JPS59100816A - Magnetoelectric converter - Google Patents

Magnetoelectric converter

Info

Publication number
JPS59100816A
JPS59100816A JP57211724A JP21172482A JPS59100816A JP S59100816 A JPS59100816 A JP S59100816A JP 57211724 A JP57211724 A JP 57211724A JP 21172482 A JP21172482 A JP 21172482A JP S59100816 A JPS59100816 A JP S59100816A
Authority
JP
Japan
Prior art keywords
thin film
film resistor
magnetic
comb
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57211724A
Other languages
Japanese (ja)
Other versions
JPH0216973B2 (en
Inventor
Shoichi Kubo
久保 正一
Kunihiro Matsuda
邦宏 松田
Nobumasa Oshima
大島 信正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57211724A priority Critical patent/JPS59100816A/en
Publication of JPS59100816A publication Critical patent/JPS59100816A/en
Publication of JPH0216973B2 publication Critical patent/JPH0216973B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

PURPOSE:To obtain a magnetoelectric converter generating a sufficient outputs in spite of narrow recording wavelength by arranging a comb-like magnetic thin film resistor forming ferromagnetic materials in a prescribed direction to a magnetic field and fixing the pattern width of the thin film resistor on a prescribed value. CONSTITUTION:A repeating magnetic signal with wavelength lambda which is recorded in a turn table 11 forms ferromagnetic materials C, D arranged so that the magnetic field due to the magneic signal meets with the flowing current direction at right angles and the interval is detected by the comb-like magnetic thin film resistor with lambda/4 wavelength. Since the pattern width of the thin film resistor is fixed on 1.5mum or less, the changing ratio of resistance value is increased, the magnetic force line due to a signal 12 is made incident to the thin film resistor without leakage by the relative arrangement between the thin film resistor and the signal 12 and gap length due to the thin film resistor is made minute. Conseuqntly, the magnetoelectric converter generating sufficient outputs in spite of narrow recording wavelength is obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、VTRのキャプスタンモータ等の回転数制御
のだめの回帆角の検出に用いる磁電変換装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a magnetoelectric transducer used for detecting the turning angle of a rotational speed control device such as a capstan motor of a VTR.

従来例の174成とその問題点 従来の磁電変換装ffiについて第1図及び第2図を用
いて説明する。ターンテーブル(1)の局面ニ記録され
た複数の磁極を配列したくり返しのある磁気信号(2)
の局面に対して磁電変換素子の強磁性体Q■の成す平面
が略垂直となるように対向配置している(特公昭54−
41335参照)。前記強磁性体■0は、ニッケルコバ
ルトのような磁気抵抗の異方性効果を有する強磁性材料
を基板(3)に全面に蒸着した後、エツチングによシ櫛
歯状パターンを形成して成るものである。この強磁性体
Q■の間隔は近接するくり返しのある磁気信号(2)の
記録波長λに対して一λである。強磁性体囚■を飽和磁
化す4                      
             −るに充分な強さの磁界H
を強磁性体Q■のなす平面に於いて強磁性体O)の電流
方向に刻して角度θを以って加えると、強磁性体Q@l
の各電気抵抗eA。
Conventional 174 configuration and its problems A conventional magnetoelectric transducer ffi will be explained with reference to FIGS. 1 and 2. Repeated magnetic signal (2) in which a plurality of magnetic poles are arranged and recorded in the phase of the turntable (1)
The ferromagnetic material Q■ of the magnetoelectric transducer is arranged to face the plane so that it is substantially perpendicular to the plane of
41335). The ferromagnetic material 0 is formed by depositing a ferromagnetic material such as nickel cobalt having an anisotropic effect on magnetoresistance on the entire surface of the substrate (3), and then etching it to form a comb-like pattern. It is something. The distance between the ferromagnetic materials Q2 is one λ with respect to the recording wavelength λ of the adjacent repeated magnetic signals (2). Saturation magnetize a ferromagnetic material 4
- A magnetic field H strong enough to
is carved in the current direction of the ferromagnetic material O) on the plane formed by the ferromagnetic material Q■ and added at an angle θ, the ferromagnetic material Q@l
Each electrical resistance eA.

Pwffi変化し、その変化は角度θによって次式で表
わされる。
Pwffi changes, and the change is expressed by the following equation using the angle θ.

ea=91− sin”θ十P li cos”tl−
−−−−−■0B=P>  cos”0+p1.Bin
”a・−−−−−■出力端子(5)の電圧7社、強磁性
体Q■が直列接続であるから、端子(4aX4b)に加
える電諒軍圧をvoとすれば次式で表わされる。
ea=91- sin"θ0P li cos"tl-
−−−−■0B=P> cos”0+p1.Bin
"a・------■ Since the voltage of the output terminal (5) 7 and the ferromagnetic material Q■ are connected in series, if the electrical pressure applied to the terminal (4aX4b) is vo, it can be expressed by the following formula. It will be done.

