生制御を示すフローチャート。
【符号の説明】
11…内燃機関、13…エアフローメータ、15…燃料噴射弁、17…排気マニホールド、18…空燃比センサ、20…クランク角センサ、50…コントロールユニット
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a sensor for detecting an operating state of an internal combustion engine, and to a pseudo-deterioration signal generation device for generating a detection signal in a state where the sensor is degraded.
[0002]
[Prior art]
Conventionally, an air-fuel ratio sensor that detects an air-fuel ratio of a combustion air-fuel mixture based on an oxygen concentration in exhaust gas of an internal combustion engine is provided in an exhaust pipe, and an actual air-fuel ratio detected by the air-fuel ratio sensor and a target air-fuel ratio are compared. There is known an air-fuel ratio feedback control in which a fuel supply amount to an engine is feedback-controlled based on a deviation.
[0003]
Further, in the air-fuel ratio feedback control disclosed in Patent Document 1, a configuration is disclosed in which a change in a time constant due to deterioration of an air-fuel ratio sensor is detected, and a target air-fuel ratio is changed in accordance with the change in the time constant. I have.
[0004]
[Patent Document 1]
JP-A-08-128347 [0005]
[Problems to be solved by the invention]
By the way, in order to optimally perform the process corresponding to the deterioration of the air-fuel ratio sensor as described above, it is necessary to experimentally perform the operation in a state where the air-fuel ratio sensor is deteriorated and to adapt various parameters in advance. .
[0006]
Therefore, conventionally, for the adaptation work, an air-fuel ratio sensor showing an output characteristic in a deteriorated state has been manufactured, and the deteriorated air-fuel ratio sensor is mounted on an engine to detect the air-fuel ratio.
[0007]
However, it is difficult to manufacture an air-fuel ratio sensor having deteriorated characteristics as required, and there has been a problem that the manufacturing cost of the deteriorated air-fuel ratio sensor increases.
In addition, during the experiment in which the deteriorated air-fuel ratio sensor is mounted on the engine, the degree of deterioration of the deteriorated air-fuel ratio sensor advances, and it is difficult to perform the adaptation work under a constant deterioration condition. was there.
[0008]
The present invention has been made in view of the above problems, and has as its object to enable low-cost and high-accuracy adjustment of a control parameter corresponding to a state in which an air-fuel ratio sensor has deteriorated.
[0009]
[Means for Solving the Problems]
Therefore, according to the first aspect of the present invention, a transmission characteristic until an air-fuel ratio change is detected by the air-fuel ratio sensor is obtained based on the air-fuel ratio manipulated variable and a detection signal of the air-fuel ratio sensor. By setting a correction characteristic of the detection signal corresponding to the degree of deterioration of the request and correcting the detection signal of the air-fuel ratio sensor with the set correction characteristic, a transient delay corresponding to the degree of deterioration of the request is forcibly generated. Configuration.
[0010]
According to such a configuration, the response characteristic of the actual air-fuel ratio detection in the new state is obtained by detecting the transfer characteristic until the air-fuel ratio change is detected by the air-fuel ratio sensor, and the response characteristic (in the new air-fuel ratio sensor). Based on the responsiveness, a correction characteristic of the detection signal is set to simulate the responsiveness at the time of deterioration.
[0011]
Then, by correcting the detection signal of the air-fuel ratio sensor with the set correction characteristic, a pseudo deterioration signal indicating a transient delay corresponding to the required degree of deterioration is generated.
Therefore, a pseudo deteriorated air-fuel ratio detection signal can be generated while using a new air-fuel ratio sensor, and a correction characteristic for pseudo-deterioration based on the actual response characteristic of the new air-fuel ratio sensor. Is set, it is possible to simulate the required deterioration state with high accuracy.
[0012]
According to the second aspect of the present invention, the air-fuel ratio manipulated variable for stepwise changing the air-fuel ratio is forcibly given, and the air-fuel ratio change is detected by the air-fuel ratio sensor based on the detection signal of the air-fuel ratio sensor at that time. The transfer characteristics were determined.
[0013]
According to this configuration, the air-fuel ratio is forcibly changed in steps, and a transfer characteristic until a change corresponding to this step change appears in the detection signal of the air-fuel ratio sensor is obtained.
Therefore, it is possible to easily detect a change in the detection signal corresponding to the air-fuel ratio operation amount, and it is possible to accurately determine the transfer characteristic.
[0014]
According to a third aspect of the present invention, the transfer characteristic is determined by identifying a parameter of a plant model that is controlled from a fuel injection valve that injects fuel to the engine to an air-fuel ratio sensor.
[0015]
According to this configuration, a plant model is set from the fuel injection valve to the air-fuel ratio sensor as a control target, and the parameters of the plant model are identified based on the air-fuel ratio operation amount and the detection signal of the air-fuel ratio sensor.
[0016]
