JPS59101454A - Process for cooling and crystallization of molten guanidine sulfamate - Google Patents

Process for cooling and crystallization of molten guanidine sulfamate

Info

Publication number
JPS59101454A
JPS59101454A JP21175182A JP21175182A JPS59101454A JP S59101454 A JPS59101454 A JP S59101454A JP 21175182 A JP21175182 A JP 21175182A JP 21175182 A JP21175182 A JP 21175182A JP S59101454 A JPS59101454 A JP S59101454A
Authority
JP
Japan
Prior art keywords
cooling
molten
belt
seed crystals
crystallization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21175182A
Other languages
Japanese (ja)
Inventor
Shigeo Fujii
藤井 重雄
Chikashi Fukumura
福村 「ちかし」
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP21175182A priority Critical patent/JPS59101454A/en
Publication of JPS59101454A publication Critical patent/JPS59101454A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To carry out the crystallization of the titled compound in a short time, by reacting dicyandiamide with ammonium sulfamate under molten condition, casting the molten liquid in a thin film, generating seed crystals at the surface of the cast film before solidification, and continuing the cooling of the molten liquid. CONSTITUTION:Dicyandiamide is made to react with ammonium sulfamate or with sulfamic acid and ammonia under molten condition, and the obtained molten reaction product is cast on a rotary belt in the form of a thin film at 135-145 deg.C. Prior to the solidification of the molten liquid, seed crystals are generated at the surface of the liquid by cooling the surface with air stream blasted from the air nozzle 3 and applying vibration force to the liquid. Successively, the thermal medium of 10-55 deg.C is sprayed through the water-spraying nozzle 4 to the reverse face of the belt to cool and crystallize the objective compound. The presence of the seed crystals prevents the supercooling of the molten liquid, proceeds the crystallization smoothly in a short time, and prevents the fluctuation of the time necessary to start or finish the crystallization caused by the supercooling phenomenon.

Description

【発明の詳細な説明】 本発明は、スルファミン酸グアニジン溶融液の冷却結晶
化方法に関する。さらに詳しくは本発明は該溶融液を薄
層状に流延させその同化前に該流延物の表面に種結晶を
存在させ引続き冷却する冷却結晶化方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for cooling and crystallizing a guanidine sulfamate melt. More specifically, the present invention relates to a cooling crystallization method in which the melt is cast in a thin layer, seed crystals are present on the surface of the cast material before assimilation, and the material is subsequently cooled.

スルファミン酸グアニジン溶融液を冷却結晶化させる最
も普通の方法は、該融液を深さ5CIJI程度のトレイ
中に2〜41程度の厚みになるまで流し込んだのち放冷
若しくは外壁から冷却することKよシ固化させる方法で
ある。しかし、これらの冷却方法はいづれも完全に冷却
終了するまでに数時間以上の長時間を要し、工業的でな
い。また、該トレイ中の溶融液層の厚みを例えば0.5
〜10のように薄くして冷却し易くすると該溶融液が過
冷却されて固化結晶化までの所要時間が大巾にバラツク
ことがあシ、か\る方法も工業的でない。
The most common method for cooling and crystallizing a guanidine sulfamate melt is to pour the melt into a tray with a depth of about 5 CIJI to a thickness of about 2 to 41 mm, and then cool it by standing or cooling it from the outer wall. This is a method of solidifying it. However, all of these cooling methods require a long time, several hours or more, to complete cooling, and are not industrially practical. Further, the thickness of the melt layer in the tray is set to 0.5, for example.
If it is made thinner and easier to cool, such as in the case of 10 to 10, the molten liquid may be supercooled and the time required for solidification and crystallization may vary widely, and such a method is also not industrial.

以上のような問題を解決すべく特公昭57−85869
号の発明では、該溶融液を薄層状に流延し、徐冷と通常
の冷却の2段階で冷却を行うことによシ結晶化時間を短
縮している。しかし、この方法は2段冷却の前段階にお
ける徐冷条件の巾(註、固化物の温度中)が広いので、
溶融物の性質によって徐冷条件を調整する必要を生じ、
該調整が適当でないと良好な結晶が得られないという難
点がある。
In order to solve the above problems, Special Public Interest Publication No. 57-85869
In the invention of No. 1, the crystallization time is shortened by casting the melt into a thin layer and cooling in two stages: slow cooling and normal cooling. However, in this method, the range of slow cooling conditions (note: the temperature of the solidified material) in the stage before the two-stage cooling is wide;
It becomes necessary to adjust the slow cooling conditions depending on the properties of the melt,
If the adjustment is not appropriate, there is a problem that good crystals cannot be obtained.

