JPS59100885A - Array for detecting element of radiant rays - Google Patents

Array for detecting element of radiant rays

Info

Publication number
JPS59100885A
JPS59100885A JP57210761A JP21076182A JPS59100885A JP S59100885 A JPS59100885 A JP S59100885A JP 57210761 A JP57210761 A JP 57210761A JP 21076182 A JP21076182 A JP 21076182A JP S59100885 A JPS59100885 A JP S59100885A
Authority
JP
Japan
Prior art keywords
array
electrodes
crystal
semiconductor
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57210761A
Other languages
Japanese (ja)
Other versions
JPH056155B2 (en
Inventor
Matsuki Baba
末喜 馬場
Tadaoki Yamashita
山下 忠興
Osamu Yamamoto
理 山本
Hiroshi Tsutsui
博司 筒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57210761A priority Critical patent/JPS59100885A/en
Publication of JPS59100885A publication Critical patent/JPS59100885A/en
Publication of JPH056155B2 publication Critical patent/JPH056155B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/29Measurement performed on radiation beams, e.g. position or section of the beam; Measurement of spatial distribution of radiation
    • G01T1/2914Measurement of spatial distribution of radiation
    • G01T1/2921Static instruments for imaging the distribution of radioactivity in one or two dimensions; Radio-isotope cameras
    • G01T1/2928Static instruments for imaging the distribution of radioactivity in one or two dimensions; Radio-isotope cameras using solid state detectors

Abstract

PURPOSE:To shorten the traveling time of an electron and to obtain a high speed pulse with narrow pulse width by forming the crystal of a semiconductor detector thinly and arranging electrodes on the opposed surfaces inserting the thin crystals between them to shorten the traveling distance of the electron and positive holes to the electrodes. CONSTITUTION:Radiant rays detecting elements 1 consisting of semiconductors are linearly arranged on a substrate 2, and upper electrodes 3 are formed on the opposed crystal surfaces of the elements to form an array and to count up incident and absorbed radiant ray photons as the electric pulse. The number 4 is a lower common electrode. Denoting that the effective atomic No. of an element material to photoelectric absorption is >=30 and the thickness of the crystal, i.e. the interval of the electrodes, is <=0.5mm.. If the array is moved along a subject, two-dimensional radiant ray picture signals can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、X線診断装置、非破壊検査用X線検査装置等
に用い得る放射線検出素子アレイに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a radiation detection element array that can be used in an X-ray diagnostic device, an X-ray inspection device for nondestructive testing, and the like.

従来例の構成とその問題点 従来、X線検査にはX線写真が多く用いられてきたが、
感度が充分といえず検診時被ばく線量の低減が求められ
、まだ、コントラスト分解能が不足でコントラストをつ
けるために造影剤等が用いられてきた。
Conventional structure and its problems Traditionally, X-ray photographs have been used for many X-ray inspections, but
Sensitivity was not sufficient, so there was a need to reduce the exposure dose during medical examinations, and contrast agents were still used to add contrast due to lack of contrast resolution.

近年、コンピュータートモクラフィー装置が開発されて
きたか、これは断層撮影ができるのみならず、コントラ
スト分解能が良好で筋肉質と脂肪質等の放射線吸収係数
のわずかに違う物質が識別てき、癌等も大きいものであ
れば造影剤なしで識別することができるようになった。
In recent years, computerized tomography equipment has been developed, which not only allows for tomography, but also has good contrast resolution and can identify substances with slightly different radiation absorption coefficients, such as muscle and fat, as well as large-sized cancers. It is now possible to identify them without a contrast agent.

これは、放射線感応センサーの精度が向上したことが犬
き外理由であるが、しかしまだ不充分であり、小さな癌
°までも識別することは不能であった。また、被ばく線
量も少ないとは言えず、さらに低減の必要があった。
The reason for this is that the accuracy of radiation-sensitive sensors has improved, but it is still insufficient and it has not been possible to identify even small cancers. Furthermore, the exposure dose could not be said to be low, and there was a need to further reduce it.

