JPS59100858A - Method for measuring remaining service life of metallic material - Google Patents

Method for measuring remaining service life of metallic material

Info

Publication number
JPS59100858A
JPS59100858A JP21063782A JP21063782A JPS59100858A JP S59100858 A JPS59100858 A JP S59100858A JP 21063782 A JP21063782 A JP 21063782A JP 21063782 A JP21063782 A JP 21063782A JP S59100858 A JPS59100858 A JP S59100858A
Authority
JP
Japan
Prior art keywords
eddy current
value
service life
measured
fracture surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21063782A
Other languages
Japanese (ja)
Inventor
Osamu Shibazaki
柴崎 統
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP21063782A priority Critical patent/JPS59100858A/en
Publication of JPS59100858A publication Critical patent/JPS59100858A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PURPOSE:To measure nondestructively a remaining service life of a material by comparing a deviation value obtained by comparing an eddy current value from a test piece prior to usage with an eddy current of a material used actually with characteristics between a fracture surface transition temp. and an eddy current of the metallic material. CONSTITUTION:The variation of the eddy current value (shown as an ECT value in the following) is raised with rise of a fracture surface transition temp. Thus, service hours of the metallic material, i.e. the relationship between the variations of the fracture surface transition temp. and the ECT are measured previously, and a probe coil is brought into contact successively with each part of a measuring material 4 to read the ECT value and to allow the read value to correspond to a graph, and the fact that how much service service life is dissipated is measured. Thereby, the remaining service life up to the service limit hour can be measured nondestructively from this result.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、高温・高圧の下で使用される金属材料の余寿
命を非破壊的に測定できるようにした金属材料の余寿命
測定方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for measuring the remaining life of a metal material that allows non-destructive measurement of the remaining life of a metal material used under high temperature and high pressure.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

原動機、例えば蒸気タービンに使用されている金属材料
は、長時間に亘って高温・高圧の下で使用されて2す、
使用時間の経過とともに財力の低下を予じめ検知してお
くことが、事故を未然に防止する見地から必要である。
Metal materials used in prime movers, such as steam turbines, are used under high temperatures and pressures for long periods of time.
From the standpoint of preventing accidents, it is necessary to detect in advance the decline in financial strength as the usage time passes.

従来、金属材料の余寿命Th ff1ll定する方法と
して、使用材料の一部を試験片として取り出し、この試
験片に破壊試験を行って材料の余寿命を測定することが
一般的に行なわれていた。しかしながら、この方法だと
、例えば回転軸や羽根等から試験片を取シ出すことは性
能低下、アンバランス等の支障をきたし、現実的には困
難な問題が生じていた。
Conventionally, as a method for determining the remaining life Thff1ll of metal materials, it was common practice to take out a part of the material used as a test piece and perform a destructive test on this test piece to measure the remaining life of the material. . However, with this method, taking out the test piece from the rotating shaft or blade, for example, causes problems such as performance deterioration and unbalance, which poses difficult problems in practice.

このため、従来は、蒸気タービン運転中の温度。For this reason, conventionally, the temperature during steam turbine operation.

圧力を基にして得られた模擬データと蒸気タービン停止
中に測定した値とを比較し、この比較値から経験的に財
力低下を判断し、部材の交換を行っていた。
Simulated data obtained based on pressure was compared with values measured while the steam turbine was stopped, and based on the comparison values, financial decline was determined empirically and parts were replaced.

しかしながら、この方法だと、熟練を要するため、財力
低下の判断を誤ることがあり、実際に部材を交換しなく
ても二いのに交換してみたり、交換しなければならない
のに交換をしなかったり等の不正確性がアク、昨今の省
エネルギの見地からも好ましくはなかった。
However, this method requires skill, which can lead to erroneous judgments about financial decline, such as trying to replace parts even though they don't actually have to be replaced, or replacing parts even though they should be replaced. The inaccuracies such as not being used were a problem, and it was not desirable from the standpoint of energy saving these days.

〔発明の目的〕[Purpose of the invention]

本発明は、上記の点に鑑み、金属材料の財力低下値と渦
電流値とが比例関係にあることに着目し、渦電流値の変
化を測定することによって金属材料の余寿命を非破壊的
に測定しようとする金属材料の余寿命測定方法を提供す
るものである。
In view of the above points, the present invention focuses on the fact that there is a proportional relationship between the financial decline value of metal materials and the eddy current value, and non-destructively estimates the remaining life of the metal material by measuring changes in the eddy current value. The present invention provides a method for measuring the remaining life of metal materials.

〔発明の概要〕[Summary of the invention]

本発明は、使用前の試験片からの渦電流値と、実際に使
用している材料の渦電流値とを比較し、偏差値は金属材
料の破面遷移温度と過電流値とからの特性とを比較する
ことによって材料の寿命消費量をall定することを特
徴とするものである。
The present invention compares the eddy current value from the test piece before use with the eddy current value of the material actually used, and the deviation value is determined from the characteristics of the metal material's fracture surface transition temperature and overcurrent value. It is characterized by determining the lifetime consumption of materials by comparing the

〔発明の実施例〕[Embodiments of the invention]

以下本発明の実施例を図面を参照して説明する。 Embodiments of the present invention will be described below with reference to the drawings.

