JPS5899738A - Apparatus for detecting defect on transparent body - Google Patents

Apparatus for detecting defect on transparent body

Info

Publication number
JPS5899738A
JPS5899738A JP19939081A JP19939081A JPS5899738A JP S5899738 A JPS5899738 A JP S5899738A JP 19939081 A JP19939081 A JP 19939081A JP 19939081 A JP19939081 A JP 19939081A JP S5899738 A JPS5899738 A JP S5899738A
Authority
JP
Japan
Prior art keywords
unit elements
diode array
transparent body
defect detection
detection device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19939081A
Other languages
Japanese (ja)
Other versions
JPH043498B2 (en
Inventor
Tsukasa Watabe
司 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamamura Glass KK
Original Assignee
Yamamura Glass KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamamura Glass KK filed Critical Yamamura Glass KK
Priority to JP19939081A priority Critical patent/JPS5899738A/en
Publication of JPS5899738A publication Critical patent/JPS5899738A/en
Publication of JPH043498B2 publication Critical patent/JPH043498B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/90Investigating the presence of flaws or contamination in a container or its contents

Abstract

PURPOSE:To effect a defect detection with a desired resolving power, by reducing the distance between the adjacent unit elements in a diode array in order to narrow the dead zone width, as well as carrying out an analog operation between the outputs from the adjacent unit elements. CONSTITUTION:The light from a diffusion plate 2 is applied to a glass bottle 1, and the transmitted light is condensed by a lens system 3 to form a real image 5 of the bottle 1 on an image-forming surface 4. A diode array 6 as a photoelectric transducer is disposed on the image-forming surface 4. The diode array 6 is arranged so that the dead zone 7 between the adjacent unit elements A1, A2,... has a narrowed width W. The outputs EA1, EA2,... EAn obtained from the respective unit elements are subjected to an analog operation of¦EAn-EAn+1¦ (n=1, 2, 3...) for the adjacent unit elements thereby to detect a possible defect on the glass bottle 1.

Description

【発明の詳細な説明】 本発明はガラス瓶等、半透明を含む透明体の欠陥検出装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a defect detection device for transparent bodies including semi-transparent bodies such as glass bottles.

瓶等透明容器の検査に関しては種々の検査機が実用に供
されているが、瓶表面の汚れ、材料素地に混入した泡や
その他の不純物、製品表面のしわ等いわゆる外観面での
欠陥についての検査は未だ目視検査の方が多く行われて
いる。欠陥検出装置としては従来よ〕レーザー光を用い
るもの、テレビカメラを使用するもの、ダイオードアレ
ーを使用するもの等が開発されている◇しかしながら、
レーザー光を使用するものは投光器よ〕の照射光及び欠
陥よりの反射光ともに指向性が強く、検出所望欠陥の大
きさに応じた分解能のコントロールが困難であり、さら
にレーザー発振器の寿命、保守、価格等技術面、経済面
での問題が大きかった。
Various inspection machines are in practical use for inspecting transparent containers such as bottles, but they are difficult to detect for so-called appearance defects such as dirt on the bottle surface, bubbles and other impurities mixed into the material base, and wrinkles on the product surface. Visual inspection is still the most commonly performed inspection. Conventional defect detection devices have been developed that use laser light, television cameras, diode arrays, etc. However,
For those that use laser light, both the irradiated light from the projector and the reflected light from defects are highly directional, making it difficult to control the resolution according to the size of the defect desired to be detected. There were major technical and economic problems such as price.

