JPS59100958A - Runaway detecting circuit of microcomputer - Google Patents

Runaway detecting circuit of microcomputer

Info

Publication number
JPS59100958A
JPS59100958A JP57211599A JP21159982A JPS59100958A JP S59100958 A JPS59100958 A JP S59100958A JP 57211599 A JP57211599 A JP 57211599A JP 21159982 A JP21159982 A JP 21159982A JP S59100958 A JPS59100958 A JP S59100958A
Authority
JP
Japan
Prior art keywords
microcomputer
circuit
level
output
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57211599A
Other languages
Japanese (ja)
Other versions
JPS6319896B2 (en
Inventor
Mitsuo Yamamoto
光男 山本
Nobuyoshi Nakura
奈倉 伸芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP57211599A priority Critical patent/JPS59100958A/en
Publication of JPS59100958A publication Critical patent/JPS59100958A/en
Publication of JPS6319896B2 publication Critical patent/JPS6319896B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/0703Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation
    • G06F11/0751Error or fault detection not based on redundancy
    • G06F11/0754Error or fault detection not based on redundancy by exceeding limits
    • G06F11/0757Error or fault detection not based on redundancy by exceeding limits by exceeding a time limit, i.e. time-out, e.g. watchdogs

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Electronic Switches (AREA)
  • Debugging And Monitoring (AREA)

Abstract

PURPOSE:To decrease the number of component parts by using a frequency selecting circuit, a voltage reduction detecting circuit and a rectangular wave oscillating circuit which produces a signal to reset a microcomputer by the detection signals of said selecting circuit and detecting circuit. CONSTITUTION:The reverse input terminal (-) of an operational amplifier 47 is set ''L'' level of a prescribed cycle as long as a microcomputer has normal working and the output of oscillation is supplied with a prescribed frequency. As a result, the ''H'' level is not raised up to the reference voltage level although it is fed back by the output of the amplifier 47. If the microcomputer has some fault with reduction of oscillating frequency, the potential of the terminal (-) of the amplifier 47 rises up by a feedback resistance 43. This circuit prevents the input of the following signals. Therefore the potential of the terminal (-) becomes higher than the reference voltage V2, and the output of the amplifier 47 is set at ''L'' level. Then a reset signal is produced.

Description

【発明の詳細な説明】 マイクロコンピュータを用いた製品の中でも、特に自動
車等に用いる製品は電源全パンテリーとしている為、マ
イクロコンピュータの電源電圧か不安定(例えはセル・
モータ始動時には急激に電圧か降下する)であり、又ノ
イズ及び誘導障害等の外的要因によりマイクロコンピュ
ータが正常な作動をせず暴走することかある。
[Detailed Description of the Invention] Among products using microcomputers, products used in automobiles and the like are powered entirely by pantries, so the power supply voltage of the microcomputer may be unstable (for example, if the cell
When the motor starts, the voltage drops suddenly), and external factors such as noise and induction disturbances can cause the microcomputer to malfunction and go out of control.

そこで従来でに、マイクロコンピュータから一定の周波
数の矩形波信号を発振して、この信号全監視することに
より暴走を検知している。又、電源電圧の変動に対して
は別個に回路を構成して暴走の対策をしている。し7か
し、これらの回路を別個に構成し、例えばオア回路にて
1つの暴走検知回路とするためにG−、[、部品数か多
くかつ回路か複雑であった。
Conventionally, runaway has been detected by oscillating a rectangular wave signal of a constant frequency from a microcomputer and monitoring all of these signals. In addition, a separate circuit is configured to prevent runaway from fluctuations in the power supply voltage. However, in order to configure these circuits separately and use, for example, an OR circuit as one runaway detection circuit, the number of components is large and the circuit is complicated.

そこで本発明は、暴走検知回路を比軟的簡易な回路によ
って構成し、部品数?iQ少することを目的とする。
Therefore, the present invention configures the runaway detection circuit with a relatively simple circuit, and reduces the number of parts. The purpose is to reduce iQ.

