JPS59100903A - Servocontrol device of industrial robot - Google Patents

Servocontrol device of industrial robot

Info

Publication number
JPS59100903A
JPS59100903A JP20939882A JP20939882A JPS59100903A JP S59100903 A JPS59100903 A JP S59100903A JP 20939882 A JP20939882 A JP 20939882A JP 20939882 A JP20939882 A JP 20939882A JP S59100903 A JPS59100903 A JP S59100903A
Authority
JP
Japan
Prior art keywords
servo
transfer function
servo control
controlled variable
compensation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20939882A
Other languages
Japanese (ja)
Inventor
Haruaki Otsuki
治明 大槻
Hirotake Hirai
洋武 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20939882A priority Critical patent/JPS59100903A/en
Publication of JPS59100903A publication Critical patent/JPS59100903A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • G05B19/21Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device
    • G05B19/23Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device for point-to-point control
    • G05B19/231Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device for point-to-point control the positional error is used to control continuously the servomotor according to its magnitude
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41123Correction inertia of servo
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45083Manipulators, robot

Abstract

PURPOSE:To convert a movement path to a high accuracy including a high speed movement time, too, by providing a means for converging to ''0'' a coefficient related to an inertia load in a transfer function between a target value and a controlled variable, and a transfer function between a disturbance and the controlled variable, or the like. CONSTITUTION:A titled device is provided with a means for converging to ''0'' a coefficient related to an inertia load in a transfer function between a target value and a controlled variable, and a transfer function between a disturbance and the controlled variable, or the like. For instance, the target value given from a high rank controller is inputted to a servo-processor 14 of a servocontrol system through a bus line 9 and an interface circuit 13, and its output is inputted to an adder 16 through a D/A converter 15. Subsequently, a compensating signal from a compensating circuit 17 and an input signal from the D/A converter 15 are added by an adder 16, and its output is inputted to a servomotor 6 through a servo-amplifier 18. Subsequently, by driving of the servomotor 6, the first arm 3 is rotated, also an encoder 11 and a torque detector 12 are driven, and the controlled variable is fed back to the servo-processor 14 through a pulse processing circuit 19, etc.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は産業用ロボットのサーボ制御方式に関するもの
であり、特に、多関節形、極座標形9円筒座標形等の腕
゛構造を持つ産業用ロボットに好適なサーボ制御方式に
関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a servo control system for industrial robots, and particularly to industrial robots having arm structures such as multi-joint type, polar coordinate type, nine cylindrical coordinate type, etc. The present invention relates to a servo control method suitable for.

〔従来技術〕[Prior art]

一般ニ、プレイバックロボット、数値制御ロボット等の
産業用ロボットでは、各可動部はサーボ機構により駆動
される。しかし、ロボットが対象影響により、ロボット
が対象物を持っている状態と持っていない状態では、サ
ーボ機構における負荷としての慣性や、外乱としての重
力の大きさが変化する。また、近年、ロボットの腕構造
の主流となっている多関節形のロボットでは、腕白体が
複雑な力学的特性を持っておplその腕の関節部の角度
に応じて外乱としての重力トルクの大きさが変化するし
、ある関節を動かすと、別の関節のサーボ機構において
負荷慣性モーメントの太きさや外乱トルクの大きさが変
化するという意味で、複数のサーボ機構の間に干渉が存
在する。また、運動が高速になると、慣性力の効果によ
る動的な干渉が無視できなくなる。このような特性は多
関節形のロボットに限らず、極座標形9円筒座標形等の
ロボットにおいてもあられれる。機構部がこのような特
性を持っているだめ、通常のサーボ制御方式でロボット
を制御すると、上位の制御装置から指令される腕の運動
軌道に対して充分な精度が得られない、あるいは腕が特
定の姿勢に近づくとサーボ系が発振する等の問題があら
れれていた。
In general, industrial robots such as playback robots and numerically controlled robots, each movable part is driven by a servo mechanism. However, due to the influence of the object on the robot, the magnitude of the inertia as a load on the servo mechanism and the magnitude of gravity as a disturbance change between the state where the robot is holding the object and the state where the robot is not holding the object. In addition, in multi-jointed robots, which have become the mainstream arm structure in recent years, the arm's white body has complex mechanical properties, and the gravitational torque as a disturbance changes depending on the angle of the arm's joint. Interference exists between multiple servomechanisms in the sense that the size changes, and when one joint is moved, the thickness of the load inertia moment and the magnitude of disturbance torque change in the servomechanism of another joint. . Furthermore, as the motion becomes faster, dynamic interference due to the effect of inertial force cannot be ignored. Such characteristics are not limited to articulated robots, but also exist in robots with polar coordinates, nine cylindrical coordinates, and the like. Because the mechanical part has such characteristics, if the robot is controlled using the normal servo control method, sufficient accuracy may not be obtained for the arm movement trajectory commanded by the upper control device, or the arm may There were problems such as the servo system oscillating when approaching a specific posture.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、多関節形等の腕構造を持つロボットに
おいて、高速運動時も含めて運動経路の高精度化を実現
することができるサーボ制御装置を提供するもので)る
An object of the present invention is to provide a servo control device that can realize highly accurate movement paths even during high-speed movement in a robot having an arm structure such as a multi-joint type.