Therefore, a model from the fuel injection valve to the air-fuel ratio sensor can be modeled to accurately set a correction characteristic corresponding to the required degree of deterioration.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a system configuration diagram of an internal combustion engine to which a pseudo degradation signal generating device according to the present invention is applied.
[0018]
In FIG. 1, an intake pipe 12 of an internal combustion engine 11 is provided with an air flow meter 13 for measuring an intake air flow rate Qa and an intake throttle valve 14 for controlling the intake air flow rate Qa.
[0019]
An electromagnetic fuel injection valve 15 is provided for each cylinder in a manifold portion downstream of the intake throttle valve 14.
The fuel injection valve 15 is driven to open by a drive pulse signal set in the control unit 50 as described later, and injects fuel controlled to a predetermined pressure.
[0020]
Further, a water temperature sensor 16 for detecting a cooling water temperature Tw in the cooling jacket of the engine 11 is provided.
On the other hand, an air-fuel ratio sensor 18 that detects the air-fuel ratio of the intake air-fuel mixture based on the oxygen concentration in the exhaust gas is provided near the collecting portion of the exhaust manifold 17.
[0021]
Downstream of the air-fuel ratio sensor 18, a three-way catalyst 19 for purifying exhaust gas by oxidizing CO and HC in the exhaust gas and reducing NOx in the vicinity of the stoichiometric air-fuel ratio is disposed.
[0022]
Here, the structure of the air-fuel ratio sensor 18 and the principle of detecting the air-fuel ratio will be described.
FIG. 2 shows the structure of the air-fuel ratio sensor 18.
The main body 1 of the air-fuel ratio sensor 18 is made of, for example, a heat-resistant porous insulating material such as zirconia Zr 2 O 3 having oxygen ion conductivity, and the main body 1 is provided with a heater section 2.
[0023]
Further, the main body 1 is provided with an air introduction hole 3 communicating with the atmosphere (standard gas), and a gas diffusion layer 6 communicating with the engine exhaust side via the gas introduction hole 4 and the protective layer 5.
[0024]
The sensing portion electrodes 7A and 7B are provided facing the air introduction hole 3 and the gas diffusion layer 6, and the oxygen pump electrodes 8A and 8B are provided around the gas diffusion layer 6 and the periphery of the main body 1 corresponding thereto. .
[0025]
A voltage corresponding to the ratio between the oxygen ion concentration (oxygen partial pressure) in the gas diffusion layer 6 and the oxygen ion concentration in the atmosphere is generated between the sensing portion electrodes 7A and 7B, and the gas is generated based on the voltage. Rich / lean of the air-fuel ratio in the diffusion layer 6 with respect to the stoichiometric air-fuel ratio is detected.
[0026]
On the other hand, a voltage generated between the sensing portion electrodes 7A, 7B, that is, a voltage is applied to the oxygen pump electrodes 8A, 8B in accordance with rich / lean in the gas diffusion layer 6.
[0027]
When a predetermined voltage is applied to the oxygen pump electrode portions 8A and 8B, oxygen ions in the gas diffusion layer 6 move accordingly, and a current flows between the oxygen pump electrode portions 8A and 8B.
[0028]
Here, the current value (limit current) Ip flowing between the oxygen pump electrode portions 8A and 8B when a predetermined voltage is applied is affected by the oxygen ion concentration in the exhaust gas. By detecting the current (Ip), the air-fuel ratio can be detected.
[0029]
That is, as shown in the table (A) of FIG. 3, a correlation between the current / voltage between the oxygen pump electrodes and the air-fuel ratio is obtained, and based on the rich / lean output of the sensing unit electrodes 7A and 7B, the oxygen pump is operated. By reversing the direction in which the voltage is applied to the electrode portions 8A and 8B, the current value (limit current) Ip flowing between the oxygen pump electrode portions 8A and 8B in both the lean and rich air-fuel ratio regions is calculated. The air-fuel ratio can be detected.
[0030]
The air-fuel ratio can be detected over a wide range by detecting the current value Ip between the oxygen pump electrode portions based on the above-described air-fuel ratio detection principle and referring to, for example, the table (B) in FIG.
[0031]
However, the structure of the air-fuel ratio sensor 18 and the principle of detecting the air-fuel ratio are not limited to those described above, and a so-called stoichiometric sensor that detects only rich / lean with respect to the stoichiometric air-fuel ratio may be used.
[0032]
Here, the description returns to FIG.
The engine 11 is provided with a crank angle sensor 20 for detecting the angle of the crankshaft. The control unit 50 outputs a crank unit angle signal output from the crank angle sensor 20 in synchronization with the engine rotation for a predetermined time. The engine speed Ne is detected by counting or measuring the cycle of the crank reference angle signal.
[0033]
The control unit 50 includes a microcomputer including a CPU, a ROM, a RAM, an A / D converter, an input / output interface, and the like. The above-described air-fuel ratio sensor 18, air flow meter 13, water temperature sensor 16, crank Upon receiving an input signal from the angle sensor 20 or the like, the fuel injection amount of the fuel injection valve 15 is controlled as follows.
[0034]