またテレビカメラを使用するものは、スキャンニングス
ボツシの大きさで分解能が決まり、それ以上の分解能の
制御を必要とする場合には、論理による制御が必要とな
る欠点があつ念。又、従来におけるダイオードアレー使
用のものは、単位素子の面積で分解能が決まるが、通常
の自己走査型ダイオードアレーの単位長さが1ピツチの
2分の1程度であシ、不惑帯の影蕃を避けるためには微
ピッチをもって最小分解能とし、論理による制御を必要
とするため、経済的に不利でiつた。
In addition, when using a television camera, the resolution is determined by the size of the scanning aperture, and if higher resolution control is required, logic control is required. In addition, in conventional diode arrays, the resolution is determined by the area of the unit element, but the unit length of a normal self-scanning diode array is about one-half of one pitch, and the effect of the fuwazai is low. In order to avoid this, a fine pitch must be used as the minimum resolution, and control by logic is required, which is economically disadvantageous.

すなわち第1図から第4図は従来の自己走査型ダイオー
ドアレーの配置を示す正面図である。(イ)は単位素子
を、幹)は不感帯を示す。この不感帯(ロ)は単位素子
(イ)のピッチPの一程度である。従って、欠陥の実像
(ハ)が第2図の如く単位素子げ)上に来た時と第3図
の如く欠陥の実像(ハ)が不感帯(ロ))に来た時とで
は感度に大きな差ができる。それ故、これを避けるため
に184図の如く検出すべき最小欠陥の大きさが2〜3
ピツチになるように像(ハ)及び単位素子(イ)の大き
さを選ばなければならなかつた。本発明は上記従来技術
の欠点を解消する装置の提供を目的とし、このために特
徴あるダイオードアレーを採用すると共に、近隣の2以
上の単位素子における出力量でアナログ演算を施し、こ
れによシ論理による制御や大容量メモリーを使用するこ
となく所望分解能による検査を実施し、被検査体の模様
、成型上不可避の型の合せ目、その他梨地等に起因する
誤動作、すなわち良品を欠陥品として排除すること、を
防止し、有効な外観欠陥の検査を達成せしめるものであ
る。以下具体的に説明する。
That is, FIGS. 1 to 4 are front views showing the arrangement of a conventional self-scanning diode array. (A) indicates the unit element, and (B) indicates the dead zone. This dead zone (b) is about one pitch P of the unit element (a). Therefore, there is a large difference in sensitivity between when the real image of the defect (c) comes above the unit element as shown in Figure 2 and when the real image of the defect (c) comes to the dead zone (b) as shown in Figure 3. It makes a difference. Therefore, in order to avoid this, the size of the minimum defect to be detected is 2 to 3 as shown in Figure 184.
The size of the image (c) and unit element (b) had to be chosen so that they would be exactly the same. The present invention aims to provide a device that eliminates the drawbacks of the prior art, and for this purpose, it employs a distinctive diode array, performs analog calculations on the output amounts of two or more neighboring unit elements, and Inspection is performed at the desired resolution without using logic control or large-capacity memory, and malfunctions caused by the pattern of the object to be inspected, unavoidable mold seams, and other satin finishes, in other words, non-defective products, are eliminated as defective products. This prevents the occurrence of defects and enables effective inspection of appearance defects. This will be explained in detail below.

第5図及び第6図は半透明を含む透明の被検査体の代表
としてのガラス瓶1に対してその胴部の欠陥検査に本発
明の装置を適用した例を示す。拡散光源又は拡散板2か
らの光をガラス瓶lに照射し、透過光をレンズ系3で集
光し、結像面4上に瓶lの実像5を結像させる。この結
像面4上に光電変換器であるダイオードアレー6を配置
しく第8図から第14図参照)、このダイオードアレー
6で光信号を電気信号に変換し、その出力電気信号にア
ナログ演算処理を施して、ガラス瓶1t1部の欠陥を検
出する。この場合、ガラス瓶1は検査位置で回転させる
。第7図はガラス瓶lの底部の欠陥を検査する場合の例
を示す。この場合はガラス瓶1の底部近傍から拡散光を
照射する。なお検査に際しては、瓶1を回転させるかわ
りに、検出系の方を回転するようにしてもよい。
FIGS. 5 and 6 show an example in which the apparatus of the present invention is applied to defect inspection of the body of a glass bottle 1, which is a typical example of a transparent object to be inspected including translucent objects. A glass bottle l is irradiated with light from a diffused light source or a diffuser plate 2, and the transmitted light is focused by a lens system 3 to form a real image 5 of the bottle l on an imaging plane 4. A diode array 6, which is a photoelectric converter, is arranged on this image forming plane 4 (see Figs. 8 to 14), and this diode array 6 converts the optical signal into an electrical signal, and the output electrical signal is subjected to analog calculation processing. to detect defects in 1 part of glass bottle 1t. In this case, the glass bottle 1 is rotated in the inspection position. FIG. 7 shows an example of inspecting the bottom of a glass bottle 1 for defects. In this case, diffused light is irradiated from near the bottom of the glass bottle 1. Note that during the inspection, instead of rotating the bottle 1, the detection system may be rotated.