〔発明の概要〕[Summary of the invention]

本発明は、産業用ロボットの腕部の各サーボ機構におい
て、通常のサーボ制御回路に加えて、目標値と制御量と
の間の伝達関数における慣性負荷に関連する項の係数を
0に収束させるとともに、外乱と制御量との間の伝達関
数をOに収束させ、しかも安定性を損わない第1の補償
手段を付加して各々のサーボ機構の動特性を負荷変動や
外乱の影響を受けないようにし、さらに、所望の動特性
を与えるために必要な第2の補償手段を付加するもので
ある。
In each servo mechanism of the arm of an industrial robot, the present invention converges the coefficient of the term related to the inertial load in the transfer function between the target value and the controlled variable to 0, in addition to the normal servo control circuit. At the same time, the transfer function between the disturbance and the controlled variable is converged to O, and a first compensation means is added that does not impair stability, so that the dynamic characteristics of each servo mechanism are not influenced by load fluctuations or disturbances. In addition, the second compensation means necessary to provide the desired dynamic characteristics is added.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の実施例を図面を参照して説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明のサーボ制御装置の実施例を備えた多自
由度多関節形ロボットを示すもので、図においてロボッ
トは固定台1と、この固定台1に旋回性能に設けた旋回
体2と、この旋回体2に設けた第1の腕3と、この第1
の腕3の先端に設けた第2の腕4と、この第2の腕4の
先端に設けた手首部5とで構成されている。説明の便宜
上、この第1図には第1の腕3の駆動部6および第2の
腕4の駆動部7のみを図示しているが、手首部5および
その他の駆動部(図示せず)を備えている。
Fig. 1 shows a multi-degree-of-freedom, articulated robot equipped with an embodiment of the servo control device of the present invention. , the first arm 3 provided on this revolving body 2, and this first
It is composed of a second arm 4 provided at the tip of an arm 3, and a wrist portion 5 provided at the tip of this second arm 4. For convenience of explanation, only the driving part 6 of the first arm 3 and the driving part 7 of the second arm 4 are shown in FIG. 1, but the wrist part 5 and other driving parts (not shown) are shown in FIG. It is equipped with

これらの駆動部にはそれぞれの駆動部に対応してサーボ
制御系8が接続されている。これらのサーボ制御系8は
パスライン9を経由して上位コントローラ10に接続し
ている。この上位コントローラ10は各々のサーボ制御
系8に目標値を与えると共に必要に応じて各々のサーボ
制御系8の制御量を取り込むことができる。
A servo control system 8 is connected to these drive units in correspondence with each drive unit. These servo control systems 8 are connected to a host controller 10 via a pass line 9. This host controller 10 can give target values to each servo control system 8 and can take in the control amount of each servo control system 8 as necessary.