The control unit 50 calculates a basic fuel injection pulse width Tp = k × Qa / Ne (k is a constant) from the intake air flow rate Qa detected by the air flow meter 13 and the engine rotation speed Ne obtained from the signal of the crank angle sensor 20. ) Is calculated, and a water temperature correction coefficient Kw forcibly correcting to the rich side when the water temperature is low, a start and post-start increase correction coefficient Kas, an air-fuel ratio feedback correction coefficient LAMBDA, a voltage correction amount Ts, and a target corresponding to the target air-fuel ratio. The final fuel injection pulse width Ti = Tp × (1 + Kw + Kas +...) × LAMBDA × Z + Ts is calculated from the equivalent ratio Z and the like.
[0035]
Then, the fuel injection pulse width Ti is sent to the fuel injection valve 15 as a drive pulse signal, and an amount of fuel proportional to the effective injection pulse width Te obtained by removing the voltage correction amount Ts from the fuel injection pulse width Ti is injected. Is done.
[0036]
The air-fuel ratio feedback correction coefficient LAMBDA is a coefficient for correcting a deviation of the actual air-fuel ratio detected by the air-fuel ratio sensor 18 from the target air-fuel ratio, and is used to correct the basic fuel pulse width Tp. Is made equal to a target air-fuel ratio (for example, a stoichiometric air-fuel ratio).
[0037]
The air-fuel ratio feedback correction coefficient LAMBDA is set by proportional / integral / differential control based on the deviation between the actual air-fuel ratio detected by the air-fuel ratio sensor 18 and the target air-fuel ratio.
[0038]
Here, the control unit 50 has a built-in function as a pseudo-deterioration signal generator of the air-fuel ratio sensor according to the present invention, so that the pseudo-deterioration signal generator can be selectively operated. ing.
[0039]
That is, the air-fuel ratio feedback control is normally performed using the detection signal of the air-fuel ratio sensor 18 as it is, and the air-fuel ratio feedback control is performed to adapt various control variables at the time of developing and designing the engine control specifications. The detection signal of the sensor 18 is processed by the pseudo deterioration signal generation device to switch to a state in which the air-fuel ratio feedback control is performed by a switch operation.
[0040]
In generating a pseudo deterioration signal of the air-fuel ratio sensor 18, a request for the degree of deterioration can be given to the control unit 50 from outside.
[0041]
The degree of deterioration is specified by a vehicle travel distance such as a travel distance of 100,000 km or 200,000 km.
Further, the air-fuel ratio sensor 18 in the case where the pseudo deterioration signal generating device is made to function is a new air-fuel ratio sensor having standard output characteristics, and does not use a deteriorated air-fuel ratio sensor showing output characteristics in a deteriorated state.
[0042]
The flowchart of FIG. 4 shows the processing contents of the pseudo deterioration signal generator. In step S1, it is determined whether or not there is a request to pseudo-degrade the detection signal of the air-fuel ratio sensor 18, and the pseudo deterioration signal is determined. If there is a request, the process proceeds to step S2.
[0043]
In step S2, it is determined whether or not the identification of the parameters of the plant model in which the control is performed from the fuel injection valve 15 to the air-fuel ratio sensor 18 has been completed.
If the parameter identification has not been completed, the process proceeds to step S3, and it is determined whether or not the conditions for executing the identification are satisfied.
[0044]
As the execution condition of the identification, it is determined that the failure determination of each component or system is not performed, and that the air-fuel ratio sensor 18 is in an active state.
If the identification execution condition is satisfied, the process proceeds to step S4, and it is determined whether the engine is in a steady operation state.
[0045]
For example, a change amount ΔQ of the intake air amount Q per unit time is obtained, and a state where the absolute value of the change amount ΔQ is equal to or less than a predetermined value is determined as a steady operation state.
If the engine is in the steady operation state, the process proceeds to step S5, and the air-fuel ratio is forcibly changed in steps. The step change of the air-fuel ratio is, for example, periodically reversed from rich to lean to lean to rich.
[0046]
If a function of diagnosing the response deterioration of the air-fuel ratio sensor 18 as a delay time until the forcible step change of the air-fuel ratio is detected by the air-fuel ratio sensor 18 is provided, the response deterioration diagnosis is executed. Thus, a stepwise change in the air-fuel ratio can be generated.
[0047]
In step S6, the parameters of the plant model are identified based on the air-fuel ratio rich / lean switching signal (air-fuel ratio operation amount) and the detection signal of the air-fuel ratio sensor 18 at that time.
[0048]
The plant model is described, for example, by a second-order ARX model (Auto-Regressive eXogenous model) in which dead time due to exhaust transportation is compensated, and parameters of the model are sequentially least-squares (recursive least-squares method). Identify.
[0049]
When it is determined that the identification is completed in step S2 by the identification, the process proceeds to step S7, and it is determined whether or not the identification is the first time after the identification is completed. If the identification is the first time, the process proceeds to step S8.
[0050]