次に前記結像面4に配置すべきダイオードアレー6につ
いて説明する。その前に述べておくべきことは、本発明
においてダイオードアレー6の形状、配列、及びアナ四
グ演算式を考慮するのは第1に欠陥の検出信号の大きさ
が検出位置によって変化しないようにすることであシ、
第2に欠陥以外の部分よシの信号を出来る限シ小さくす
ることであシ、第3に処理アンプ数等の必要機器数を少
なくすることである。
Next, the diode array 6 to be arranged on the imaging plane 4 will be explained. Before that, it should be stated that in the present invention, the shape, arrangement, and analog calculation formula of the diode array 6 are considered in order to prevent the magnitude of the defect detection signal from changing depending on the detection position. By doing that,
The second purpose is to reduce the signal of the parts other than the defect as much as possible, and the third purpose is to reduce the number of necessary equipment such as the number of processing amplifiers.

まず本発明では第8図に示す如くダイオードアレー6の
各単位素子A4*A1・・・間の不感帯7の幅Wを狭く
した。例えばピッチPを1.51EIとし、輻Wを0.
3111とする。この第8図に示すダイオードアレー6
を前記結像面4に配置する。配置は瓶1jllii部の
検査の場合には゛ダイオードアレー6の長平方向を瓶l
の高さ方向に揃え、瓶1底部の検査1・5 の場合にはダイオードアレー6の長手方向を瓶l底部の
半径方向に揃える。このダイオードアレー6の配置は以
下に示す別のダイオードアレー6の場合も同様である。
First, in the present invention, as shown in FIG. 8, the width W of the dead zone 7 between each unit element A4*A1... of the diode array 6 is narrowed. For example, the pitch P is 1.51EI and the radius W is 0.
3111. Diode array 6 shown in FIG.
is placed on the imaging plane 4. In the case of inspection of the 1st part of the bottle, the arrangement should be ``the longitudinal direction of the diode array 6 is
In the case of inspections 1 and 5 of the bottom of the bottle 1, the longitudinal direction of the diode array 6 is aligned in the radial direction of the bottom of the bottle 1. The arrangement of this diode array 6 is the same for other diode arrays 6 shown below.

この1列に並んだ単位素子Al。The unit elements Al are lined up in one row.