本発明の基本的構成は、矩形波発振回路、周波数選別1
回路および減嶌圧検出巨1路を組み合わせたものであり
、マイクロコンピュータから出さnる発振信号か周波数
選別回路で定める周波数以上である場合には、発振信号
を次段へ伝達せず、矩形波発振回路によ1す、リセット
パルス會発シてマイクロコンピュータをリセットテる。
The basic configuration of the present invention is a rectangular wave oscillation circuit, frequency selection 1
It is a combination of a circuit and one giant circuit for detecting pressure reduction, and if the oscillation signal output from the microcomputer exceeds the frequency determined by the frequency selection circuit, the oscillation signal is not transmitted to the next stage, and a rectangular wave is output. The oscillation circuit generates a reset pulse to reset the microcomputer.

同様に発+a 信号か一定周波数以下の場合にもこれを
検知し、リセン)t=かける。さらに、減電圧に対して
も発振信号の伝達を阻止してリセットをがけることがで
きる。従って、上記8つの回路を組み合せることKより
、部品が共通化でき、部品数を大巾に低減することがで
きる。
Similarly, if the emitted +a signal is below a certain frequency, this is detected and applied. Furthermore, it is possible to block the transmission of the oscillation signal and perform a reset even when the voltage decreases. Therefore, by combining the above eight circuits, the parts can be made common, and the number of parts can be greatly reduced.

以下図面に基づいて実施例の説明をする。端子1け定電
源(−1−Vcc)に接続され、端子2はマイクロコン
ピュータの発振出力K 、Q 子3けバンチ!J −電
fiに、また、端子4はマイクロコンピュータのリセッ
ト端子にそれぞれ接続されている。まず、 周波数選別
回路1oは、端子2、すなわちマイクロコンピュータの
発振出力が、抵抗11およびダイオード12、抵抗13
を介してコンデンサ14の一端に接続され、さらにオペ
・アンプ15の反転入力端子←)に接続さ扛ている。ま
た、オペ・アンプ15の非反転入力端子(ト)には、定
電源Vcc全抵抗16.17で分圧した基準電圧が入力
されるとともに、オペ・アンプ15の出方端より抵抗1
8’z介してフィードバンクされている。このオペ゛ア
ンプ15の出力はコンデンサ21に接続すn、 抵抗2
2 、2 sy、(介してトランジスタ24のベースに
入力される。トランジスタ24.のコレクタは抵抗25
を介して、減電圧検出回路8oのトランジスタ36のコ
レクタおよび矩形波q振回路40の抵抗411に接続さ
れている。減電圧検出回路80は、端子8にてバッテリ
ー電源と接続さnX抵抗82を介し2て抵抗81および
ツェナーダイオード83に接続されている。抵抗81の
他端は定電源■ccに、またツェナーダイオード8,8
の他端はトランジスタ341のベースにそれぞれ接続さ
nlこのトランジスタ84.のコレクタが抵抗:35に
よりアースさ几るとともにトランジスタ86のベースに
人力さ汎る。次に矩形波発振回路4.0は、抵抗4・1
σ」他端がオペ・アンプ47の反転入力端子(−2に入
力されるとともに、コンデンサ4・2ヲ介してオペ・ア
ンプ4・7の出力端に接続ごnている。オペ・アンプ4
・7の非反転入力端子(ト)には、定電源Vcci抵抗
441.45にて分圧される第2の基準電圧が入力され
、さらに抵抗4・6により出力かフィードバンクされて
いる。
Embodiments will be described below based on the drawings. Terminal 1 is connected to a constant power supply (-1-Vcc), and terminal 2 is the microcomputer's oscillation output K, Q. The terminal 4 is connected to the J-fi, and the terminal 4 is connected to the reset terminal of the microcomputer. First, in the frequency selection circuit 1o, the terminal 2, that is, the oscillation output of the microcomputer, is connected to the resistor 11, the diode 12, and the resistor 13.
It is connected to one end of the capacitor 14 via the inverting input terminal ←) of the operational amplifier 15. In addition, the reference voltage divided by the constant power supply Vcc and the total resistance 16.
Feedbanked via 8'z. The output of this operational amplifier 15 is connected to a capacitor 21, and a resistor 2.
2, 2 sy, (input to the base of the transistor 24 through the collector of the transistor 24.
It is connected to the collector of the transistor 36 of the voltage reduction detection circuit 8o and to the resistor 411 of the rectangular wave q oscillation circuit 40 via. The reduced voltage detection circuit 80 is connected to a battery power source at a terminal 8, and is connected to a resistor 81 and a Zener diode 83 via an nX resistor 82. The other end of the resistor 81 is connected to the constant power supply ■cc, and the Zener diode 8,8
The other ends are connected to the bases of transistors 341 and 84, respectively. The collector of the transistor 86 is grounded by the resistor 35 and the base of the transistor 86 is connected to the ground. Next, the square wave oscillation circuit 4.0 has a resistor 4.1
The other end of σ is input to the inverting input terminal (-2) of the operational amplifier 47, and is also connected to the output terminal of the operational amplifiers 4 and 7 via capacitors 4 and 2.
- A second reference voltage divided by the constant power supply Vcci resistor 441.45 is input to the non-inverting input terminal (G) of 7, and the output is further fed-banked by the resistors 4 and 6.