第2図は本発明のサーボ制御装置の一例を示すもので、
図においては第1の腕3の駆動部6におけるサーボ制御
装置を示しである。この例においては駆動部6はサーボ
モータで構成されている。
FIG. 2 shows an example of the servo control device of the present invention.
In the figure, a servo control device in the drive unit 6 of the first arm 3 is shown. In this example, the drive section 6 is composed of a servo motor.

このサーボモータ6にはエンコーダ11およびトルク検
出器12が連結している。パスライン9はインタフェー
ス回路13を介してサーボ制御系8に接続している。こ
のサーボ制御系8を構成し、位置制御ループ系の演算を
行うサーボプロセッサ14はインタフェース回路13か
らの目標値を入力する、その出力はDA変換器15を通
シ、加算器16において補償回路17からの補償信号と
加算されてサーボ増幅器18の入力となる。サーボ増幅
器18の出力はサーボモータ6に加えられ、サーボモー
タ6を駆動する。このサーボモータ6の駆動によって第
1の腕3は旋回動すると共にエンコーダ11およびトル
ク検出器12が駆動される。エンコーダ11の出力はこ
のパルス出力からモータ軸の回転角の処理を行うパルス
処理回路19を経て可逆カウンタ20において計数され
て制御量とな9サーボプロセツサ14に帰還されると共
にインタフェース回路13を経てパスライン9に伝送さ
れる。トルク検出器12の出力は補償回路17に入力さ
れる。この補償回路17はトルク検出器12の出力とサ
ーボ増幅器18の出力とを入力して、外乱りに対する伝
達関数が零となり目標値■に対する伝達関数が負荷に関
連する項を含まない効果を持つ補償信号を出力する。
An encoder 11 and a torque detector 12 are connected to the servo motor 6. The pass line 9 is connected to the servo control system 8 via an interface circuit 13. A servo processor 14 that constitutes this servo control system 8 and performs calculations for the position control loop system inputs the target value from the interface circuit 13, and its output is passed through the DA converter 15 and sent to the compensation circuit 17 in the adder 16. The signal is added to the compensation signal from the servo amplifier 18 and becomes the input of the servo amplifier 18. The output of servo amplifier 18 is applied to servo motor 6 to drive servo motor 6. The drive of the servo motor 6 causes the first arm 3 to pivot, and at the same time, the encoder 11 and torque detector 12 are driven. The output of the encoder 11 is processed from this pulse output through a pulse processing circuit 19 that processes the rotation angle of the motor shaft, is counted in a reversible counter 20, and is fed back to the servo processor 14 as a control amount. It is transmitted to pass line 9. The output of the torque detector 12 is input to a compensation circuit 17. This compensation circuit 17 inputs the output of the torque detector 12 and the output of the servo amplifier 18, and compensates for the effect that the transfer function with respect to disturbance becomes zero and the transfer function with respect to the target value does not include terms related to the load. Output a signal.

第1図に示す本発明のサーボ制御装置の一例の伝達特性
を第3図に示す。この図において、各定数は次のように
定義する。
FIG. 3 shows the transfer characteristics of an example of the servo control device of the present invention shown in FIG. In this figure, each constant is defined as follows.

K :サーボ増幅器18のゲイン L :モータ6の電機子インダクタンスR:モータ6の
電機子抵抗 に丁:モータ6のトルク定数 Kn:モータ6の誘起電圧定数 J :モータ6の回転子および負荷の慣性モーメント B :粘性抵抗係数 Kc:補償回路17の係数 次に上述した本発明のサーボ制御装置の一例の動作を第
2図および第3図を用いて説明する。
K: Gain L of servo amplifier 18: Armature inductance of motor 6 R: Armature resistance of motor 6: Torque constant of motor 6 Kn: Induced voltage constant of motor 6 J: Inertia of rotor of motor 6 and load Moment B: Coefficient of viscous resistance Kc: Coefficient of compensation circuit 17 Next, the operation of the above-mentioned example of the servo control device of the present invention will be explained with reference to FIGS. 2 and 3.