A、・・・からなるダイオードアレー6において、今、
各単位素子AI  + A4  y Al−・・・から
の出力1lltム1゜KA!ylム3.・・・とし、ア
ナ四グ演算式として1!cAn”An+11 (n −
1t 2 e 3 ”・)を採用すれば、ダイオードア
レー6に対して像が縦方向に貫通する型の合せ目筋等は
消失される。すなわちlI!iム□Hj z l =Q
 + l m A 、  I A s l 0Q +…
l]1Alln+5l=0となるので検出されないから
である。一方、第8図の如きダイオードアレー6では同
じ大きさの欠陥像H2工であっても不感帯7を通巻欠陥
像工はその出力11cA4−”AS l t l”Al
l −x、、l l 11cA6薯 −にム71の出力が不感帯7七通らない欠陥像Hの出力
l KA、 −m、31 * l IAI  ”A41
に比較して低下してしまい、その結果欠陥像工は実際の
大きさよ妙手さい欠陥によるものであると課検査される
こととなる。すなわち欠陥像工において、単位素子A1
1に占める像面積をS″6、単位素子A、に占める像面
積をS、とすれば、出力IKA4−E^、lは面積S、
に対応し、出力1mA、−IIliA、lは186  
 sslの面積に対応し、出力l K A @  K 
A ? lは面WIs sに対応することとなり、欠陥
像工に正確に対応した出力を得られない。
In the diode array 6 consisting of A,... now,
Output from each unit element AI + A4 y Al-... 1lltm 1°KA! ylm3. ...and 1 as an analog/four calculation formula! cAn”An+11 (n −
If 1t 2 e 3 ”・) is adopted, the seam line etc. in which the image passes through the diode array 6 in the vertical direction will be eliminated. That is, lI!im□Hj z l =Q
+ l m A , I A s l 0Q +…
This is because it is not detected because 1]1Alln+5l=0. On the other hand, in the diode array 6 as shown in FIG. 8, even if the defect image H2 has the same size, the defect image H2 that passes through the dead zone 7 has an output of 11cA4-"AS l t l"Al.
l -x,, l l 11cA6 薯- and the output of M 71 does not pass through the dead zone 7. Output of defect image H l KA, -m, 31 * l IAI ''A41
As a result, the defective image processing is judged to be due to a defect that is smaller than its actual size. In other words, in defect imaging, unit element A1
If the image area occupied by 1 is S''6, and the image area occupied by unit element A is S, then the output IKA4-E^,l is the area S,
corresponding to the output 1mA, -IIliA, l is 186
Corresponding to the area of ssl, the output l K A @ K
A? Since l corresponds to the plane WIss, it is not possible to obtain an output that accurately corresponds to the defect image.

次に本発明ではこの矩形の単位素子A、IA。Next, in the present invention, the rectangular unit elements A and IA are used.

・・・を1列に配した第8図のダイオードアレー6の欠
5点を除くため2つの手段を考慮した。その一手段は第
9図に示す如く、各単位素子A1+AI・・・を平行四
辺形とすることである。そして各平行四辺形の対応する
1辺を同一直線上に整えることにより欠陥像の通過方向
Xに対して不感帯7が角廖を形成することに11)、不
感帯7の影響を減少させることができるからである。す
なわち第9図において欠陥像Jがダイオードアレー6を
X矢符方向に通過する場合で説明すると、欠陥像Jが位
置J′にあるときには出力1ΣA4−EAlllはゼロ
に近い値であるが、欠陥像Jが位置!にきたときには出
力l E a 4  ” A s lが欠陥像Jの面積
にほぼ対応する値となり、不感帯7の影響を少ないもの
とすることができる。
Two means were considered in order to eliminate the five drawbacks of the diode array 6 shown in FIG. 8, in which . One means for this is to make each unit element A1+AI... into a parallelogram, as shown in FIG. By arranging the corresponding sides of each parallelogram on the same straight line, the dead zone 7 forms an angle with respect to the passing direction X of the defective image (11), and the influence of the dead zone 7 can be reduced. It is from. That is, to explain the case in which the defect image J passes through the diode array 6 in the direction of the X arrow in FIG. J is located! When , the output l E a 4 '' A s l becomes a value that approximately corresponds to the area of the defect image J, and the influence of the dead zone 7 can be reduced.

他の一手段は第1O図に示す如く2列化したダイオード
アレー6を用いることである。そしてこの場合、A列と
3列とを例えば半ピツチずらす様にして配列するのがよ
い。今この例において、欠陥像Kがダイオードアレー6
を欠陥像XがX矢符方向に通過する場合、A列における
出力I E A @−KA@ l t lI!′^ E
A41’l”^4”Aalは欠陥像Xの面積に対応する
出力よ抄かなり低い値となるが、一方、3列における出
力1 ]lin、  Hm、 I + lE+s。
Another method is to use a diode array 6 arranged in two rows as shown in FIG. 1O. In this case, it is preferable to arrange the A column and the third column so that they are shifted by, for example, half a pitch. Now, in this example, the defect image K is the diode array 6.
When the defect image X passes in the direction of the X arrow, the output in column A is I E A @-KA@ l t lI! ′^E
A41'l"^4"Aal has a much lower value than the output corresponding to the area of the defect image X, but on the other hand, the output in the third column 1 ]lin, Hm, I + lE+s.