一般に、金属材料、特に低合金鋼は、高温・高圧の蒸気
の下で使用されていると、第1図に示でれるように、材
料の結晶粒界に不純物の偏析が生じ、このため靭性が低
下し、破面遷移温度(以下FATTと記す)が著しく増
別し、材料の脆化現象が生起する。この脆化現象はクリ
ープ現象の進行を早め、材料破壊に至らしめていること
が一般に良く知られている。
In general, when metal materials, especially low-alloy steel, are used under high-temperature, high-pressure steam, impurities segregate at the grain boundaries of the material, as shown in Figure 1, and this results in poor toughness. decreases, the fracture surface transition temperature (hereinafter referred to as FATT) increases significantly, and a phenomenon of embrittlement of the material occurs. It is generally well known that this embrittlement phenomenon accelerates the progress of the creep phenomenon and leads to material failure.

このように材料の破壊現象と脆化現象とが一体的に結び
ついており、この脆化現象を経時的かつ非破壊的に演出
できれば金属材料の余寿命が測定できる。金7・属材料
の脆化現象を測定する方法として渦峨流探傷去がある。
In this way, the fracture phenomenon and the embrittlement phenomenon of a material are integrally linked, and if this embrittlement phenomenon can be produced non-destructively over time, the remaining life of a metal material can be measured. Eddy current flaw detection is a method for measuring the embrittlement phenomenon of metal materials.

すなわち、渦電流探傷法は、測定しようとする金属材料
にプローブコイルを通して電流を流すと、金属材料に渦
電流が発生し、その影響によって変化するプローブコイ
ルのインピーダンス変化量を渦電流値(以下ECT値と
記す)として読みとり、このインピーダンス変化量の測
定によシ渦電流の量で表わされる金属材料の状態を知る
ものである。第2図は、1例としてタービンローターと
して多く用いられるICr−IM。
In other words, in the eddy current flaw detection method, when a current is passed through a probe coil through the metal material to be measured, an eddy current is generated in the metal material, and the amount of change in the impedance of the probe coil that changes due to the influence is called the eddy current value (hereinafter referred to as ECT). By measuring the amount of change in impedance, the state of the metal material, expressed as the amount of eddy current, can be determined. FIG. 2 shows, as an example, ICr-IM, which is often used as a turbine rotor.

lv鋼の破面遷移温度とECT値の変化を示したもので
、ECT値の変化は、第1図に示す使用中の材料挙動を
良く示し、破面遷移温度の上昇に・よ)上昇することが
明らかである。このように金属材料の使用時間すなわち
破面遷移温度とECT値の変化との関係を予じめ求めて
おき、この金属材料よシなる被測定材の使用前の小型試
験片を基準試験片とするが、もしなければ被測定材と同
種材質の材料を被測定材のミルシー)K従い同様の初期
熱処理を施した小型試験片を基準試験片とするか、また
はタービンローターなどはカップリング部の温度が十分
低くまた応力もあまり受けない部位を未使用材として基
準試験片とし、第3図に示すように、まず基準試験片1
にプローブコイル2を接触させ渦電流測定装置3を調節
してECT指示を零に合わせ、次に被測定材4の各部に
プローブコイル2を順次接触させ、ECT値を読みとり
、第2図に示すグラフに対応させて測定時に実質どのく
らい使用されたか、換言すればどのくらい寿命を消費し
たかを測定し、この結果から使用限度時間までの余寿命
を測定することができる。
This shows the changes in the fracture surface transition temperature and ECT value of lv steel.The change in ECT value clearly indicates the behavior of the material during use, as shown in Figure 1, and increases as the fracture surface transition temperature rises. That is clear. In this way, the relationship between the usage time of the metal material, that is, the fracture surface transition temperature, and the change in the ECT value is determined in advance, and a small test piece of the metal material or other material to be measured before use is used as the reference test piece. However, if this is not available, use a small test piece that has undergone the same initial heat treatment as the reference test piece, or use a material of the same type as the material to be measured. As shown in Fig. 3, a part of the test piece whose temperature is sufficiently low and which does not receive much stress is used as an unused standard test piece.
The probe coil 2 is brought into contact with the eddy current measuring device 3 to adjust the ECT indication to zero, and then the probe coil 2 is brought into contact with each part of the material to be measured 4 in sequence, and the ECT value is read, as shown in FIG. Corresponding to the graph, it is possible to measure how much time the device has actually been used at the time of measurement, in other words, how much life has been consumed, and from this result, it is possible to measure the remaining life until the usage limit time.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば金属材料のECT値
を測定することによ勺、金属材料がどのくらい寿命を消
費し、使用限度時間までどのくらい余寿命があるかを、
非破壊的かつ的確に倹矧することができるため、機器の
信頼性向上、資源の有効利用などに著しい効果を発揮す
る。
As explained above, according to the present invention, by measuring the ECT value of a metal material, it is possible to determine how much life the metal material consumes and how much life it has left until its usage limit.
Since it is possible to economize non-destructively and accurately, it has a remarkable effect on improving the reliability of equipment and effectively using resources.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は高温高応力下で使用される金属材料の経年劣化
挙動を示す図、第2図は渦電流探傷法における劣化試験
における破面遷移温度(FATT)と渦電流(直の変化
を示す図、第3図は本発明の実施態様を示す要領図であ
る。 1・−基準試験片    2 プローブコイル3 渦電
流測定装置  4 被測定材 (7317)  代理人 弁理士則 近 憲 佑 (ほ
か1名)第1図 第2図 FACT〈6c) 第3図
Figure 1 shows the aging behavior of metal materials used under high temperature and high stress conditions. Figure 2 shows the changes in fracture surface transition temperature (FATT) and eddy current (direct) in a deterioration test using the eddy current flaw detection method. 1 and 3 are schematic diagrams showing embodiments of the present invention. 1.-Reference test piece 2 Probe coil 3 Eddy current measuring device 4 Material to be measured (7317) Agent Patent attorney rule Kensuke Chika (and 1 others) Figure 1 Figure 2 FACT〈6c) Figure 3