(但しΔp = p tt −plとする)このような
従来の磁電変換装置においては、第3図に示すように、
くυ返しのある磁気信号(2)に対して素子外周面まで
のギャップ(G、)と、素子を保護している保護膜によ
るギャップ(G、)と1強磁性体Q■を支持する基板端
面と強磁性体(A)03とのギャップ(G、)と、この
強磁性体QeO感磁幅(G、)とを加えたギャップ(G
o)に対して磁気信号(2)は充分強い磁界が必要であ
る。ところで、VTRのキャプスタンモータでは高精度
の回転数制御を必要とすることから、ターンテープ/l
/(1)の磁気信9(2)の記録波長λをα628J1
11と狭い記録波長とする。このように狭い記録波長で
の検出に対して、上記従来の磁電変換装置では、ギャッ
プカ;広いンヒめ強磁性体■■に充分な磁界が加わらず
、充分な出力が得られない欠点があった。
(However, Δp = p tt - pl) In such a conventional magnetoelectric conversion device, as shown in FIG.
Gap (G,) to the outer peripheral surface of the element for repeated magnetic signals (2), gap due to the protective film protecting the element (G,), and substrate supporting the ferromagnetic material Q■ The gap (G, ) is the sum of the gap (G, ) between the end face and the ferromagnetic material (A) 03 and the magnetically sensitive width (G, ) of this ferromagnetic material QeO.
In contrast to o), magnetic signal (2) requires a sufficiently strong magnetic field. By the way, since VTR capstan motors require highly accurate rotational speed control, turn tape/l
/(1) magnetic signal 9(2) recording wavelength λ is α628J1
The recording wavelength is as narrow as 11. For detection at such a narrow recording wavelength, the above-mentioned conventional magnetoelectric transducers have the disadvantage that a sufficient magnetic field cannot be applied to the wide gap ferromagnetic material, making it impossible to obtain sufficient output. .

発明の目的 本発明は上記従来の欠点を解消するもので、狭い記録波
長でも充分な出力を得ることができる磁電変換装置を得
るととを目的とする。
OBJECTS OF THE INVENTION The present invention solves the above-mentioned conventional drawbacks, and aims to provide a magnetoelectric transducer that can obtain sufficient output even at a narrow recording wavelength.

発明の構成 上記目的を達するため、本発明の磁電変換装置は、パタ
ーン幅が15μ纂以下の形状異方性を有する一対の櫛状
磁性薄膜抵抗をくフ返し磁気信号の記録波長λに対して
7λの間隔をあけて絶縁基板上に形成して成る磁電変換
素子を設け、との磁電変換素子を、前記一対の櫛状磁性
薄膜抵抗が前記くシ返し磁気信号の磁界面に平面対向し
かつ櫛状磁性薄膜抵抗に流れる電流方向が常にくシ返し
磁気信号源からの磁界に対して略直角となるように配置
した構成である。
Structure of the Invention In order to achieve the above object, the magnetoelectric transducer of the present invention repeats a pair of comb-shaped magnetic thin film resistors having a shape anisotropy with a pattern width of 15 μm or less to produce a magnetic signal with a recording wavelength λ. A magnetoelectric transducer is formed on an insulating substrate with an interval of 7λ, and the magnetoelectric transducer is arranged such that the pair of comb-shaped magnetic thin film resistors face the magnetic interface of the reciprocating magnetic signal in a plane, and The arrangement is such that the direction of current flowing through the comb-shaped magnetic thin film resistor is always approximately perpendicular to the magnetic field from the comb-shaped magnetic signal source.

実施例の説明 以下、本発明の一実施例について、図面に基づい・て説
明する。第5図及びM6図において、(1υはターンテ
ープμであり、このターンテープ/l/ (Illの局
部に磁気記録されたくり返し磁気信号021と平面対向
するように磁電変換素子Q四が配置さ扛てい4この磁電
変換素子Hのパターンは、第3図に示す従来素子と同じ
パタ−7溝成であり、強磁性体(QOはく夛返し磁気信
号(2)の記録波長λに対して7λの間隔をあけて配置
されている。また強磁性体00のパターン幅Wは従来の
ものよシも狭く、15μ似下にIiσ成されている。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. In FIG. 5 and M6, (1υ is a turn tape μ, and four magnetoelectric transducers Q4 are arranged so as to face the repeated magnetic signal 021 magnetically recorded in a local part of this turn tape /l/(Ill). 4. The pattern of this magnetoelectric transducer H is the same 7-groove pattern as the conventional element shown in FIG. They are arranged at intervals of 7λ.The pattern width W of the ferromagnetic material 00 is narrower than that of the conventional pattern, and is approximately 15μ or less.