−1nlは欠陥像にの面積に対応する値となるので不感
帯7の影響は排除できる。ただ符号りで示す欠陥像がX
矢符方向に通過する場合には出力111、  ’H1,
l * lEA、 −zm、 l及びl”i  ”s 
Isl 1C)、 −ICBy +は何れも欠陥像すの
面積に対応する出力に満たないので、不感帯7の多少の
影響は受けることになる。2列化することにより不感帯
7の影響を防止する例としては第11図から第13父に
示すダイオードアレー6が考えられる。
Since -1nl is a value corresponding to the area of the defect image, the influence of the dead zone 7 can be eliminated. However, the defect image indicated by the symbol is
When passing in the direction of the arrow, output 111, 'H1,
l*lEA, -zm, l and l"i"s
Since both Isl 1C) and -ICBy + are less than the output corresponding to the area of the defect image, they will be affected to some extent by the dead zone 7. As an example of preventing the influence of the dead zone 7 by forming two rows, the diode array 6 shown in FIGS. 11 to 13 can be considered.

第11−図はA列と3列とを°1ピッチずらしたもので
ある0第12図は平行四辺形の単位素子AI+A、・・
・B、、B、・・・を2列に対称に配したものである。
Figure 11 shows the A and 3 rows shifted by 1 pitch.0 Figure 12 shows the parallelogram unit element AI+A,...
・B,,B,... are arranged symmetrically in two rows.

A列の単位素子A1+A1・・・と3列の単位素子B、
、B、・・・を対称に配したのは斜め欠陥の傾斜方向に
よる信号のバラツキを防止するためである。第13図は
平行四辺形の単位素子AI  +Ag・・・B 1  
+ B @・・・をA列と3列で半ピツチずらしたもの
である。第14図は同様にA列と3列で1ピツチずらし
たものである。
Unit elements A1+A1... in row A and unit element B in row 3,
, B, . . . are arranged symmetrically in order to prevent signal variations due to the direction of inclination of the diagonal defect. Figure 13 shows a parallelogram unit element AI +Ag...B 1
+ B @... is shifted by half a pitch between column A and column 3. Similarly, in FIG. 14, row A and row 3 are shifted by one pitch.

不感帯7の影響を防止する手段としては以上述べた如く
、不感帯7自体の幅Wを狭くすること、単位素子A!+
A!・・・を平行四辺形とすること、及び2列化するこ
とであるが、本発明はさらに検査に必要なアンプ数警の
必要機器数を減少させる手段を考慮した。すなわち欠陥
を検出するだけであれば、アナログ演算式は列毎に上下
の単位素子間で、l za、 −’x*、 I f l
IcAl −X Al l + I ’HA@ −H^
、1゜−”′11cm−n  mAn+s l + 1
1!+11.−IC)、I * l11cm、  Km
、 1°°°1ちIn 1!!mml+I Iの如く行
なえばよいのであるが゛、この場合には後述する装置の
処理工程における処理系0が単位素子数だけ必要となり
、その各処理系0につき複数の処理機器を必要とし、さ
らに各処理機器につき増幅等の必要がある場合には処理
機器の数x単位素子数のアンプ数を必要とすることとな
って、装置が大きくなり、場所をとり、高価となる。そ
こで本発明ではダイオード6のA。
As mentioned above, the means to prevent the influence of the dead zone 7 is to narrow the width W of the dead zone 7 itself, and to reduce the width W of the dead zone 7 itself. +
A! . . are made into parallelograms and arranged in two rows, but the present invention also considers means for reducing the number of amplifiers necessary for inspection. In other words, if only defects are to be detected, the analog calculation formula is as follows between the upper and lower unit elements for each column: l za, -'x*, I f l
IcAl -X Al l + I'HA@ -H^
, 1゜-”'11cm-n mAn+s l + 1
1! +11. -IC), I*l11cm, Km
, 1°°°1chi In 1! ! mml+I I, but in this case, processing systems 0 are required for the number of unit elements in the processing steps of the device described later, each processing system 0 requires multiple processing devices, and each If amplification or the like is required for each processing device, the number of amplifiers will be equal to the number of processing devices x the number of unit elements, making the device large, occupying space, and becoming expensive. Therefore, in the present invention, A of the diode 6 is used.