発明の目的 本発明の目的は、放射線感度が良好で被ばく線量が少な
く、かつコントラスト解像度が良好な新しい放射線検出
素子アレイを提供するものである。
OBJECTS OF THE INVENTION An object of the present invention is to provide a new radiation detection element array that has good radiation sensitivity, low exposure dose, and good contrast resolution.

発明の構成 本発明は、半導体よりなる放射線検出素子を基板上に線
状配列し、前記素子の相対向する結晶面に電極を設けて
アレイを形成し、入射吸収した放射線フォトンを電気パ
ルスとして計数するようにし、その素子制料の光電吸収
に対する実効電子番号が30以上で結晶厚さ、すなわち
、電極開極をo、s酊以下としたものである。とのアレ
イを被検体に泊って移動させることによって2次元の放
射線画像信号を得ることができる。
Structure of the Invention The present invention comprises linearly arranging radiation detection elements made of semiconductors on a substrate, providing electrodes on opposing crystal planes of the elements to form an array, and counting incident and absorbed radiation photons as electrical pulses. The effective electron number for photoelectric absorption of the element material is 30 or more, and the crystal thickness, that is, the electrode opening is set to be less than o, s. A two-dimensional radiographic image signal can be obtained by moving the array over the subject.

実施例の説明 パルス計数して画像を得る方法では、1画素光りのパル
ス数の多い方がコントラスト解像度の良い画を得らね、
る。このためには検出パルス巾を狭くして、一定時間内
に多くのパルスを計数させる必要がある。このため、結
晶厚さを薄くしホール走行時間を短かくする。パルス巾
は厚さの2乗に比例するので、0・5酊程度のところに
実用上のパルス巾限度があり、これ以下の厚さであれば
105〜106カウント/画素の商品質画像が得られる
Description of Examples In the method of obtaining an image by counting pulses, the higher the number of pulses for one pixel, the better the contrast resolution can be obtained.
Ru. For this purpose, it is necessary to narrow the detection pulse width and count many pulses within a certain period of time. For this reason, the crystal thickness is reduced to shorten the hole transit time. Since the pulse width is proportional to the square of the thickness, there is a practical pulse width limit at about 0.5 mm, and if the thickness is less than this, a product quality image of 105 to 106 counts/pixel can be obtained. It will be done.

一方、結晶が薄いとX線の吸収率が悪くなる。光電吸収
に関する実効原子番号が30以上の材料を用いれば、0
・6が屑程度の厚さで30%以上の吸収率が得られる。
On the other hand, if the crystal is thin, the absorption rate of X-rays will be poor. If a material with an effective atomic number of 30 or more regarding photoelectric absorption is used, 0
・Absorption rate of 30% or more can be obtained with 6 having a thickness of about the size of a scrap.

このような条件の設計を含む放射線感応素子で、高感度
かつコントラスト解像度の良いものを見出した。
We have found a radiation-sensitive element that is designed to meet these conditions and has high sensitivity and good contrast resolution.

本発明の放射線検出素子アレイを実施例により説明する
。第1図a、  bは本発明の実施例にかかる放射線検
出素子アレイの構成図であり、aは平面図、bは正面図
である。図において、1は半導体検出素子結晶、2はそ
の基板、3は素子の上部電極、4は下部の共通電極であ
る。この素子アレイを被写体に沿って駆動させながら放
射線量を測定してゆくと2次元の画像信号を読み取るこ
とができる。
The radiation detection element array of the present invention will be described by way of examples. FIGS. 1a and 1b are configuration diagrams of a radiation detection element array according to an embodiment of the present invention, where a is a plan view and FIG. 1b is a front view. In the figure, 1 is a semiconductor detection element crystal, 2 is its substrate, 3 is an upper electrode of the element, and 4 is a lower common electrode. By measuring the radiation dose while driving this element array along the subject, a two-dimensional image signal can be read.