Claims (1)

【特許請求の範囲】[Claims] 使用前の試験片によって得られた渦電流値と、高温・高
圧下の基に使用されている金属材料の渦電流値とを比較
し、偏差が生じた場合、その偏差値を予じめ求めておい
た金属材料の破面遷移温度と渦電流値とからの特性値と
比較し、金属材料の寿命の消費量を測定するようにした
金属材料の余寿命測定方法。
Compare the eddy current value obtained from the test piece before use with the eddy current value of the metal material used in the base under high temperature and high pressure, and if a deviation occurs, calculate the deviation value in advance. A method for measuring the remaining life of a metal material in which the consumption amount over the life of the metal material is measured by comparing characteristic values from the fracture surface transition temperature and eddy current value of the metal material.
JP21063782A 1982-12-02 1982-12-02 Method for measuring remaining service life of metallic material Pending JPS59100858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21063782A JPS59100858A (en) 1982-12-02 1982-12-02 Method for measuring remaining service life of metallic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21063782A JPS59100858A (en) 1982-12-02 1982-12-02 Method for measuring remaining service life of metallic material

Publications (1)

Publication Number Publication Date
JPS59100858A true JPS59100858A (en) 1984-06-11

Family

ID=16592603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21063782A Pending JPS59100858A (en) 1982-12-02 1982-12-02 Method for measuring remaining service life of metallic material

Country Status (1)

Country Link
JP (1) JPS59100858A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020067416A (en) * 2018-10-26 2020-04-30 株式会社Ihi Creep remaining life diagnostic method and creep remaining life diagnostic system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020067416A (en) * 2018-10-26 2020-04-30 株式会社Ihi Creep remaining life diagnostic method and creep remaining life diagnostic system

Similar Documents

Publication Publication Date Title
US4746858A (en) Non destructive testing for creep damage of a ferromagnetic workpiece
JP2009092478A (en) Method of evaluating degradation in heat-resistant steel and method of evaluating degradation in turbine
JPH09195795A (en) Remaining life evaluation method for gas turbine stationary blade and device thereof
JP3728286B2 (en) Nondestructive high temperature creep damage evaluation method
JPS59100858A (en) Method for measuring remaining service life of metallic material
JPS61172059A (en) Method for nondestructive forecasting of life of turbine
JP3332971B2 (en) Diagnosis method for deterioration of ferritic heat-resistant steel
JPH075086A (en) Method for estimating superposed damage of creep and fatigue of high-temperature structure material
JPH0254514B2 (en)
JP3372437B2 (en) Creep life evaluation method for high temperature equipment materials
JP3334070B2 (en) A method for estimating creep life of hot parts for gas turbines.
JP3015599B2 (en) Creep damage evaluation method for ferritic heat-resistant steel
JPH0210900B2 (en)
JP3441181B2 (en) Method for detecting deterioration of super heat resistant alloy steel
US20100170079A1 (en) Method for detecting and removing nitride layer formed on the surface of a steel alloy
JPS61265569A (en) Method for non-destructive forecasting of life of turbine
CN113740140B (en) Failure risk grade acquisition method for ferritic steel welded joint for thermal power plant
JP2012132933A (en) Deterioration assessing method for heat-resistant steel and deterioration assessing method for turbines
Devine et al. Magnescope: Applications in nondestructive evaluation
JPH02248860A (en) Evaluation of residual life of ferrite based heat resistant steel
JPH0650942A (en) Measuring method for crack length of surface of ferrite-based steel material
JPH01129154A (en) Method and apparatus for inspecting embrittlement point of metal material
JP3224053B2 (en) Non-destructive test method and apparatus for heat-resistant metal
JPH05157672A (en) Method for evaluating embrittlement of steam turbine
JPH0658911A (en) Method and device for predicting life of high-temperature equipment by magnetic ae