上位コントローラ10から与えられる目標値Vはサーボ
プロセッサ14において制御量Hを減算されると共に、
補償回路17からの補償信号Uを加算器16において加
算され、サーボ増幅器18のゲインKを乗じられてモー
タ6の端子電圧となる。このモータ端子電圧はモータ角
速度に誘起電圧定数KBを乗じた値である逆起電力分を
減算さ経てトルクTとなり、外乱トルクDを加算したの
角速度となる。この角速度はモータ6の積分要素百を経
て制御量Hとなる。補償回路17はトルク検出器12か
らトルクTを入力として外乱りの影響を補償する補償信
号Uを算出し、加算器16に出力する。この閉ループ制
御系において、補償回路17の係数KcO値を零から1
に近づけると、この制御系の伝達特性は次の(1)式の
ようになる。
The target value V given from the host controller 10 is subtracted by the control amount H in the servo processor 14, and
The compensation signal U from the compensation circuit 17 is added in the adder 16 and multiplied by the gain K of the servo amplifier 18 to obtain the terminal voltage of the motor 6. This motor terminal voltage becomes the torque T after subtracting the back electromotive force, which is a value obtained by multiplying the motor angular velocity by the induced voltage constant KB, and becomes the angular velocity obtained by adding the disturbance torque D. This angular velocity becomes the control amount H through the integral element 100 of the motor 6. The compensation circuit 17 receives the torque T from the torque detector 12, calculates a compensation signal U for compensating for the influence of disturbance, and outputs it to the adder 16. In this closed loop control system, the coefficient KcO value of the compensation circuit 17 is changed from zero to 1.
When approaching , the transfer characteristic of this control system becomes as shown in equation (1) below.

この(1)式から明らかなように、外乱りに対する伝達
関数はOとなシ、目標値Hに対する伝達関数は負荷に関
連する項を含まないものとなる。この結果、各駆動部に
おけるサーボ制御系の動特性は、負荷変動や外乱の影響
を受けないようにすることができる。
As is clear from equation (1), the transfer function for disturbance is O, and the transfer function for target value H does not include terms related to load. As a result, the dynamic characteristics of the servo control system in each drive section can be made unaffected by load fluctuations and disturbances.

第4図は本発明のサーボ制御装置の他の例を示すもので
、この例はモータ6の電流■を電流検出器21によって
検出し、この電流Iを用いて補償信号Uを算出する補償
回路17Aを備えたものである。この例の伝達特性を第
5図に示す。このように構成することによシ、前述した
例と同様な効果を発揮することができる。
FIG. 4 shows another example of the servo control device of the present invention, and this example is a compensation circuit that detects the current I of the motor 6 with a current detector 21 and calculates the compensation signal U using this current I. It is equipped with 17A. The transfer characteristics of this example are shown in FIG. With this configuration, it is possible to achieve the same effects as in the example described above.

第6図は本発明のサーボ制御装置のさらに他の例を示す
もので、この例においては補償回路17Bはサーボ増幅
器18の出力電圧Pおよびタコジェネレータ22からの
角速度Ωを用いて補償信号Uを算出するように構成した
ものである。この例の伝達特性を第7図に示す。このよ
うに構成することによっても、制御特性をモータ6に作
用する負荷および外乱に対して何等影響を受けないよう
に補償することができる。
FIG. 6 shows still another example of the servo control device of the present invention. In this example, the compensation circuit 17B uses the output voltage P of the servo amplifier 18 and the angular velocity Ω from the tacho generator 22 to generate the compensation signal U. It is configured to calculate. The transfer characteristics of this example are shown in FIG. With this configuration as well, it is possible to compensate the control characteristics so that they are not affected by the load and disturbance acting on the motor 6.