すなわち半導体検出器素子結晶1に入射した放射線は、
光電効果やコンプトン効果の反応を半導体材料内で起こ
すと、二次電子を発生する。この二次電子は、半導体内
を移動し、その通路の周囲に、電子−正孔対を発生させ
る。この電子−正孔対の数は、二次−1子の初期のエネ
ルギと比例する。
That is, the radiation incident on the semiconductor detector element crystal 1 is
When a photoelectric effect or Compton effect reaction occurs within a semiconductor material, secondary electrons are generated. This secondary electron moves within the semiconductor and generates electron-hole pairs around its path. The number of electron-hole pairs is proportional to the initial energy of the second order-one child.

第2図に原理の説明のだめの図を示す。図において、6
は半導体検出器素子結晶、6は電極、7は他の電極であ
る。半導体検知層に強い電界を印加すると、電子と正孔
はそれぞれの電極の方向に高速で移動し、電荷パルスを
発生する。放射線によって、二次電子が発生され、さら
に電子−正孔対が発生される時間は非常に短く、10−
12秒程度である。しかし、電子や正孔、特に正孔が半
導体内を移動する時間が長いため、従来はパルス巾の狭
い高速パルス出力を得ることは困難であった。人体等の
X線透過像を得る場合は、該プレイを人体に沿って少く
とも10 Sec以内の短時間に移動し、少くとも10
0点以上の位置でのアレイ測定値を読みとる必要があり
、このためには1素子での1回の測定時間は短かく少く
とも1001960となる。
FIG. 2 shows a diagram for explaining the principle. In the figure, 6
is a semiconductor detector element crystal, 6 is an electrode, and 7 is another electrode. When a strong electric field is applied to the semiconductor sensing layer, electrons and holes move at high speed toward their respective electrodes, generating charge pulses. The time during which secondary electrons and electron-hole pairs are generated by radiation is very short, and is 10-
It takes about 12 seconds. However, because it takes a long time for electrons and holes, especially holes, to move within a semiconductor, it has conventionally been difficult to obtain a high-speed pulse output with a narrow pulse width. When obtaining an X-ray transmission image of a human body, etc., move the play along the human body for a short time of at least 10 Sec, and
It is necessary to read array measurement values at positions of 0 or more points, and for this purpose, the time required for one measurement with one element is short, at least 1001960.

ところが、パルス巾が広いと、この時間内に計数できる
パルスの数は少なくなり、画素でのダイナミックレンジ
が少さくなり、又、計数の精度が落ちる。従って、計数
精度等の向上のだめには出来るたけパルス巾の狭い高速
パルスを得るようにしなければならなかった。従来は、
この点での解決策が無く、パルス計測法は用いられない
で電流計測法によるもののみ(参考文献:Y、Nar、
useat al、、  IERE  Trans 、
  N5−27(1)、p、2.52゜1000年)で
あった。電流法による場合、パルス法に比べて放射線感
度が2桁以上低下する。
However, when the pulse width is wide, the number of pulses that can be counted within this time decreases, the dynamic range of the pixel decreases, and the accuracy of counting decreases. Therefore, in order to improve counting accuracy, etc., it is necessary to obtain high-speed pulses with as narrow a pulse width as possible. conventionally,
There is no solution in this respect, and the pulse measurement method is not used, only the current measurement method (References: Y, Nar,
useat al,, IERE Trans,
N5-27(1), p, 2.52°1000 years). When using the current method, the radiation sensitivity decreases by more than two orders of magnitude compared to the pulse method.

本発明の要点の1つは、高速パルス計測のために、半導
体検出器結晶を、第1図に示すように、薄く形成し、薄
い結晶を間に挾んだ相対峙する面に電極を設け、電子及
び正孔の電極への走行距離を短かくすることによって、
その走行時間を短かくし、パルス巾の狭い高速パルスが
得られたことである。この点について、第2図に従って
詳しく説明する。放射線量子により、半導体内に発生し
た電子・正孔対は、半導体に印加された電界に従って、
電子は陽極へ、正孔は陰極へ移動する。これにより、外
部にパルス状の電流が流れる。そして、このパルス信号
の時間幅tは第1式で表わされることがわかっている。
One of the key points of the present invention is that, in order to measure high-speed pulses, a semiconductor detector crystal is formed thinly, as shown in FIG. 1, and electrodes are provided on opposing surfaces with the thin crystal in between. , by shortening the traveling distance of electrons and holes to the electrode,
The goal is to shorten the travel time and obtain high-speed pulses with a narrow pulse width. This point will be explained in detail with reference to FIG. Electron-hole pairs generated in the semiconductor by radiation quanta follow the electric field applied to the semiconductor,
Electrons move to the anode and holes move to the cathode. This causes a pulsed current to flow externally. It is known that the time width t of this pulse signal is expressed by the first equation.