次に各回路の作動について説明する。周波数選別回路1
0の各抵抗は、ここでは次の様に定めである。すなわち
、抵抗11の抵抗値を抵抗13より大きくし、また各抵
抗16.17.18けすべ°C同じ抵抗値とする。この
時、マイクロコンピュータの発振信号(例えば、100
Hzの矩形波)か入力き汎ると、この発振信号かlH/
lレベルの際には、信号が抵抗11およびコンデンサ1
4により積分さn\またlLlレベルの際には抵抗l]
1、タイオード18およびコンデンサ14により粕分さ
7Lる。ここで、各抵抗値は、抵抗18ケ抵抗11に比
d充分小ざく設定しであるため、積分時定数は立下がり
(〃H〃レベルから〃I、〃レベルに切換ねる)時の方
が立上がり時より小さくなる。
Next, the operation of each circuit will be explained. Frequency selection circuit 1
Each resistance of 0 is defined here as follows. That is, the resistance value of the resistor 11 is made larger than that of the resistor 13, and each resistor 16, 17, and 18 degrees Celsius are made to have the same resistance value. At this time, the oscillation signal of the microcomputer (for example, 100
When a rectangular wave of Hz) is input, this oscillation signal becomes lH/
When the signal is at l level, the signal is connected to the resistor 11 and capacitor 1.
4, the integral is n\ and when the level is lLl, the resistance l]
1. The diode 18 and capacitor 14 reduce the amount of waste by 7L. Here, each resistance value is set to be sufficiently small compared to 18 resistors and 11 resistors, so the integration time constant is smaller at the time of falling (switching from 〃H〃 level to 〃I,〃 level). It becomes smaller than when starting up.

次に、この積分さnた波形はオペ・アンプ15の反転入
力端子に入力さnるが、ここでオペ・アンプ15の出力
は抵抗18により非反転入力端子にフィードバックされ
るため、基準電圧k ■1として、抵抗16.17.1
8の抵抗値をすべて等しく設定すれば、オペ・アンプの
出力がiHlレベル(定電源電圧Vccとみなさnる)
の時にはvl:4’d・VCCとなり、〃L〃レベル(
グランドレベルとみなされる)の時には■l=1/8.
vccとなり、オペ・アンプ1.5の出力はヒステリシ
スヲ有した波形となる。
Next, this integrated waveform is input to the inverting input terminal of the operational amplifier 15, but since the output of the operational amplifier 15 is fed back to the non-inverting input terminal by the resistor 18, the reference voltage k ■As 1, resistance 16.17.1
If all resistance values of 8 are set equal, the output of the operational amplifier will be at iHl level (considered as constant power supply voltage Vcc).
When , vl:4'd・VCC becomes 〃L〃level (
(considered to be ground level), ■l=1/8.
vcc, and the output of the operational amplifier 1.5 has a waveform with hysteresis.