そこで、本発明者等は、前述の各公知技術の欠点のない
該結晶化法につき鋭意研究した。その結果、公知方法で
徐冷条件の調整が困難な理由は、次の理由によると考察
することができた。
Therefore, the present inventors conducted intensive research on the crystallization method, which does not have the drawbacks of the above-mentioned known techniques. As a result, it was possible to consider that the reason why it is difficult to adjust the slow cooling conditions using the known method is as follows.

すなわち、添付第1図は、溶融物一般の冷却固化に係る
温度一時間曲線であるが、高温度の溶融物を冷却してゆ
くと、該溶融物の融点(凝固点)Aを過ぎても固化(結
晶化)は開始せず、より低いB点まで過冷却される。結
晶化がはじまると融液の温度は上昇し、融点Cに戻シ結
晶化の終了点D1で同温度に保たれる。ついで結晶化の
終了と共に固化物の温度は低下しはじめ冷却の程度によ
、9E点まで低下する。
In other words, attached Figure 1 is a temperature one-hour curve related to the cooling solidification of molten materials in general, but when a high-temperature molten material is cooled, it solidifies even after the melting point (freezing point) A of the molten material. (crystallization) does not start and is supercooled to a lower point B. When crystallization begins, the temperature of the melt increases, returns to the melting point C, and is maintained at the same temperature at the end point D1 of crystallization. Then, with the completion of crystallization, the temperature of the solidified product begins to decrease and, depending on the degree of cooling, decreases to the 9E point.

この過冷却の程度は、融液の徐冷条件のみならず、本発
明に関しては融液の製造条件すなわちジシアンジアミド
とスルファミン酸アンモニウム(若しくはスルファミノ
酸とアンモニア)の反応条件によっても大巾に変動しう
る。
The degree of supercooling can vary widely depending not only on the slow cooling conditions of the melt, but also on the production conditions of the melt in the present invention, that is, the reaction conditions of dicyandiamide and ammonium sulfamate (or sulfamic acid and ammonia). .

そこで、このような過冷却期間経過による結晶化開始な
いし結晶化終了迄の所要時間の変動を防止するには、該
融液が一切過冷却段階に入らないようにすればよい。こ
の考察に基づき鋭意研究の結果融液が一定温度範囲内に
ある際該液に種結晶を存在させることによシ過冷却が防
止され、上述の冷却所要時間の変動が一挙に解消され加
えて粉砕の極めて容易な固化物が得られることを知って
本発明を完成した。一般に、種結晶の添加による結晶の
一挙発生は対象物の過飽和若しくは過冷却を前提とする
が、本発明で//i種結晶の添加時に大巾な過冷却を要
しないから、その後結晶化が短時間で円滑に進行するこ
とは驚ろくべき知見と言える。
Therefore, in order to prevent such fluctuations in the time required from the start of crystallization to the end of crystallization due to the passage of the supercooling period, it is sufficient to prevent the melt from entering the supercooling stage at all. Based on this consideration, extensive research has revealed that by adding seed crystals to the melt when the temperature is within a certain range, supercooling can be prevented, and the above-mentioned fluctuations in the required cooling time can be eliminated at once. The present invention was completed based on the knowledge that a solidified product can be obtained that is extremely easy to crush. Generally, the sudden generation of crystals due to the addition of seed crystals presupposes supersaturation or supercooling of the object, but in the present invention //i Since extensive supercooling is not required when adding seed crystals, subsequent crystallization will not occur. It is a surprising finding that the process progresses smoothly in a short period of time.

以上の記述から明らかなように本発明の目的は、能率的
で品質良好なスルファミン酸グアニジンの結晶製品を該
物質の溶融液から製造する方法を提供することを目的と
する。他の目的はスルファミン酸グアニジンの融液の性
状にょシ冷却条件を調整する必要のない該製法を目的と
する。
As is clear from the above description, an object of the present invention is to provide an efficient method for producing a crystalline product of guanidine sulfamate of good quality from a melt of the substance. Another object of the present invention is to provide a method for producing guanidine sulfamate that does not require adjusting the properties or cooling conditions of the melt.