次に動作を説明する。強磁性体(Q(Dに作用する磁界
は、強磁性体OOの膜面に垂直な方向と、電流方向(矢
印■方向)と直角をなす角度方向とに分解できる。強磁
性体C)(I)は、作用する磁界が膜面に垂直な方向で
は抵抗値変化はおこらず、膜面と水平方向で電流と直角
をなす磁界強さにより抵抗値変化がおこる。ターンテー
プA/ (+1)が回転したときの強磁性体0Oの抵抗
値PC,pDはそれぞれ次式により表わされる。
Next, the operation will be explained. The magnetic field that acts on the ferromagnetic material (Q In I), the resistance value does not change when the applied magnetic field is perpendicular to the film surface, but the resistance value changes depending on the strength of the magnetic field that is perpendicular to the current in the direction horizontal to the film surface.Turn tape A/ (+1) The resistance values PC and pD of the ferromagnetic material 0O when rotated are respectively expressed by the following equations.

P c=Oo−Δpsin”a −=■P D”Oo−
Δpcos”α・・・・・・■したがって、端子(t4
a)(t4b)に電圧V。の電源を接続したとき、端子
(16の出力電圧■αは次式で表わされる。
P c=Oo−Δpsin”a −=■P D”Oo−
Δpcos”α・・・・・・■ Therefore, the terminal (t4
a) Voltage V at (t4b). When the power supply of terminal (16) is connected, the output voltage α of terminal (16) is expressed by the following formula.

次にさらに具体的な実施例について第7図により説明す
る。ガラス基板Q6上にニッケ/l/80%、コバμト
20%の金属膜を100OAの厚さで蒸着し、これをエ
ツチングして強磁性体Oaを形成し、その上から保護M
Qηを形成した。強磁性体oOの/<ターン幅ωを10
μ町ジグザク状の折シ返しを1回、感知部の全長を6■
とし%p=IKΩ、Δe=45Ω、飽和磁界Hk=16
0ガウス、保護層071の厚さを30μ露とした磁電変
換素子(Iaを、<9返し磁気信号(121の記録波長
λを06281111としたターンテープA/ (II
)にギャップα2闘で近接させたとき、電源電圧DC1
2Vで10100Iの出力が得られた。一方、との磁電
変換素子(laを従来と同様な姿勢でターンテープyv
 (++)に近接配置させてその出力を測定したところ
%  IIIV以下の小さい出力しか得られなかった。
Next, a more specific embodiment will be described with reference to FIG. A metal film of 80% nickel/l/20% cobalt is vapor-deposited on a glass substrate Q6 to a thickness of 100 OA, and this is etched to form a ferromagnetic material Oa.
Qη was formed. ferromagnetic material oO /< turn width ω is 10
μ-cho zigzag fold back once, total length of sensing part 6cm
%p=IKΩ, Δe=45Ω, saturation magnetic field Hk=16
0 Gauss and a magnetoelectric transducer (Ia) with a protective layer 071 thickness of 30 μm, a turn tape A/ (II
) with a gap α2, the power supply voltage DC1
An output of 10100I was obtained at 2V. On the other hand, with the magnetoelectric transducer (la) in the same position as before, turn tape yv
(++) and measured its output, only a small output of less than %IIIV was obtained.

また、強磁性体00のパターン幅のを変えることによル
、電流方向と同一方向磁界及び電流方向と直角をなす方
向の磁界に対する抵抗値変化率はそれぞれ第8図及び第
9図に示すように15μmを境に大きく変化することが
分かった。従来の配置では電流方向と同一方向及び電流
方向と直角方向の両磁界方向に対して強磁性体の抵抗値
が変化するが、上記構成の如く1瓦流方向と同一方向磁
界のない配置関係ではその成分の抵抗変化を利用できな
い。しかし第9図に示すように、パターン幅ωを狭くす
ると、電流方向と直角をなす方向の磁界に対する抵抗値
変化率が増加する形状異方性が現われるので、磁電ア2
換素子O濁の強磁性体OOを、15μ馬以下の幅の狭い
パターンにより構成した。
In addition, by changing the pattern width of the ferromagnetic material 00, the rate of change in resistance against a magnetic field in the same direction as the current direction and a magnetic field in a direction perpendicular to the current direction is as shown in Figures 8 and 9, respectively. It was found that there is a large change in the thickness after 15 μm. In the conventional arrangement, the resistance value of the ferromagnetic material changes in both magnetic field directions, which are the same direction as the current direction and the direction perpendicular to the current direction, but in the above arrangement where there is no magnetic field in the same direction as the current direction, The resistance change of that component cannot be used. However, as shown in FIG. 9, when the pattern width ω is narrowed, shape anisotropy appears in which the rate of change in resistance value with respect to the magnetic field in the direction perpendicular to the current direction increases.
The ferromagnetic material OO with a transducer element O was constructed with a narrow pattern of 15 μm or less in width.