第8図は本発明のサーボ制御装置の他の例を示すもので
、この例においては補償回路17Cは前述した第6図に
示す例と同様にサーボ増1−′器18の出力電圧Pおよ
びタコジェネレータ22からの角速度Ωを用いて補償信
号を算出し、これをサーボ増幅器18の前段に位置する
加算器16に帰還している。また加算器16には速度帰
還回路23からの角速度Ωおよび腕3に設けた加速度検
出器24、加速度帰還回路25からの加速度が帰還され
る。この例の伝達特性を第9図に示す。この第9図にお
いてK。は速度フィードバックゲイン、Kcは加速度フ
ィードバックゲインを示す。この例における制御系の補
償回路17Cの係数Kcの値を零から1に近づけると、
この伝達特性は次の(2)式のようになる。
FIG. 8 shows another example of the servo control device of the present invention. In this example, the compensation circuit 17C is connected to the output voltage P of the servo multiplier 18 and A compensation signal is calculated using the angular velocity Ω from the tacho generator 22, and is fed back to the adder 16 located before the servo amplifier 18. Further, the angular velocity Ω from the velocity feedback circuit 23 and the acceleration from the acceleration detector 24 provided on the arm 3 and the acceleration feedback circuit 25 are fed back to the adder 16 . The transfer characteristics of this example are shown in FIG. In this Figure 9, K. is a velocity feedback gain, and Kc is an acceleration feedback gain. When the value of the coefficient Kc of the compensation circuit 17C of the control system in this example approaches from zero to 1,
This transfer characteristic is expressed by the following equation (2).

この(2)式によυKa、に、の2つのパラメータを適
当に設定することによって各駆動部の応答性を自由に設
定できると共に、外乱りに対する伝達関係が0となり、
目標値Hに対する伝達関数に負荷に関連する項を含まな
いものとなる。
According to this equation (2), by appropriately setting the two parameters υKa and , the responsiveness of each drive unit can be freely set, and the transmission relationship with respect to external disturbance becomes 0.
The transfer function for the target value H does not include terms related to the load.

第10図は本発明のサーボ制御装置のさらに他の例を示
すもので、この例はサーボプロセッサ14の前段に目標
値補償回路26を設けたものである。この例の伝達特性
を第11図に示す。目標値補償回路26は制御系の一次
遅れ特性を打ち消す因数を分子に持っていると共に、こ
れと所望の伝達関数G (s)との積の伝達関数を持っ
ている。この畔回路26の作用により、負荷変動や外乱
が作用しても、閉ループ制御系の伝達関数は一定に保た
れるので、回路26における伝達関数の分母と分子との
各因数の相殺が確実に行われ、所望の特性を実現するこ
とができる。
FIG. 10 shows still another example of the servo control device of the present invention, in which a target value compensation circuit 26 is provided upstream of the servo processor 14. The transfer characteristics of this example are shown in FIG. The target value compensation circuit 26 has a factor in its numerator that cancels the first-order delay characteristic of the control system, and also has a transfer function that is the product of this factor and a desired transfer function G (s). Due to the action of this edge circuit 26, the transfer function of the closed-loop control system is kept constant even when load fluctuations or disturbances act, so that each factor of the denominator and numerator of the transfer function in the circuit 26 is surely canceled out. can be carried out to achieve the desired characteristics.