本発明は下記(1)ないしく5)の構成を有する。The present invention has the following configurations (1) to 5).

(1)  ジシアンジアミドにスルファミン酸アンモニ
ウム若しくはスルファミノ酸およびアンモニアを溶融反
応させ、得られた溶融反応物を135〜145℃に保ち
っつ薄層状に流延させ、該流延物を冷却し、その固化前
に該流延物の表面に種結晶を存在させ、引続き冷却を継
続することを特徴とするスルファミン酸グアニジン溶融
液の冷却結晶化方法。
(1) Melting and reacting ammonium sulfamate or sulfamino acid and ammonia with dicyandiamide, casting the resulting molten reaction product into a thin layer while maintaining it at 135 to 145°C, cooling the cast product, and solidifying it. 1. A method for cooling and crystallizing a guanidine sulfamate melt, characterized in that seed crystals are previously present on the surface of the cast material, and cooling is then continued.

(2)溶融反応物を回転ベルト上で薄層状に流延させ、
該ベルト面を通じて該流延物を冷却する前記第(1)項
に記載の冷却結晶イヒ方法。
(2) Casting the molten reactant in a thin layer on a rotating belt,
The cooling crystallization method according to item (1) above, wherein the cast product is cooled through the belt surface.

(3)薄層状流延物の表面に空気を吹付けて該流延物の
表面を冷却および振動させることKよシ種結晶を発生さ
せる前記第(1)項に記載の冷却結晶化方法。
(3) The cooling crystallization method according to item (1) above, wherein seed crystals are generated by blowing air onto the surface of the thin layered product to cool and vibrate the surface of the product.

(4)115〜100°Cで種結晶を発生させる前記第
(3)項に記載の冷却結晶化法。
(4) The cooling crystallization method according to item (3) above, in which seed crystals are generated at 115 to 100°C.

(5)ベルト面を通じて薄層状流延物を冷却する熱媒体
として10°C〜55°Cの液体状若しくは気体状の熱
媒体を該薄層状流延物若しくはその固化物が負荷された
該ベルトの裏面に吹き付ける前記第(2)項に記載の冷
却結晶化方法。
(5) The belt loaded with the thin-layer cast material or its solidified material is loaded with a liquid or gaseous heat medium at a temperature of 10°C to 55°C as a heat medium for cooling the thin-layer cast material through the belt surface. The cooling crystallization method according to item (2) above, wherein the cooling crystallization method is sprayed onto the back surface of the .

以下に本発明の構成と効果につき説明する。The structure and effects of the present invention will be explained below.

本発明に使用するスルファミン酸溶融反応物は、通常次
のイ〜ハの公知方法で製造される。
The sulfamic acid molten reaction product used in the present invention is usually produced by the following known methods.

すなわち、イ、ジシアンジアミド、スルファミノ酸およ
びアンモニアを溶融反応させる方法。
That is, (a) a method in which dicyandiamide, sulfamino acid, and ammonia are subjected to a melt reaction.

口、ジシアンジアミドとスルファミノ酸アンモニウムを
溶融反応させる方法若しくは・・、アンモニアの存在下
でジシアンジアミドとスルファミン酸アンモニウムとを
溶融反応させる方法である。
A method in which dicyandiamide and ammonium sulfamate are subjected to a melt reaction, or a method in which dicyandiamide and ammonium sulfamate are subjected to a melt reaction in the presence of ammonia.

勿論該溶融反応物は、前記イ〜ハの中間的な方法若しく
は他の方法で製造されたものであっても、スルファミン
酸グアニジン溶融物であって冷却固化しうるものであれ
ば使用できる。該溶融物は、後述の流延、冷却に便利な
ように好ましくは135〜145°Cの温度で貯槽等に
保持する。、145°Cを超える温度では長時間保存に
より品質が悪化する場合があシ、135℃未満では、粘
度が上昇して流動性が低下し後述の薄層状に流延させる
ことが困難になる場合がある。以下の工程は第2〜3図
によυ説明する。
Of course, the molten reaction product can be used, even if it is produced by an intermediate method of (a) to (c) above or by another method, as long as it is a molten guanidine sulfamate and can be solidified by cooling. The melt is preferably maintained in a storage tank or the like at a temperature of 135 to 145°C for convenience in casting and cooling as described below. If the temperature exceeds 145°C, the quality may deteriorate due to long-term storage, and if the temperature is below 135°C, the viscosity increases and fluidity decreases, making it difficult to cast into a thin layer as described below. There is. The following steps will be explained with reference to FIGS. 2 and 3.