このように、従来は第3図の如くギャップ(G8)(G
2) CG、) (G、)が必要であシ、それぞれのギ
ャップはα2111!、α講、α2闘、α5關程必要で
あるので、ギャップの合計はLlmlmlとなり、ギャ
ップによる損失が大きく、磁気信号記録波長λが[L6
28f11というような狭い磁気信号(2)の磁界に対
してはほとんど出力が出ないのに対して、上記構成では
、<シ返し磁気信号(12と強磁性体00との距闇は保
護膜(lηとくり返し磁気信号(121に対するギャッ
プとの合計だけであ]、信号源に対して近接配置するこ
とが可能であるので、大きい出力が得られる。また、従
来第4図の磁束(ロ)しか利用されず、磁電変換素子(
3)の附近を通る磁束に)rtは利用されていないので
利用効果率が悪いことから出力が小さくなる欠点があっ
たのに対して、上記構成ではくり返し磁気信号Hに対し
て平面対向しているので、はとんどの磁束に対して感じ
、利用効率が高いことから高い出力が得られる。また強
磁性体00のパターン幅を15μ囁下としたので磁界感
度の方向性がよく、高い出力電圧が得られる。
In this way, conventionally the gap (G8) (G
2) CG,) (G,) is required, and the gap for each is α2111! , α, α2, and α5 are required, so the total gap is Llmlml, and the loss due to the gap is large, and the magnetic signal recording wavelength λ is [L6
While almost no output is produced for the magnetic field of a narrow magnetic signal (2) such as 28f11, in the above configuration, the distance between the magnetic signal (12) and the ferromagnetic material 00 is the same as that of the protective film ( lη and the repeated magnetic signal (just the sum of the gap for 121) can be placed close to the signal source, so a large output can be obtained.In addition, conventionally only the magnetic flux (b) in Fig. It is not used, and the magnetoelectric conversion element (
3) rt is not used for the magnetic flux passing near the area of 3), so the utilization efficiency rate is poor and the output is small.In contrast, in the above configuration, the magnetic flux is repeatedly faced to the magnetic signal H in a plane. Because it has a magnetic flux, it can sense most of the magnetic flux, and its utilization efficiency is high, resulting in high output. Furthermore, since the pattern width of the ferromagnetic material 00 is set to less than 15 μm, the directionality of magnetic field sensitivity is good and a high output voltage can be obtained.

発明の詳細 な説明したように本発明によれば、狭い記録波長でも充
分大きな出力を得ることができ、高精度の回転角検出を
実現し得る。
As described in detail, according to the present invention, a sufficiently large output can be obtained even with a narrow recording wavelength, and highly accurate rotation angle detection can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来装置の概略斜視図、第2図は従来装置の動
作原理の説明図、第3図は従来装置における磁電変換素
子のパターン及びギヤ゛ツブの説明図、第4図は従来装
置における磁束の利用効率の説明図、第5図は本発明の
一実施例における磁電変換装置の概略斜視図、第6図は
同磁電〆変換装五の動作原理の説明図、第7図は回磁H
変換装置における磁電変換素子とくり返し磁気信号源と
の配置関係の説明図、第8図は強磁性体のノ(ターン幅
を変化させたときの電流方向の磁界による抵抗値変化率
の説明図、第9図は強磁性体の7(ターン幅を変化させ
たときの電流方向と直角方向の磁界による抵抗変化率の
説明図である。 θト・・くり返し磁気信号、θト・・磁電変換素子、θ
Q・・・ガラス基板(絶縁基板)、Oa・・・強磁性体
(櫛状磁性薄膜抵抗) 第1図 ? 第2図 第3図 5 第7図 q 第す図 l 第6図 第8図 〔Z 聯1 【X 八〇ターン中岳
Fig. 1 is a schematic perspective view of the conventional device, Fig. 2 is an explanatory diagram of the operating principle of the conventional device, Fig. 3 is an explanatory diagram of the pattern and gear of the magnetoelectric transducer in the conventional device, and Fig. 4 is an explanatory diagram of the conventional device. FIG. 5 is a schematic perspective view of a magneto-electric converter according to an embodiment of the present invention, FIG. 6 is an explanatory diagram of the operating principle of the magneto-electric converter, and FIG. 7 is a circuit diagram. Magnetic H
Fig. 8 is an explanatory diagram of the arrangement relationship between the magnetoelectric conversion element and the repetitive magnetic signal source in the converter; Figure 9 is an explanatory diagram of the resistance change rate due to a magnetic field in the direction perpendicular to the current direction when changing the turn width of a ferromagnetic material. ,θ
Q...Glass substrate (insulating substrate), Oa...Ferromagnetic material (comb-shaped magnetic thin film resistor) Fig. 1? Figure 2 Figure 3 Figure 5 Figure 7 q Figure 8 l Figure 6 Figure 8 [Z 1 [X 80 turns Nakadake]