In step S8, based on the identified parameters (plant model), a transfer function (time constant) for correcting the detection signal so as to exhibit a response corresponding to the deterioration state is set for each predetermined deterioration degree. Then, the setting result is stored as table data corresponding to each degree of deterioration.
[0051]
That is, the identified parameter (plant model) indicates the responsiveness when the air-fuel ratio sensor 18 is in a new state, and the degree of deterioration set in advance is, for example, a time constant that increases by a predetermined ratio with respect to a new state. Therefore, a transfer function (time constant) as a correction characteristic for correcting the detection signal for each preset deterioration degree can be set based on the identified parameter (plant model).
[0052]
If it is determined in step S7 that it is not the first time, the transfer function (time constant) for correcting the detection signal corresponding to each degree of deterioration is already stored. Proceed to S9.
[0053]
In step S9, the required degree of deterioration (for example, a travel distance of 100,000 km, a travel distance of 200,000 km, etc.) is read.
In step S10, a transfer function (time constant) for correcting the detection signal, which is stored corresponding to the degree of deterioration of the request read in step S9, is searched.
[0054]
In step S11, the detection signal of the air-fuel ratio sensor 18 is corrected based on the searched transfer function (time constant) to forcibly generate a transient delay corresponding to the required deterioration state. In step S12, the transient delay is determined. Is output as a pseudo degradation signal.
[0055]
The correction can be performed by a process using an analog circuit and also by a digital signal process (arithmetic process).
The simulated deterioration signal is used for air-fuel ratio feedback control, thereby simulating an air-fuel ratio feedback control state when the air-fuel ratio sensor 18 is deteriorated while using a new air-fuel ratio sensor 18.
[0056]
Then, based on the engine operating state (exhaust properties and the like) at this time, various parameters are adjusted in consideration of the deterioration state.
As described above, if the configuration is such that the detection signal of the new air-fuel ratio sensor 18 is degraded in a pseudo manner, it is not necessary to manufacture an air-fuel ratio sensor having deterioration characteristics, and the air-fuel ratio is detected at the required response deterioration degree. Thus, the adaptation operation in a state where the air-fuel ratio sensor has deteriorated can be performed accurately at low cost.
[0057]
Furthermore, since the correction characteristic for pseudo degradation is set based on the actual response characteristic of the air-fuel ratio sensor 18, the required degradation state can be simulated with high accuracy.
[0058]
Instead of incorporating the pseudo deterioration signal generator in the control unit 50, a separate pseudo deterioration signal generator may be interposed between the air-fuel ratio sensor 18 and the control unit 50.
[0059]
Further, when the response deterioration of the air-fuel ratio sensor differs between the rich change direction and the lean change direction, the correction characteristics may be set individually for the rich change direction and the lean change direction.
[0060]
Here, technical ideas other than the claims that can be grasped from the above embodiment will be described below together with their effects.
(A) A pseudo deterioration signal generating device for an air-fuel ratio sensor according to any one of claims 1 to 3,
A pseudo-deterioration signal generator for an air-fuel ratio sensor, wherein the correction characteristics are set individually in a rich change direction and a lean change direction.
[0061]
According to this configuration, when the deterioration characteristic of the air-fuel ratio sensor is different between the rich change direction and the lean change direction, a correction corresponding to this is performed, and a pseudo deterioration signal close to the actual deterioration state can be generated.
(B) In the pseudo deterioration signal generating device for an air-fuel ratio sensor according to any one of claims 1 to 3,
A pseudo deterioration signal generator for an air-fuel ratio sensor, wherein the degree of deterioration of the request is specified based on a traveling distance.
[0062]
According to this configuration, the degree of deterioration of the sensor is specified based on the travel distance, for example, equivalent to 100,000 km or 200,000 km, and a transient delay corresponding to the standard sensor degradation at the travel distance is forcibly generated. Let it.
[0063]
Therefore, it is possible to simulate the state of deterioration of the air-fuel ratio sensor while traveling over a certain traveling distance, and it is possible to easily perform an adaptation operation based on the traveling distance.
[Brief description of the drawings]
FIG. 1 is a system configuration diagram of an internal combustion engine according to an embodiment.
FIG. 2 is a structural diagram of an air-fuel ratio sensor.
FIG. 3 is a diagram for explaining an air-fuel ratio detection principle of an air-fuel ratio sensor.
FIG. 4 is a flowchart showing pseudo degradation signal generation control.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 ... Internal combustion engine, 13 ... Air flow meter, 15 ... Fuel injection valve, 17 ... Exhaust manifold, 18 ... Air-fuel ratio sensor, 20 ... Crank angle sensor, 50 ... Control unit