第2図は、本発明の方法を例示的に説明する装置の側面
図、第3図は同じく平面図である。
FIG. 2 is a side view of an apparatus for exemplifying the method of the present invention, and FIG. 3 is a plan view thereof.

両図若しくは該当図において、1はステンレスのエンド
レスベルト、2はスルファミン酸グアニジン融液供給用
フィーダーでちゃ、3は該ベルトの上面に薄層状に流延
されたスルフアミノ酸グアニジン溶融物(以下SG溶融
物)に空気を吹き付けるノズルである。また、6は、ベ
ルト上のSG溶融物が側方に溢流しないためのエツジロ
ープである3において空気に代えて他の不活性ガス例え
ば窒素若しくは炭酸ガスを吹付けてもよい。該ノズルの
水平管には1本の両端密封のパイプの側面に約101間
隔で小穴が設けである。空気が吹付けられる位置はSG
溶融物の供給位置から横へ約1〜b でSG溶融物が該ベルト上に供給された後、平均経過時
間として65〜120秒の位置である。
In both figures or the corresponding figures, 1 is a stainless steel endless belt, 2 is a feeder for supplying a guanidine sulfamino acid melt, and 3 is a feeder for supplying a guanidine sulfamino acid melt (hereinafter referred to as SG) onto the upper surface of the belt. This is a nozzle that blows air onto the melt. Further, 6 is an edge rope 3 to prevent the SG melt on the belt from overflowing to the side. Instead of air, other inert gas such as nitrogen or carbon dioxide may be blown onto the belt 3. The horizontal pipe of the nozzle has small holes at approximately 101 intervals on the side of a single pipe with both ends sealed. The position where air is blown is SG
The average elapsed time is 65-120 seconds after the SG melt is fed onto the belt at about 1-b laterally from the melt feed location.

(ベルトの走行速度58m/Hrの場合)。そしてSG
溶融物の薄層流延物の固化がおこる115°C以下好ま
しくは110〜100°C付近で、種結晶を発生させる
ことによって種結晶を存在させるため空気を吹付ける。
(When the belt running speed is 58 m/Hr). And S.G.
At a temperature below 115° C., preferably around 110 to 100° C., at which point solidification of the thin layer cast product of the melt occurs, air is blown in order to generate seed crystals and make them present.

該空気の温度は特に限定されないが0〜100 ℃好ま
しくは室温ないし90°C1空気量は薄層流延物の表面
が振動する程度である。空気を吹付ける代シに少量の種
結晶を固化前の該流延物表面に均一に散布することによ
り種結晶を存在させてもよい。
The temperature of the air is not particularly limited, but is 0 to 100 DEG C., preferably room temperature to 90 DEG C. The amount of air is such that the surface of the thin layer cast material vibrates. Instead of blowing air, seed crystals may be present by uniformly scattering a small amount of seed crystals on the surface of the cast product before solidification.