t−d2/μ、Va     ・・・・・・(イ)ここ
でt:パルスの時間幅 d:半導体検知層の厚さ μ:電子又は正孔の易動度 va:半導体検知層への印加電圧 上式によれば、パルス時間巾は、半導体層の厚さの2乗
に比例するので、例えば、厚さを殉にすれば店。。のパ
ルス巾になるわけである。
t-d2/μ, Va (a) where t: pulse duration d: thickness of semiconductor detection layer μ: mobility of electrons or holes va: application to semiconductor detection layer According to the voltage equation, the pulse duration is proportional to the square of the thickness of the semiconductor layer. . This results in a pulse width of .

これを、実際の例、すなわち、CdTa (実効原子番
号ZX=49)とGILAS (ZR= s 1)で見
てみよう。CaTeのホール易動度は、μh= 8”/
V、sec 。
Let's look at this with a real example: CdTa (effective atomic number ZX=49) and GILAS (ZR=s 1). The hole mobility of CaTe is μh=8”/
V, sec.

また、GaAsは、μ11=400である。電圧を10
0v印加したとして、厚さに対してパルス巾をプロット
すると第3図のようになる。CdTeは1朋厚で約1p
Sf90. GaAsはO−25p S el C+ 
O−6NN厚になるとCaTeは0.3 ps6a 、
 GaAsは0−06pSeQになる。1朋厚とO,S
鞘厚ではパルス巾に数倍の差を生じる。このように0.
5闘厚以下では、パルス巾は0.2μsec以下となり
、パルスの時間分解能が現代の実用的回路技術で処理し
得る限度に近くなる。いま、1画素についてのパルス積
分時間を10o m5ecとするとパルス巾0.1μS
eCのパルス数は100 m5ec ÷0.1 μs6
0 = 106個近くとれることになる。放射パルスの
場合、統計的ゆらぎによる誤差は1r;7;103個で
あり、その画素での測定誤差は0,1%となる。筋肉質
、脂肪、水等の生体軟組織構成物質のX線吸収係数の差
は数条以下と言われ、この差異を検出するだめ、には画
素での測定精度として0.1%が必要と言われる。
Further, for GaAs, μ11=400. voltage to 10
Assuming that 0V is applied, the pulse width is plotted against the thickness as shown in Figure 3. One thickness of CdTe is approximately 1p.
Sf90. GaAs is O-25p S el C+
For O-6NN thickness, CaTe is 0.3 ps6a,
GaAs becomes 0-06pSeQ. 1 Tomo Atsushi and O,S
The sheath thickness causes a several-fold difference in pulse width. In this way, 0.
At a depth of 5 or less, the pulse width is less than 0.2 μsec, and the time resolution of the pulse approaches the limit that can be processed by modern practical circuit technology. Now, if the pulse integration time for one pixel is 10o m5ec, the pulse width is 0.1μS.
The number of eC pulses is 100 m5ec ÷ 0.1 μs6
0 = nearly 106 pieces can be obtained. In the case of a radiation pulse, the error due to statistical fluctuations is 1r;7;103, and the measurement error at that pixel is 0.1%. It is said that the difference in the X-ray absorption coefficients of biological soft tissue constituents such as muscle, fat, and water is less than a few lines, and it is said that a pixel measurement accuracy of 0.1% is required to detect this difference. .