B2列間の4つの近接単位素子間でアナログ演算式 ば1(Pin+IC+n)  (IC6z+s+Kmn
+IN  (n−1、:L51+0Ll(IC*H+l
mn−1−t)  (EA!1+I−v−−N l (
、、l工1  ’1  代−八44a FR、J−’!
今、実例として@14図に示すダイオード6に式l(]
1CAn+Kin)(Ixn+x +IC+n+t )
lを適用し、欠陥像Mがダイオードアレー6をX矢符方
向に通過する場合を説明すると、出力l (1CA1+
Em、 )(−]Ca、 +Mx、 ) lはゼa、出
力1 (ICA、 +に!+、 )−(Eム4−””4
 ) I  はその波形ピークが欠陥像Mの゛面積に対
応する値となる。さらに出力1(ICムII””II)
−Cytム、+I、m、)Iも欠陥像Mの面積に対応す
る値となる。又、欠陥@Mが他の位置−を通過する場合
でも何れかの出力が欠陥像Mの面積と対応するだけの値
が得られる。そしてこの場合所用の演算数は単位票子数
の〃でよい。今1つの実例として、筒10図に示すダイ
オードアレー6に式I (11!*ユ+Kmm++ )
(KAn+t +Imn)l(nsml、:L5…)を
適用する場合を示す。まず欠陥像にがX矢符方向にダイ
オードアレー6を通過する場合、出力1(Iム1 +I
C)、 )−(E*、 +ICm、 ) Iはゼロ、出
力1(ICA、 +’E)、 )−(E*4 +]ri
m、 ) Iはその波形ピークが欠陥像Xの面積に対応
する。又欠陥像りがX矢符方向に移動する場合、出力l
 (]Ii*、 +1!:)、 )  (IC,、+1
8m1l) l及び出力+ (KA、 +に!+、) 
 (mA。
Analog calculation formula 1 (Pin + IC + n) (IC6z + s + Kmn
+IN (n-1, :L51+0Ll(IC*H+l
mn-1-t) (EA!1+I-v--N l (
,,l engineering 1 '1st generation-844a FR, J-'!
Now, as an example, we will use the formula l(] for diode 6 shown in Figure @14.
1CAn+Kin) (Ixn+x +IC+n+t)
To explain the case where the defect image M passes through the diode array 6 in the direction of the X arrow by applying l, the output l (1CA1+
Em, )(-]Ca, +Mx, ) l is zea, output 1 (ICA, to +!+, )-(Em4-""4
) I is a value whose waveform peak corresponds to the area of the defect image M. Furthermore, output 1 (IC II""II)
−Cytm, +I, m, )I also has a value corresponding to the area of the defect image M. Further, even when the defect @M passes through another position -, a value corresponding to the area of the defect image M can be obtained from any of the outputs. In this case, the number of operations required may be the number of unit votes. As an example, the diode array 6 shown in Figure 10 has the formula I (11!*U+Kmm++)
A case where (KAn+t +Imn)l(nsml, :L5...) is applied is shown. First, when the defect image passes through the diode array 6 in the direction of the X arrow, the output 1 (IM1 + I
C), )-(E*, +ICm, ) I is zero, output 1 (ICA, +'E), )-(E*4 +]ri
m, ) The waveform peak of I corresponds to the area of the defect image X. Also, when the defect image moves in the direction of the X arrow, the output l
(]Ii*, +1!:), ) (IC,, +1
8ml1l) l and output + (KA, +!+,)
(mA.