Claims (3)

機関排気中の成分濃度に基づいて空燃比を検出する空燃比センサの擬似劣化信号発生装置であって、
空燃比操作量と前記空燃比センサの検出信号とに基づいて、空燃比変化が前記空燃比センサで検出されるまでの伝達特性を求め、
該伝達特性を基準に、要求の劣化度合いに対応する検出信号の補正特性を設定し、
前記補正特性で、前記空燃比センサの検出信号を補正することで、前記要求の劣化度合いに対応する過渡遅れを強制的に生じさせることを特徴とする空燃比センサの擬似劣化信号発生装置。
A pseudo-deterioration signal generator for an air-fuel ratio sensor that detects an air-fuel ratio based on a component concentration in engine exhaust,
Based on the air-fuel ratio operation amount and the detection signal of the air-fuel ratio sensor, determine a transfer characteristic until an air-fuel ratio change is detected by the air-fuel ratio sensor,
Based on the transfer characteristics, set the correction characteristics of the detection signal corresponding to the degree of degradation of the request,
A pseudo-deterioration signal generation device for an air-fuel ratio sensor, wherein the correction signal corrects a detection signal of the air-fuel ratio sensor to forcibly generate a transient delay corresponding to the degree of deterioration of the request.
空燃比をステップ変化させる空燃比操作量を強制的に与え、そのときの前記空燃比センサの検出信号に基づいて、空燃比変化が前記空燃比センサで検出されるまでの伝達特性を求めることを特徴とする請求項1記載の空燃比センサの擬似劣化信号発生装置。An air-fuel ratio manipulated variable for stepwise changing the air-fuel ratio is forcibly given, and a transmission characteristic until an air-fuel ratio change is detected by the air-fuel ratio sensor is determined based on a detection signal of the air-fuel ratio sensor at that time. The apparatus for generating a pseudo deterioration signal for an air-fuel ratio sensor according to claim 1. 前記伝達特性を、機関に燃料を噴射する燃料噴射弁から前記空燃比センサまでを制御対象としたプラントモデルのパラメータの同定により求めることを特徴とする請求項1又は2記載の空燃比センサの擬似劣化信号発生装置。3. The pseudo air-fuel ratio sensor according to claim 1, wherein the transfer characteristic is obtained by identifying a parameter of a plant model in which control is performed from a fuel injection valve that injects fuel to an engine to the air-fuel ratio sensor. Deterioration signal generator.
JP2003112824A 2003-04-17 2003-04-17 False deterioration signal generating device for air-fuel ratio sensor Pending JP2004316569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003112824A JP2004316569A (en) 2003-04-17 2003-04-17 False deterioration signal generating device for air-fuel ratio sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003112824A JP2004316569A (en) 2003-04-17 2003-04-17 False deterioration signal generating device for air-fuel ratio sensor