空気を吹付ける上記態様においては、急冷と振動によっ
てね結晶が直ちに発生する。空気を吹きつけす、他に種
結晶を存在せしめる手段を採らない場合は、該流延物の
固化は70〜120秒遅延する。種結晶の発生若しくは
添加の前後を問わずベルト上の薄層流延物は、該ベルト
の裏面に設けられた水噴霧ノズル4がら1o〜55°C
の水ないし温水を吹きつけることによって冷却する。種
結晶を存在せしめたことにより結晶化は急速に進行し、
ベルト上面の全長(6m)の中央部を過ぎた処では殆ん
ど全面的に結晶化している。したがって冷却水温を調整
する等の操作は不要である。該ベルトは駆動ドラム7.
8によって駆動され58m/brの速度で進行する。上
述の固化した薄層流延物(以下、固化物)は、該ベルト
の反転端部において自然に剥離し、この種の固化装置に
おいて常用されているドクター型掻取9手段は不要であ
シ、この点も本発明の方法の効果の一つである。
In the above embodiment in which air is blown, crystallization immediately occurs due to rapid cooling and vibration. If no air blowing or other means of seed crystal presence is taken, the solidification of the cast product will be delayed by 70 to 120 seconds. Regardless of whether seed crystals are generated or added, the thin layer cast material on the belt is heated at 1o~55°C through the water spray nozzle 4 provided on the back side of the belt.
Cool by spraying with water or warm water. Due to the presence of seed crystals, crystallization progresses rapidly,
The belt is crystallized almost entirely beyond the center of the entire length (6 m) of the upper surface of the belt. Therefore, operations such as adjusting the cooling water temperature are not necessary. The belt is connected to the drive drum 7.
8 and travels at a speed of 58 m/br. The above-mentioned solidified thin layer cast product (hereinafter referred to as the solidified product) is naturally peeled off at the reversing end of the belt, and the doctor-type scraping means commonly used in this type of solidification equipment is unnecessary. , This point is also one of the effects of the method of the present invention.

上述のように剥離した固化物は、ベルト出口端外側下部
に設けられているノコ刃型破砕機5に供給され、破砕さ
れる。破砕の程度は破砕機のかみ合わせ間隔および回転
数により調整するが、多くの場合再粉砕若しくは粒度調
整の必要カナい、よう2Qmys〜I mW ハス程度
の粒度とする。
The solidified material peeled off as described above is supplied to the saw blade type crusher 5 provided at the lower part of the outer side of the belt outlet end, and is crushed. The degree of crushing is adjusted by the interlocking interval and rotational speed of the crusher, but in most cases, re-pulverization or particle size adjustment is necessary, so that the particle size is about 2Qmys to ImW lotus.

本発明の方法で冷却結晶化したスルファミン酸グアニジ
ンは、固く、しかも粘着性がないので上述のノコ刃型破
砕機で処理しても、破砕面に付着することがなく、した
がって過負荷運転状態が突発する等のトラブルはない。
The guanidine sulfamate crystallized by the method of the present invention is hard and non-sticky, so even if it is processed using the saw blade type crusher described above, it will not stick to the crushed surface, thus preventing overload operation. There are no unexpected problems.

以下実施例、比較例によって本発明を説明する。The present invention will be explained below with reference to Examples and Comparative Examples.

実施例1〜3 添付第2,3図に示したタイプの装置を用いた。該装置
は巾1.277Z、エンジローグ6があるため、有効中
はi、om、水平部分の長さは6mのステンレス製エン
ドレスベルト、該ベルト入口部に設けられたベルト巾方
向に水平に設置された融液フィーダーを有している。上
記エンドレスベルトを58712 / Hrの速度で走
行させなからスルフアミノ酸グアニジン溶融液(140
°C)を定量ポンプ(図示せず)経由でフィーダーに薄
層カ覧続供給する。供給量は444kq/Hrである。
Examples 1 to 3 An apparatus of the type shown in attached FIGS. 2 and 3 was used. The device has a width of 1.277Z and an engine log of 6, so when it is in effect, it is i, om, and the length of the horizontal part is 6 m, a stainless steel endless belt, installed horizontally in the belt width direction provided at the entrance of the belt. It has a melt feeder. While running the endless belt at a speed of 58,712/Hr, the sulfamino acid guanidine melt (140
°C) is continuously fed in a thin layer to the feeder via a metering pump (not shown). The supply amount is 444 kq/Hr.

この融液はベルト上面に薄層状になるだけ一様に分布さ
せる。薄層が固化したものの厚みは3〜5請である。
This melt is uniformly distributed in a thin layer on the upper surface of the belt. The thickness of the solidified thin layer is 3 to 5 thick.