従って、前述した入射xkの統計的ゆらぎによる誤差要
因はこの精度を保つレベルと言える。
Therefore, it can be said that the error factor due to the statistical fluctuation of the incident xk described above is at a level that maintains this accuracy.

ところが、半導体層を薄くすれば放射線の吸収率が低下
し、放射線感度が悪くなるという逆の問題が生じる。第
4図は、CaTeとGaAsの結晶厚さと69 kev
 X線の吸収率(%)の関係を示す図である。診断に用
いられるX線はe o keV内外である。
However, if the semiconductor layer is made thinner, the absorption rate of radiation decreases, causing the opposite problem of worsening radiation sensitivity. Figure 4 shows the crystal thickness of CaTe and GaAs and the 69 keV
FIG. 3 is a diagram showing the relationship between X-ray absorption rate (%). The X-rays used for diagnosis are within or outside of eo keV.

0.511ff厚の場合、CaTeは光電吸収に関する
実効原子番号が49で約ao%の吸収効率を有し充分に
大きい。0.1111jl厚でも約30%ではソ実用的
に用い得る。GaAsは実効原子番号が31で、0.5
朋厚の場合吸収効率約30%でCdTeより小さいが、
はぼ実用的に用い得る。実効原子番号が30より小さい
結晶ではX線の吸収効率が小さく、換言すれば、X線に
対する感度が低く実用になし得ない。
In the case of a thickness of 0.511 ff, CaTe has an effective atomic number of 49 for photoelectric absorption, which has an absorption efficiency of about ao%, which is sufficiently large. Even a thickness of 0.1111jl can be practically used at about 30%. GaAs has an effective atomic number of 31 and 0.5
In the case of Tomatsu, the absorption efficiency is about 30%, which is lower than that of CdTe, but
It can be used practically. Crystals with an effective atomic number smaller than 30 have low X-ray absorption efficiency, in other words, have low sensitivity to X-rays, and cannot be put to practical use.

以上をまとめると、実効原子番号が30以上の半導体結
晶で厚さが0.6花種度のものであれば、診断用のX線
吸収は充分で感度も高い。さらに、以前に述べたように
、0.6ffW以下の厚さであるとパルス巾も短かい。
To summarize the above, if the semiconductor crystal has an effective atomic number of 30 or more and a thickness of 0.6 degrees, the X-ray absorption for diagnosis is sufficient and the sensitivity is high. Furthermore, as mentioned previously, a thickness of 0.6 ffW or less results in a short pulse width.

第5図a、bは第1図とは異なる本発明の他の実施例を
示しており、細長い結晶の1面に共通電極をつけ、これ
を基板に貼りつけ、さらに、上部に複数個の電極を取り
つけた例である。製法を簡略化したものである。このよ
うに、該アレイは種々の構成をとりうる。
FIGS. 5a and 5b show another embodiment of the present invention different from that shown in FIG. This is an example with electrodes attached. This is a simplified manufacturing method. As such, the array may take on a variety of configurations.

第6図に、該アレイを用いたX線受像装置の1例を示す
。X線管5を出たファンビームX線は、被検体6を透過
して半導体検出素子アレイ7に入射し、X線信号は各素
子によって検出され、そのパルス数信号はカウンター回
路系8に送られ、つぎに、画像処理・メモリ、表示系9
に送られ、画像として表示又はファイルされる。これは
、ふつうのX線透過写真であるが、このアレイは同様に
コンピュータトモグツイーに応用でき、断面像を得るこ
ともできる。
FIG. 6 shows an example of an X-ray image receiving apparatus using the array. The fan beam X-rays exiting the X-ray tube 5 pass through the object 6 and enter the semiconductor detection element array 7, the X-ray signal is detected by each element, and the pulse number signal is sent to the counter circuit system 8. Next, image processing/memory and display system 9
and displayed or filed as an image. Although this is a normal X-ray radiograph, this array can also be applied to computerized tomography and can also obtain cross-sectional images.