+IC+、)lが欠陥像りの面積に対応することになる
。欠陥像に、Lが他の位置を通過する場合も同様である
+IC+, )l corresponds to the area of the defect image. The same applies when L passes through other positions in the defect image.

これらの場合においても所用演算数は単位素子数の%で
すむ0勿論これらの4つの単位′素子間でのアナログ演
算によるも欠陥像の面積に対応する出力から多少の誤差
は出るが、かなりの精度を確保できる。たとえば、上記
第14図のダイオードアレー6にアナログ演算式1(帽
1+恥<H)  (ICA□当+x mn++ ) I
 (n=1 e 3 t 5”・)を採用した場合は、
理論上では±20%程度、又データでは後述のP波器1
2,13の電気特性の要因により±10%以下の誤差範
囲内に収まった。第11図、第12図に示すダイオード
アレー6の場合は精度的にはあまりよくない。所用演算
数が単位素子数の2でよいのは、アナログ演算に係る4
個の単位素子と ・してA列とB列とでずれた位置にあ
るものを採用することKよ抄、重複した演算をするとと
なく欠〜゛陥像の面積に対応した出力を得られるからで
ある〇なお、その他の使用方法として、単位素子数を2
列に配したダイオードアレー6において、左右の単位索
子出力間での引き算を行なうこともできる。
Even in these cases, the number of operations required is only % of the number of unit elements. Of course, analog calculations between these four unit elements will cause some error from the output corresponding to the area of the defect image, but it will be quite large. Accuracy can be ensured. For example, in the diode array 6 shown in FIG.
If (n=1 e 3 t 5”) is adopted,
Theoretically, it is about ±20%, and the data shows that the P-wave device 1 described later
Due to the electrical characteristics factors No. 2 and 13, the error was within ±10% or less. In the case of the diode array 6 shown in FIGS. 11 and 12, the accuracy is not very good. The reason why the required number of operations is 2, which is the number of unit elements, is 4 for analog operations.
By using unit elements that are at different positions in the A and B rows, you can obtain an output that corresponds to the area of the defective image by performing duplicate operations. 〇In addition, as another usage method, the number of unit elements is 2
In the diode array 6 arranged in a row, it is also possible to perform subtraction between the left and right unit probe outputs.

この方法は例えば瓶lの円周方向での肉厚変化による影
響を防止するために、隣接単位素子の一方をダミーとし
て使用すゐ場合に有効である。
This method is effective, for example, when one of the adjacent unit elements is used as a dummy in order to prevent the influence of changes in wall thickness in the circumferential direction of the bottle l.

1!14図は本装置の機構を示す回路図で、11は演算
回路で、ダイオードアレー6の所定の4つの近隣単位素
子よりの信号を受は入れ、上記のアナ四グ演算ノ式によ
る演算を行々う。これにより4つの単位素子からの4つ
の出力信号を1つの出力信号とする。
Figures 1 and 14 are circuit diagrams showing the mechanism of this device, and 11 is an arithmetic circuit that receives signals from four predetermined neighboring unit elements of the diode array 6 and performs arithmetic operations using the above-mentioned analog/four arithmetic formula. Let's go. Thereby, four output signals from four unit elements are made into one output signal.

次にこの出力信号を高域−波器12に入力する。Next, this output signal is input to the high frequency converter 12.