該ベルト裏面側に於て、ベルト走行方向に沿って4.2
2mにわたって設けられた水噴出式旋回流式ノズル4を
多数段はノズルよI)19°C(実施例1)の冷却水を
該ベルト裏面に吹き付けることによシ供給された溶融液
すなわちスルファミン酸グアニジンを冷却した。又該ベ
ルト上面のスルフアミノ酸グアニジン溶融液に対し空気
ノズル3を通じて室温の空気を吹き付は冷却と振動を与
え種結晶を発生させた。その位置は溶融液供給位置から
1.7mの所であシ、この時の溶融液の温度は99°C
であった。空気の吹付は量は薄層溶融物が飛散しない程
度とし、空気の吹付けと同時に多数の結晶が発生し固化
し始める。固化はその後30秒前後走行した位置で完了
する。固化したものは最終的にベルト後端部約1mの所
から自然剥離する。これをノコ刃型破砕機5で破砕した
が、ノコ刃への付着は一週間の連続運転でも全々なかっ
た。
4.2 along the belt running direction on the back side of the belt.
A multi-stage water jet swirling flow nozzle 4 installed over a length of 2 m is used as a nozzle. The guanidine was cooled. Also, air at room temperature was blown through the air nozzle 3 to the melt of guanidine sulfamino acid on the upper surface of the belt to provide cooling and vibration, thereby generating seed crystals. The position is 1.7m from the melt supply position, and the temperature of the melt at this time is 99°C.
Met. Air is blown in an amount that does not scatter the thin layer of melt, and at the same time many crystals are generated and begin to solidify. Solidification is completed at a position where the vehicle has traveled for approximately 30 seconds thereafter. The solidified material eventually peels off naturally from about 1 m from the rear end of the belt. This was crushed using a saw blade type crusher 5, but there was no adhesion to the saw blade even after one week of continuous operation.

なお、実施例2および3ではノズル4からベルト1の裏
面に吹付ける水温を40℃および50°Cとした以外は
同様に実施した。結果を後述の表に示す。
In addition, Examples 2 and 3 were carried out in the same manner except that the temperature of the water sprayed from the nozzle 4 onto the back surface of the belt 1 was set to 40°C and 50°C. The results are shown in the table below.

比較例1〜3 ベルト1上でのノズルによる空気吹付けを行なわなかっ
た以外は、夫々対応する実施例と同様に実施した。夫々
固化終了までの走行時間が大巾に延びたほか、夫々ノコ
刃型破砕機破砕面への若干の付着を生じた。結果を後述
の表に示す。
Comparative Examples 1 to 3 Comparative examples 1 to 3 were carried out in the same manner as in the corresponding examples, except that air was not blown onto the belt 1 by a nozzle. In addition to significantly extending the running time until the completion of solidification, each resulted in some adhesion to the crushing surface of the saw blade type crusher. The results are shown in the table below.

表 空気吹付けと冷却水温の効果 註 A;空気吹付は位置+Bi不明不 明瞭間らかなように実施各側では、融液の固化開始位置
が明瞭であシ、同化所要時間も対応する比較例の約60
〜70%程度と短がい。
Table: Effects of air blowing and cooling water temperature Note A: Air blowing was carried out so that the position + Bi was unclear and unclear. On each side, the solidification start position of the melt was clear, and the time required for assimilation also corresponded to the comparative example. about 60 of
It is short at ~70%.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、溶融物の冷却固化に係る温度一時間曲線であ
る。第2図および第3図は本発明を説明する装置の側面
図および平面図である。
FIG. 1 is a temperature one-hour curve related to cooling and solidification of the melt. FIGS. 2 and 3 are a side view and a plan view of an apparatus illustrating the present invention.

Claims (5)