なお、目標値補償回路26はサーボプロセッサ14に組
込み構成することが可能である。また以上述べた実施例
は1つの駆動部を対象にして説明したが、他の駆動部に
も同様に適用し得ることは勿論である。
Note that the target value compensation circuit 26 can be built into the servo processor 14. Furthermore, although the embodiments described above have been described with reference to one drive section, it goes without saying that the embodiments can be similarly applied to other drive sections.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、ロボットの各駆動
部を駆動するサーボ制御系の相互間の干渉およびロボッ
トに作用する負荷、外乱の影響を除去でき、高速かつ高
精度の運動制御が可能となるものである。
As described above, according to the present invention, it is possible to eliminate interference between the servo control systems that drive each drive part of the robot, as well as the effects of loads and disturbances that act on the robot, and to achieve high-speed and high-precision motion control. It is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の装置の一例を備えたロボットの構成を
示す図、第2図は本発明の装置の一例の構成図、第3図
はその伝達特性を示すブロック図、笹4図は本発明の装
置の他の例を示す構成図、第5図はその伝達特性を示す
ブロック図、第6図は本発明の装置のさらに他の例を示
す構成図、第7図はその伝達特性を示すブロック図、第
8図は本発明の装置の他の例を示す構成図、第9図はそ
の伝達特性を示すブロック図、第10図は本発明の装置
のさらに他の例を示す構成図、第11図はその伝達特性
を示すブロック図である。 1・・・固定台、2・・・旋回体、3・・・第1の腕、
4・・・溶2の腕、5・・・手首部、6,7・・・駆動
部、8・・・サーボ制御系、9・・・パスライン、10
・−・上位コントローラ、14・・・サーボプロセッサ
、17.17A〜17C,26・・・補償回路。
FIG. 1 is a diagram showing the configuration of a robot equipped with an example of the device of the present invention, FIG. 2 is a configuration diagram of an example of the device of the present invention, FIG. 3 is a block diagram showing its transfer characteristics, and FIG. A block diagram showing another example of the device of the present invention, FIG. 5 is a block diagram showing its transfer characteristics, FIG. 6 is a block diagram showing still another example of the device of the present invention, and FIG. 7 is a block diagram showing its transfer characteristics. 8 is a block diagram showing another example of the device of the present invention, FIG. 9 is a block diagram showing its transfer characteristics, and FIG. 10 is a configuration showing still another example of the device of the present invention. 11 are block diagrams showing the transfer characteristics. 1... Fixed base, 2... Swivel body, 3... First arm,
4... Arm of welding 2, 5... Wrist part, 6, 7... Drive unit, 8... Servo control system, 9... Pass line, 10
- Upper controller, 14... Servo processor, 17.17A to 17C, 26... Compensation circuit.

Claims (1)

【特許請求の範囲】 1、駆動源により駆動される腕部と、駆動源に動力を供
給するサーボ増幅器と、このサーボ増幅器に信号を供給
し、前記駆動源を含めてサーボ機構を構成するサーボ制
御系と、これらサーボ制御系に目標値を与えるコントロ
ーラとを備える産業用ロボットにおいて、ロボットの駆
動部に作用する負荷および外乱を除去するための補償手
段を備えたことを特徴とする産業用ロボットのサーボ制
御装置。 2、補償手段は目標値と制御量との偏差が加えられる部
分に、その伝達関数における慣性負荷に関連する係数お
よび外乱と制御量との間の伝達関数を0に収束させる補
償信号を出力する補償回路を設けたことを特徴とする特
許請求の範囲第1項記載の産業用ロボットのサーボ制御
量3、各サーボ制御系における補償信号の入力部に、速
度、加速度の信号を帰lする補償回路を加えたことを特
徴とする特許請求の範囲第2項記載の産業用ロボットの
サーボ制御装置。 4、各サーボ制御系の目標値入力部に、系の伝達関数を
打ち消す伝達関数と所望の伝達関数との積の伝達関数を
有する補償回路を設けたことを特徴とする特許請求の範
囲第2項記載の産業用ロボットのサーボ制御装置−
[Claims] 1. An arm driven by a drive source, a servo amplifier that supplies power to the drive source, and a servo that supplies a signal to the servo amplifier and constitutes a servo mechanism including the drive source. An industrial robot comprising a control system and a controller that provides target values to these servo control systems, the industrial robot comprising compensation means for removing loads and disturbances acting on a drive section of the robot. servo control device. 2. The compensation means outputs a compensation signal that causes the coefficient related to the inertial load in the transfer function and the transfer function between the disturbance and the controlled variable to converge to 0 at the portion where the deviation between the target value and the controlled variable is added. Servo control amount 3 of an industrial robot according to claim 1, characterized in that a compensation circuit is provided, compensation for returning speed and acceleration signals to the compensation signal input section of each servo control system The servo control device for an industrial robot according to claim 2, further comprising a circuit. 4. Claim 2, characterized in that the target value input section of each servo control system is provided with a compensation circuit having a transfer function that is the product of a transfer function that cancels the transfer function of the system and a desired transfer function. Servo control device for industrial robots described in Section -
JP20939882A 1982-12-01 1982-12-01 Servocontrol device of industrial robot Pending JPS59100903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20939882A JPS59100903A (en) 1982-12-01 1982-12-01 Servocontrol device of industrial robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20939882A JPS59100903A (en) 1982-12-01 1982-12-01 Servocontrol device of industrial robot