次にこの出力信号は、コンデンサ21および抵抗28と
により微分tn、)ランジスタ24により反転されて矩
形波発振回路4(1に入力される。
Next, this output signal is differentiated by a capacitor 21 and a resistor 28, tn, and inverted by a transistor 24, and is input to a rectangular wave oscillation circuit 4 (1).

従って、オペ・アンプ47の反転入力端子(−)は、こ
の波形信号が入力さnるごとに、す4cわもマイクロコ
ンピュータの発振出力の周波数に応じて、lLo L/
 ヘルとなるか、オペ・アンプ47 ノ出力411Hl
レベルを保持している。ここで、オペ・アンプ47の反
転入力端子(−) G;抵抗4・8により出力端からフ
ィードバンクさnているため、一度//L〃レベルとな
った後は、コンデンサ42により°定まる時定数にて除
々に電位か上昇する。また、オペ・アンプ47の非反転
入力端子(ト)の基準電圧72社、オペ・アンプ15同
様に抵抗44.45.46の抵抗値がすべて等しく、従
って、オペ・アンプ47の出力端子か〃Hlレベル(V
 c c )の時は、V2:2/3−Vcc 、 lL
i L/ ヘ/l/(7)時ニハ、v2=1/3 、 
Vcc トなっている。
Therefore, every time this waveform signal is input, the inverting input terminal (-) of the operational amplifier 47 outputs lLo L/L according to the frequency of the oscillation output of the microcomputer.
Will it be hell? Op amp 47 output 411Hl
maintains the level. Here, since the inverting input terminal (-) G of the operational amplifier 47 is feedbanked from the output terminal by resistors 4 and 8, once it reaches the //L level, the time is determined by the capacitor 42. The potential gradually increases at a constant rate. In addition, the reference voltage of the non-inverting input terminal (G) of the operational amplifier 47 is 72, and the resistance values of the resistors 44, 45, and 46 are all the same as in the operational amplifier 15. Therefore, the output terminal of the operational amplifier 47 is Hl level (V
When c c ), V2:2/3-Vcc, lL
i L/H/l/(7) time Niha, v2=1/3,
Vcc is turned on.

サテ、マイクロコンピュータが正常に作動シて、発振出
力が所定の周波数にて入力される時は、オペ・アンプ4
7の反転入力端子←)は、所定の周期でlLlレベルと
されるため、オペ・アンプ47の出力より/z)i//
レベルがフィード・バンクされても、基準電圧(このと
きはη=2/8.vcc)まで上昇することはなく、オ
ペ・アンプ47の出力はoHttレベルに保持される。
When the microcomputer is operating normally and the oscillation output is input at a predetermined frequency, the operational amplifier 4
Since the inverting input terminal ←) of 7 is set at lLl level at a predetermined period, /z)i// is output from the operational amplifier 47.
Even if the level is fed banked, it does not rise to the reference voltage (η=2/8.vcc in this case), and the output of the operational amplifier 47 is maintained at the oHtt level.