発明の効果 以上のような本発明の放射線検出素子は新しい放射線受
(II素子を用いて高度交かつコントラスト解像度の大
きいX線診断装置等を得ることが出来る。lA寸厚さ0
.5717mのCdTeによる放射検出素子アレイを用
いると、これは60keV X線の吸収効率が80%に
達するので、理論的限界に近い感度を持つことになる。
Effects of the Invention The radiation detecting element of the present invention as described above can provide a new radiation receiver (X-ray diagnostic equipment, etc. with high intersection and high contrast resolution by using the II element.
.. Using a radiation detection element array of 5717m CdTe, which has an absorption efficiency of 80% for 60 keV X-rays, has a sensitivity close to the theoretical limit.

0.1=1mRでコントラストの良好なX線画像を得る
ことができる。これは、銀X線写真の100倍の感度に
相当する。また、1画素当り106カウントのレベルで
画像を得た場合、コントラスト解像度は非常に良好であ
り、生体組織の微細な違いを見分けることができる。
An X-ray image with good contrast can be obtained at 0.1=1 mR. This corresponds to 100 times the sensitivity of silver radiography. Furthermore, when an image is obtained at a level of 106 counts per pixel, the contrast resolution is very good and minute differences in living tissue can be distinguished.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a>、 (b)は、それぞれ本発明の実施例に
かかる放射線検出素子アレイの平面図および正面図、第
2図は、放射線検出の原理の説明図、第3図は、素子厚
さと出力パルス巾との関係を示す図、第4図は、素子厚
さと60keVX線の吸収率との関係を示す図、第5図
(→、(b)は、本発明の他の実施例の放射線検出素子
アレイ平面図および正面図、第6図は、同素子アレイの
X線診断装置への応用を示す図である。 1・・・・・半導体素子結晶、3・・・・・・電極、4
・・・・他の電極。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 一口 第3図 ノ寥 さ (mmン 第4図  ′ 厚 ざ (m力。
Figures 1 (a> and (b) are respectively a plan view and a front view of a radiation detection element array according to an embodiment of the present invention, Figure 2 is an explanatory diagram of the principle of radiation detection, and Figure 3 is an illustration of the elements FIG. 4 is a diagram showing the relationship between thickness and output pulse width. FIG. 4 is a diagram showing the relationship between element thickness and absorption rate of 60 keV X-rays. FIG. A plan view and a front view of the radiation detection element array of FIG. 6 are diagrams showing the application of the element array to an X-ray diagnostic device. electrode, 4
...Other electrodes. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2: Mouth Figure 3: Weight (mm) Figure 4: Thickness (m force)

Claims (3)

【特許請求の範囲】[Claims] (1)吸収した放射線フォトンを電気パルスとして計数
する半導体よりなる検出素子の素子材料の光電吸収に対
する実効原子番号を30以上とし、前記素子の複数個を
基板上に線状に配置するとともに線状に配置された前記
素子の相対向する面にそれぞれ複数個の電極を取りつけ
て複数個の素子からなるアレイを構成し、前記相対向す
る電極間隔が0.61Hm以下0.1mff+以上であ
ることを特徴とする放射線検出素子プレイ。
(1) The effective atomic number for photoelectric absorption of the element material of a detection element made of a semiconductor that counts absorbed radiation photons as electric pulses is 30 or more, and a plurality of the elements are arranged in a line on a substrate, and A plurality of electrodes are attached to opposing surfaces of the elements arranged in the array to form an array consisting of a plurality of elements, and the spacing between the opposing electrodes is 0.61Hm or less and 0.1mff+ or more. Features radiation detection element play.
(2)半導体がガリウム砒素であることを特徴とする特
許請求の範囲第1項記載の放射線検出素子アレイ。
(2) The radiation detection element array according to claim 1, wherein the semiconductor is gallium arsenide.
(3)半導体がカドミウムチルルであることを特徴とす
る特許請求の範囲第1項記載の放射線検出素子アレイ。
(3) The radiation detection element array as set forth in claim 1, wherein the semiconductor is cadmium chloride.
JP57210761A 1982-12-01 1982-12-01 Array for detecting element of radiant rays Granted JPS59100885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57210761A JPS59100885A (en) 1982-12-01 1982-12-01 Array for detecting element of radiant rays