Publications (1)

Publication Number Publication Date
JPS59100903A true JPS59100903A (en) 1984-06-11

Family

ID=16572231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20939882A Pending JPS59100903A (en) 1982-12-01 1982-12-01 Servocontrol device of industrial robot

Country Status (1)

Country Link
JP (1) JPS59100903A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61201312A (en) * 1985-03-04 1986-09-06 Yukio Saito Attitude controller
US6091219A (en) * 1997-10-08 2000-07-18 Denso Corporation Structure of robot control system
CN106903692A (en) * 2017-03-31 2017-06-30 华南理工大学 A kind of joint moment method for limiting based on Dynamic Models of Robot Manipulators

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS404177Y1 (en) * 1964-08-29 1965-02-05
JPS559264A (en) * 1978-07-04 1980-01-23 Nippon Telegr & Teleph Corp <Ntt> Control system for positioning
JPS5574395A (en) * 1978-11-28 1980-06-04 Nippon Telegr & Teleph Corp <Ntt> Positioning control system
JPS5582307A (en) * 1978-12-15 1980-06-21 Fanuc Ltd Position control system of numeric control machine tool
JPS5628442A (en) * 1979-08-17 1981-03-20 Toshiba Corp Two-constant potential storage tube

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS404177Y1 (en) * 1964-08-29 1965-02-05
JPS559264A (en) * 1978-07-04 1980-01-23 Nippon Telegr & Teleph Corp <Ntt> Control system for positioning
JPS5574395A (en) * 1978-11-28 1980-06-04 Nippon Telegr & Teleph Corp <Ntt> Positioning control system
JPS5582307A (en) * 1978-12-15 1980-06-21 Fanuc Ltd Position control system of numeric control machine tool
JPS5628442A (en) * 1979-08-17 1981-03-20 Toshiba Corp Two-constant potential storage tube

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61201312A (en) * 1985-03-04 1986-09-06 Yukio Saito Attitude controller
US6091219A (en) * 1997-10-08 2000-07-18 Denso Corporation Structure of robot control system
CN106903692A (en) * 2017-03-31 2017-06-30 华南理工大学 A kind of joint moment method for limiting based on Dynamic Models of Robot Manipulators

Similar Documents

Publication Publication Date Title
US4621332A (en) Method and apparatus for controlling a robot utilizing force, position, velocity, spring constant, mass coefficient, and viscosity coefficient
Pereira et al. Integral resonant control for vibration damping and precise tip-positioning of a single-link flexible manipulator
EP0159131B1 (en) Drive system for a movable apparatus
JP3313643B2 (en) Servo control method in orbit machining with bite tool and servo controller for orbit machining
JPH08118275A (en) Controller for manipulator
JPH0144476B2 (en)
CN111687827A (en) Control method and control system for coordinating and operating weak rigid member by two robots
JP2604929B2 (en) Robot control device
JPH10128688A (en) Non-interfering control method of robot
JPH0413108B2 (en)
JPS61201304A (en) Method for controlling position of robot
JPS59100903A (en) Servocontrol device of industrial robot
JPH03130808A (en) Method and device for control of robot
JPH0944253A (en) Driving switching controller
CN114102636B (en) Welding seam polishing control system of teleoperation robot and design method and application thereof
Carignan et al. Manipulator impedance accuracy in position-based impedance control implementations
JPH07121239A (en) Control method for robot device
JPS61163406A (en) Robot control device
JPS6190207A (en) Robot controlling device
JPS60118478A (en) Controller for position of joint type robot
JP2580502B2 (en) Force / torque control method for motor with reduction gear
JPS59220806A (en) Controlling method of industrial robot
JPH08190433A (en) Load weight estimating method
Carignan et al. Achieving impedance objectives in robot teleoperation
JP2515549B2 (en) Arc trajectory control device for multi-axis servo mechanism