【特許請求の範囲】[Claims] (1)  ジシアンジアミドにスルファミン酸アンモニ
ウム若しくはスルファミノ酸およびアンモニアを溶融反
応させ、得られた溶融反応物を135〜145°Cに保
ちつつ薄層状に流延させ、該流延物を冷却し、その固化
前に該流延物の表面に種結晶を存在させ、引続き冷却を
継続することを特徴とするスルフアミノ酸グアニジン溶
融液の冷却結晶化方法。
(1) Melting and reacting ammonium sulfamate or sulfamino acid and ammonia with dicyandiamide, casting the resulting molten reaction product into a thin layer while maintaining it at 135 to 145°C, cooling the cast product, and solidifying it. 1. A method for cooling and crystallizing a guanidine sulfamino acid molten liquid, characterized in that seed crystals are previously present on the surface of the cast material, and cooling is continued.
(2)溶融反応物を回転ベルト上で薄層状に流延させ、
該ベルト面を通じて該流延物を冷却する特許請求の範囲
第(1)項に記載の冷却結晶化方法。
(2) Casting the molten reactant in a thin layer on a rotating belt,
The cooling crystallization method according to claim 1, wherein the cast material is cooled through the belt surface.
(3)薄層状流延物の表面に空気を吹付けて該流延物の
表面を冷却および振動させることにょシ種結晶を発生さ
せる特許請求の範囲第(1)項に記載の冷却結晶化方法
(3) Cooling crystallization according to claim (1), in which seed crystals are generated by blowing air onto the surface of the thin-layered cast product to cool and vibrate the surface of the cast product. Method.
(4)115〜100℃で種結晶を発生させる特許請求
の範囲第(3)項に記載の冷却結晶化法。
(4) The cooling crystallization method according to claim (3), in which seed crystals are generated at 115 to 100°C.
(5)ベルト面を通じて薄層状流延物を冷却する熱媒体
として10℃〜55℃の液体状若しくは気体状の熱媒体
を該薄層状流延物若しくはその固化物が負荷された該ベ
ルトの裏面に吹き付ける特許請求の範囲第(2)項に記
載の冷却結晶化方法。
(5) A liquid or gaseous heat medium of 10°C to 55°C is applied as a heat medium to cool the thin layered product through the belt surface to the back side of the belt loaded with the thin layered product or its solidified product. The cooling crystallization method according to claim (2), wherein the cooling crystallization method is sprayed onto a liquid.
JP21175182A 1982-12-02 1982-12-02 Process for cooling and crystallization of molten guanidine sulfamate Pending JPS59101454A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21175182A JPS59101454A (en) 1982-12-02 1982-12-02 Process for cooling and crystallization of molten guanidine sulfamate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21175182A JPS59101454A (en) 1982-12-02 1982-12-02 Process for cooling and crystallization of molten guanidine sulfamate

Publications (1)

Publication Number Publication Date
JPS59101454A true JPS59101454A (en) 1984-06-12

Family

ID=16610974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21175182A Pending JPS59101454A (en) 1982-12-02 1982-12-02 Process for cooling and crystallization of molten guanidine sulfamate

Country Status (1)

Country Link
JP (1) JPS59101454A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5735869A (en) * 1980-06-16 1982-02-26 Minnesota Mining & Mfg Developer composition with carbon fluoride

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5735869A (en) * 1980-06-16 1982-02-26 Minnesota Mining & Mfg Developer composition with carbon fluoride

Similar Documents

Publication Publication Date Title
KR20100016381A (en) Strip casting of immiscible metals
JPS6211601B2 (en)
JPS59101454A (en) Process for cooling and crystallization of molten guanidine sulfamate
JP3394550B2 (en) Method for producing bisphenol A prill
US5505885A (en) Granulation of phosphorus pentasulfide with a predetermined reactivity
US5269817A (en) Process and apparatus for the crystallization of a melt
JPH09310943A (en) Method and device for solidifying liquid material in granular form
US7361217B2 (en) Method for crystallising a melamine melt
US4276052A (en) Method of crystallizing aluminium sulphate solutions to form dust-free granules having uniform grain size
RU2107069C1 (en) Method of granulation of dimethylaminoborane
JPS56112429A (en) Purifying method for impure aluminum
JPS6036631A (en) Production of aluminum alloy casting ingot
JP2003299974A (en) Iodine flaker
EP0716880B1 (en) Method for accelerating solidification of low melting point products
JPS62161443A (en) Casting method for fine metallic wire
JP2009007228A (en) Spherical crystal production method and production apparatus
SU994113A1 (en) Method of granulating of metal melt
JPS6035220B2 (en) Thin plate manufacturing method and device
JPH07256404A (en) Production of amorphous metal strip and its apparatus
SU416080A1 (en)
JPS5935860A (en) Production of amorphous metal
SU308779A1 (en) METHOD FOR PRODUCING POWDERED MATERIALS
UA49620C2 (en) A method for producing sodium acetate trihydrate
SU912193A1 (en) Melt crystallizer
US3920405A (en) Process for producing solid aluminum sulphate