Publications (1)

Publication Number Publication Date
JP2004316569A true JP2004316569A (en) 2004-11-11

Family

ID=33472930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003112824A Pending JP2004316569A (en) 2003-04-17 2003-04-17 False deterioration signal generating device for air-fuel ratio sensor

Country Status (1)

Country Link
JP (1) JP2004316569A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007126997A (en) * 2005-11-01 2007-05-24 Toyota Motor Corp Simulation method and simulation device for heat generation in cylinder
JP2007315210A (en) * 2006-05-24 2007-12-06 Ngk Spark Plug Co Ltd Degradation signal generating device of gas sensor
JP2009063329A (en) * 2007-09-04 2009-03-26 Denso Corp Deterioration simulator of gas sensor
JP2010169426A (en) * 2009-01-20 2010-08-05 Ngk Spark Plug Co Ltd Simulation signal forming apparatus
JP2011149780A (en) * 2010-01-20 2011-08-04 Ngk Spark Plug Co Ltd Deterioration signal generation device for oxygen sensor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007126997A (en) * 2005-11-01 2007-05-24 Toyota Motor Corp Simulation method and simulation device for heat generation in cylinder
JP2007315210A (en) * 2006-05-24 2007-12-06 Ngk Spark Plug Co Ltd Degradation signal generating device of gas sensor
US7499789B2 (en) 2006-05-24 2009-03-03 Ngk Spark Plug Co., Ltd. Deterioration signal generation device for gas sensor
CN101078381B (en) * 2006-05-24 2012-09-26 日本特殊陶业株式会社 Deterioration signal generation device for gas sensor
EP1860305B1 (en) * 2006-05-24 2019-03-06 Ngk Spark Plug Co., Ltd. Deterioration signal generation device for gas sensor
JP2009063329A (en) * 2007-09-04 2009-03-26 Denso Corp Deterioration simulator of gas sensor
JP2010169426A (en) * 2009-01-20 2010-08-05 Ngk Spark Plug Co Ltd Simulation signal forming apparatus
JP2011149780A (en) * 2010-01-20 2011-08-04 Ngk Spark Plug Co Ltd Deterioration signal generation device for oxygen sensor

Similar Documents

Publication Publication Date Title
US7311093B2 (en) Element crack detecting apparatus and method for oxygen sensor
US7013214B2 (en) Air-fuel ratio feedback control apparatus and method for internal combustion engine
JPH0771299A (en) Self-diagnosable device in air-fuel ratio control device for internal combustion engine
US6397830B1 (en) Air-fuel ratio control system and method using control model of engine
JP3134624B2 (en) Air-fuel ratio control device for internal combustion engine
JPH1182114A (en) Air-fuel ratio control device for internal combustion engine
JP4055476B2 (en) Abnormality detection device for catalyst downstream oxygen sensor
JP2908924B2 (en) Method for detecting the amount of air flowing into an engine, a device for performing the method, and a fuel injection amount control device having the device
JPH07229439A (en) Air-fuel ratio control device of internal combustion engine
JP6551314B2 (en) Gas sensor controller
JP2004316569A (en) False deterioration signal generating device for air-fuel ratio sensor
JP2004019629A (en) Controller for internal combustion engine
US10458355B2 (en) Engine control device and engine control method
JP2004316570A (en) False deterioration signal generating device for sensor
JP2004308488A (en) Pseudo deterioration signal generator of air-fuel ratio sensor
JPH10169500A (en) Output correcting device for air-fuel ratio sensor
JP2006322426A (en) Diagnosis device for air-fuel ratio sensor
JP2004308474A (en) False degradation signal generating device of air-fuel ratio sensor
JP3182357B2 (en) Lean combustion control limit detection method for internal combustion engine
JP2002364345A (en) Exhaust emission control device for internal combustion engine
JP2005337213A (en) Diagnosis device for air fuel ratio sensor
JP2853178B2 (en) Engine air-fuel ratio detector
JP2008286122A (en) Air-fuel ratio detecting device
JPH09324691A (en) Fuel control unit for combustion engine
JP3986434B2 (en) Air-fuel ratio control device for internal combustion engine

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041217