次に、マイクロコンピュータに異常か生じ、発振周波数
が低くなった場合は、フィードバック抵抗48によりオ
ペ・アンプ47の反転入力端子(−)の電位が上昇する
が・次の信号が入力さnないため、基準電圧■2より高
くなって、オペ・アンプ47の出力が〃L〃レベルとな
って、リセット信号が発せられる。逆に、マイクロコン
ピュータの発振周波数が高くなった場合は、周波数選別
回路lOの立上がり時定数(琳抗11とコンデンサ14
で決まる)は前述した如く大きいため、〃H7lレベル
(ここでは、オペ・アンプ15の基準電圧vl= Al
1・Vcc)まで充分立上がる以前に次の立下がり信号
が入力されてしまい、オペ・アンプ15の出力はItL
lレベルに切換ることなく 、iHlレベルを保持する
。従って、オペ・アンプ47の反転入力端子←)の電位
も、〃L//レヘルレベ換った後は、フィードバック抵
抗4・31F−より上昇を続け、基準電圧v2: 2.
/3 ・Vccを追えてしまい、リセットがかかる。
Next, when an abnormality occurs in the microcomputer and the oscillation frequency becomes low, the potential of the inverting input terminal (-) of the operational amplifier 47 increases due to the feedback resistor 48, but the next signal is not input. , becomes higher than the reference voltage (2), the output of the operational amplifier 47 becomes L level, and a reset signal is generated. On the other hand, when the oscillation frequency of the microcomputer becomes higher, the rise time constant of the frequency selection circuit IO (the resistor 11 and the capacitor 14
As mentioned above, the H7l level (here, the reference voltage vl of the operational amplifier 15 = Al
1・Vcc), the next falling signal is input, and the output of the operational amplifier 15 becomes ItL.
The iHl level is maintained without switching to the l level. Therefore, the potential of the inverting input terminal ←) of the operational amplifier 47 also continues to rise from the feedback resistor 4.31F- after changing the L// level, and the reference voltage v2: 2.
/3 ・Vcc cannot be tracked and a reset is required.

この様に、マイクロコンピュータか暴走して、その発振
周波数に異常が生じた場合、その周波数か高・低どちら
に変化してもこt’Lf検知してリセットすることかで
きる。
In this manner, if the microcomputer goes out of control and an abnormality occurs in its oscillation frequency, it is possible to detect and reset the oscillation frequency regardless of whether the frequency changes to high or low.

次に、減電圧検出回路80の作動を説明する。Next, the operation of the voltage reduction detection circuit 80 will be explained.

通常はバッテリー電源電圧は充分高いため、抵抗31.
32により分圧された電圧により、トランジスタ841
は導通し、従ってトランジスタ86は遮断している。と
ころか、バッテリー電源が下降して、トランジスタ84
か遮hfすると、トランジスタ36が導通して定電源電
圧Vccか抵抗41を介してオペ・アンプ47の反転入
力端子←)に入力されるため、オペ・アンプ47の出力
が〃■・〃レベルト11って、リセットがかがる。
Normally, the battery power supply voltage is high enough, so the resistor 31.
The voltage divided by 32 causes the transistor 841 to
is conducting, so transistor 86 is cut off. However, the battery power supply dropped and transistor 84
When hf is shut off, the transistor 36 becomes conductive and the constant power supply voltage Vcc is input to the inverting input terminal of the operational amplifier 47 via the resistor 41 ←), so the output of the operational amplifier 47 becomes Well, it takes a reset.

なお、矩形波発振回路40のコンデンサ4.2はマイク
ロコンピュータの電源が人とされた時に、オペ・アンプ
Φ7の反転入力端子(−)會−瞬lH//レベルトシて
、オペ・アンプ47の出力をILL/ L/ ヘルとし
てマイクロコンビュータゲリセットする働きをも兼ね備
えたものである。
Incidentally, when the power supply of the microcomputer is turned off, the capacitor 4.2 of the square wave oscillation circuit 40 changes the level of the inverting input terminal (-) of the operational amplifier Φ7 to the output of the operational amplifier 47. It also has the function of resetting the micro computer as ILL/L/HELL.