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57210761A JPS59100885A (en) 1982-12-01 1982-12-01 Array for detecting element of radiant rays

Publications (2)

Publication Number Publication Date
JPS59100885A true JPS59100885A (en) 1984-06-11
JPH056155B2 JPH056155B2 (en) 1993-01-25

Family

ID=16594687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57210761A Granted JPS59100885A (en) 1982-12-01 1982-12-01 Array for detecting element of radiant rays

Country Status (1)

Country Link
JP (1) JPS59100885A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4651005A (en) * 1983-10-12 1987-03-17 Matsushita Electric Industrial Co., Ltd. Energy separated quantum-counting radiography
JPH01138485A (en) * 1987-11-25 1989-05-31 Matsushita Electric Ind Co Ltd Radiation image device
WO1997012261A1 (en) * 1995-09-28 1997-04-03 Pierre Fessler X-ray intensity measurement device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57104876A (en) * 1980-12-22 1982-06-30 Toshiba Corp Semiconductor radiation detecting device
JPS57149981A (en) * 1981-03-12 1982-09-16 Yokogawa Hokushin Electric Corp Multichannel type radiation detector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57104876A (en) * 1980-12-22 1982-06-30 Toshiba Corp Semiconductor radiation detecting device
JPS57149981A (en) * 1981-03-12 1982-09-16 Yokogawa Hokushin Electric Corp Multichannel type radiation detector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4651005A (en) * 1983-10-12 1987-03-17 Matsushita Electric Industrial Co., Ltd. Energy separated quantum-counting radiography
JPH01138485A (en) * 1987-11-25 1989-05-31 Matsushita Electric Ind Co Ltd Radiation image device
WO1997012261A1 (en) * 1995-09-28 1997-04-03 Pierre Fessler X-ray intensity measurement device

Also Published As

Publication number Publication date
JPH056155B2 (en) 1993-01-25

Similar Documents

Publication Publication Date Title
US7769138B2 (en) Apparatus and method of improved angiographic imaging
TWI762277B (en) Apparatus suitable for detecting x-ray, method of making the same, system for x-ray detection, cargo scanning or non-intrusive inspection (nii) system, full-body scanner system, x-ray computed tomography (x-ray ct) system, electron microscope, and system suitable for phase-contrast x-ray imaging (pci)
JP2515973B2 (en) Projection radiographic system and radiation detector
JP5779819B2 (en) Radiation detector
US4618773A (en) Apparatus for the diagnosis of body structures into which a gammaemitting radioactive isotope has been introduced
Scuffham et al. A CdTe detector for hyperspectral SPECT imaging
WO1999059001A1 (en) Multi-density and multi-atomic number detector media for applications
JP2009502227A (en) X-ray detector imaging with multicolor spectrum
JP2008510132A (en) Anti-scatter grid for radiation detectors
JPS6080746A (en) Method for receiving radiation image
US5774520A (en) Densitometer for determining the density distribution and variation of density of an object
Lacy et al. A gamma camera for medical applications, using a multiwire proportional counter
Barber et al. Comparison of NaI (Tl), CdTe, and HgI2 surgical probes: physical characterization
JPS59100885A (en) Array for detecting element of radiant rays
Panta Toward human MARS scanning: improving spectral performance for soft tissue imaging
Wang et al. Dose reduction potential with photon counting computed tomography
JP2007071602A (en) Radiation detector
JP2007093497A (en) Nuclear medicine diagnostic equipment and identification method of radiation detector therein
JP2006506157A (en) X-ray inspection equipment
JP2007267980A (en) Continuous processing type x-ray ct apparatus without rotating mechanism
Thompson et al. A multi-element silicon detector for X-ray flux measurements
Zoltani et al. Flash x‐ray computed tomography facility for microsecond events
JPS5994046A (en) Radiation image acceptance method
JPS6141440A (en) X-ray diagnostic apparatus
AU686226B2 (en) Tomographic densitometer