Claims (1)

【特許請求の範囲】[Claims] t パターン幅が15μ講以下の形状異方性を有する一
対の櫛状磁性薄膜抵抗をくり返し磁気信号の記録波長λ
に対して1/4λの間隔をあけて絶縁基板上に形成して
成る磁電変換素子を設け、この磁電変換素子を、前記−
列の櫛状磁性薄膜抵抗が前記くシ返し磁気信号の磁界面
に平面対向しかつ櫛状磁性薄膜抵抗に流れる電流方向が
常にくシ返し磁気信号源からの磁界に対して略直角とな
るように配置した磁電変換装置。
t A pair of comb-shaped magnetic thin film resistors having shape anisotropy with a pattern width of 15 μm or less is repeatedly used to record the magnetic signal at the recording wavelength λ.
A magnetoelectric transducer formed on an insulating substrate is provided with an interval of 1/4λ between the magnetoelectric transducer and the -
The comb-shaped magnetic thin film resistors in the array face the magnetic interface of the comb-shaped magnetic signal in a plane, and the direction of current flowing through the comb-shaped magnetic thin-film resistors is always substantially perpendicular to the magnetic field from the comb-shaped magnetic signal source. Magnetoelectric conversion device placed in.
JP57211724A 1982-12-01 1982-12-01 Magnetoelectric converter Granted JPS59100816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57211724A JPS59100816A (en) 1982-12-01 1982-12-01 Magnetoelectric converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57211724A JPS59100816A (en) 1982-12-01 1982-12-01 Magnetoelectric converter

Publications (2)

Publication Number Publication Date
JPS59100816A true JPS59100816A (en) 1984-06-11
JPH0216973B2 JPH0216973B2 (en) 1990-04-19

Family

ID=16610547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57211724A Granted JPS59100816A (en) 1982-12-01 1982-12-01 Magnetoelectric converter

Country Status (1)

Country Link
JP (1) JPS59100816A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5559314A (en) * 1978-10-27 1980-05-02 Sony Corp Magnetic scale signal detector
JPS5766309A (en) * 1980-10-09 1982-04-22 Hitachi Ltd Device for sensing rotation of rotating body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5559314A (en) * 1978-10-27 1980-05-02 Sony Corp Magnetic scale signal detector
JPS5766309A (en) * 1980-10-09 1982-04-22 Hitachi Ltd Device for sensing rotation of rotating body

Also Published As

Publication number Publication date
JPH0216973B2 (en) 1990-04-19

Similar Documents

Publication Publication Date Title
CA1136243A (en) Rotational direction detection device for a motor or the like
JPS5886405A (en) Angle detector
JPH0140931B2 (en)
JPS5687862A (en) Magnetic head of revolution detector
JPS58106462A (en) Rotation detector
JPH05281319A (en) Magnetic sensor
JPS6243483B2 (en)
JPS59147213A (en) Magnetic rotary sensor
JPS59100816A (en) Magnetoelectric converter
Takayama et al. Integrated thin film magneto-impedance sensor head using plating process
JPH0448175B2 (en)
JPS625284B2 (en)
US5699214A (en) Magnetic information detecting apparatus
JPH09113590A (en) Magnetic sensor
JPS59142417A (en) Magnetism detecting device
JPH0330089B2 (en)
JPS594646B2 (en) Split type magnetoelectric conversion element
JPS6153644B2 (en)
JPH01259217A (en) Rotation detecting device
JPH0323872B2 (en)
JPH0353562B2 (en)
JPH05258245A (en) Film bias magnetic sensor
JP2512905B2 (en) Origin detection unit of magnetic head for magnetic encoder
KR790001927B1 (en) Magnetic field detection device
JPS6123822Y2 (en)