【図面の簡単な説明】[Brief explanation of drawings]

図は木発明によるマイクロコンピュータの暴走検知回路
の一実棒例を示す回路図である。 IO・・・周波数選別回路、80・・・減電圧検出回路
、4.0・・・矩形波発振回路特許出願人 アイシン精機株式会社 代表者中井令夫
The figure is a circuit diagram showing an example of a runaway detection circuit for a microcomputer according to the invention. IO...Frequency selection circuit, 80...Low voltage detection circuit, 4.0...Square wave oscillation circuit Patent applicant Reio Nakai, Representative of Aisin Seiki Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] マイクロコンピュータより出力される発振信号が所定の
周e数より高いことおよび、第2の所定周波数より低い
ことケ検知する周波数選別回路と電源電圧・が所定の電
圧より低いことを検知する減電圧検出回路と、前記各回
路の検知信号によりマイクロコンピュータ街すセントす
る伯@を発する矩形波発振回路とからなるマイクロコン
ピュータの暴走検知回路。
A frequency selection circuit detects that the oscillation signal output from the microcomputer is higher than a predetermined frequency and lower than a second predetermined frequency, and a reduced voltage detection circuit detects that the power supply voltage is lower than a predetermined voltage. A runaway detection circuit for a microcomputer, comprising a circuit and a rectangular wave oscillation circuit that emits a signal that the microcomputer detects based on the detection signals of the respective circuits.
JP57211599A 1982-12-02 1982-12-02 Runaway detecting circuit of microcomputer Granted JPS59100958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57211599A JPS59100958A (en) 1982-12-02 1982-12-02 Runaway detecting circuit of microcomputer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57211599A JPS59100958A (en) 1982-12-02 1982-12-02 Runaway detecting circuit of microcomputer

Publications (2)

Publication Number Publication Date
JPS59100958A true JPS59100958A (en) 1984-06-11
JPS6319896B2 JPS6319896B2 (en) 1988-04-25

Family

ID=16608427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57211599A Granted JPS59100958A (en) 1982-12-02 1982-12-02 Runaway detecting circuit of microcomputer

Country Status (1)

Country Link
JP (1) JPS59100958A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4887746A (en) * 1972-02-18 1973-11-17
JPS57134731A (en) * 1981-02-13 1982-08-20 Toshiba Corp Reset circuit for central processing unit
JPS57191762A (en) * 1981-05-20 1982-11-25 Toshiba Corp Abnormality detecting device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4887746A (en) * 1972-02-18 1973-11-17
JPS57134731A (en) * 1981-02-13 1982-08-20 Toshiba Corp Reset circuit for central processing unit
JPS57191762A (en) * 1981-05-20 1982-11-25 Toshiba Corp Abnormality detecting device

Also Published As

Publication number Publication date
JPS6319896B2 (en) 1988-04-25

Similar Documents

Publication Publication Date Title
KR100304295B1 (en) Power supply voltage detection device
JP3693528B2 (en) Power supply
JP2005128595A (en) Constant voltage power supply device
JPH05121954A (en) Potential detection circuit
JPS59100958A (en) Runaway detecting circuit of microcomputer
JP4351410B2 (en) Circuit device for detecting functional failures
US6218906B1 (en) Amplifier circuit
US6745338B1 (en) System for automatically selecting clock modes based on a state of clock input pin and generating a clock signal with an oscillator thereafter
US6087866A (en) Circuit for producing a reset signal
JP2703410B2 (en) Voltage converter circuit
JP4274520B2 (en) Oscillation amplitude detection circuit, oscillation circuit, and integrated circuit for oscillation
JPH0332113Y2 (en)
JPH01223360A (en) Voltage monitoring circuit
JPH0140283Y2 (en)
JPH02178816A (en) System reset circuit
JP4616023B2 (en) Load drive device with protection circuit
JPH04273602A (en) Oscillation control circuit
JP2775088B2 (en) Anomaly detection device
JP2020065120A (en) Class D amplifier circuit
JPH0744248A (en) Constant voltage circuit
JPS635419A (en) Semiconductor integrated circuit
JPS63177212A (en) Power supply stabilizing circuit
JPH0794942A (en) Referrence clock signal generating circuit
JPH0356015B2 (en)
JPH0637610A (en) Integrated circuit