高域ろ波器12では例えば瓶11i部の肉厚変化及び円
周方向に長く入った線模様の影響を除失できる。すなわ
ち肉厚変化はそれ自体で低周波を構成し、又円周方向に
長く入った線模様や何かの継目等による像はダイオード
アレー6に対してもζ、れを横断する如く長く入るので
、その波形が低周波を構成すあ。′従って予め一定以下
の低周波をカツトするようにしておくことによって、こ
れら欠陥でない内厚変化、線、筋による影響を除失でき
る。
The high-pass filter 12 can eliminate the effects of, for example, changes in the wall thickness of the bottle 11i and long line patterns in the circumferential direction. In other words, the wall thickness change itself constitutes a low frequency wave, and images due to long line patterns or joints in the circumferential direction enter the diode array 6 for a long time as if crossing the ζ. , that waveform constitutes a low frequency. 'Therefore, by cutting out low frequencies below a certain level in advance, the effects of inner thickness changes, lines, and streaks that are not defects can be eliminated.

次に高域F波器12からの出力を低域テ波器13に入力
する。この低域ν波器13では瓶表面の梨地模様による
影響を除央できる。梨地模様の場合、その像は小さく短
間隔で生じるので、その部分の出力波形が高周波を構成
するからである。低域沖波器13からの信号はさらに絶
体値回路14を経て比較器15に入る。この比較器15
で基準電圧発生器16よりの基準電圧と比較させ排除信
号を一出力させる。この基準電圧発生器16からの基準
電圧を可変とすることKより座変を調整することができ
る。比較器15からの出力はOR回路17に入力される
。そしてOR回路17から最終排除信号をガラス瓶1の
排除機18に送る。以上において演算回路11、高域−
波器12、低域ν波器13、絶体値回路14、比較器1
5、基準電圧発生器16により構成される処理系0は単
位素子4個につき1つ構成されるから、したがって必要
な処理系dは単位素子数をnとすれば、ηとナル。
Next, the output from the high-frequency F wave device 12 is input to the low-frequency T wave device 13. This low-frequency ν wave generator 13 can eliminate the influence of the satin pattern on the bottle surface. This is because in the case of a satin pattern, the images are small and generated at short intervals, so the output waveform of that portion constitutes a high frequency. The signal from the low frequency transducer 13 further passes through the absolute value circuit 14 and enters the comparator 15. This comparator 15
It compares it with the reference voltage from the reference voltage generator 16 and outputs an exclusion signal. By making the reference voltage from the reference voltage generator 16 variable, the displacement can be adjusted. The output from comparator 15 is input to OR circuit 17. Then, a final elimination signal is sent from the OR circuit 17 to the elimination device 18 for the glass bottle 1. In the above, the arithmetic circuit 11, high frequency
wave generator 12, low-frequency ν wave generator 13, absolute value circuit 14, comparator 1
5. Since one processing system 0 constituted by the reference voltage generator 16 is constructed for every four unit elements, the required processing system d is equal to η, where n is the number of unit elements.

このことは処理系Oを構成する機器11.12゜13 
、14 、15 、1’6が各々〃個ですむことになる
This means that the equipment 11.12゜13 that constitutes the processing system O
, 14, 15, and 1'6 each.

さらに1例えば各処理系0における各機器に使用される
アンプの総数をmとした場合、本発明ではHm−rv、
すなわち3”シ個のアンプ数を従来4 に比べて減少させることができる。この3nyの値は非
常に大である。結局本発明では計器数を大幅に減少させ
ることができるのである。なお、スイッチング素子を用
いることにより6、例えば蛸15図において高域沖波器
12以援の経路を単列で処理することも可能である。但
しこの場合は応答の速い高感麿の器機を使用する必要が
ある。
Furthermore, for example, if the total number of amplifiers used in each device in each processing system 0 is m, in the present invention, Hm-rv,
In other words, the number of amplifiers can be reduced by 3'' compared to the conventional 4. This value of 3ny is extremely large. After all, the present invention can significantly reduce the number of instruments. By using switching elements, it is also possible to process the path of the high-frequency wave device 12 in a single row, for example in Figure 15.However, in this case, it is necessary to use a high-sensitivity device with a quick response. There is.

本発明は以上の構成よ抄なり、不感帯幅を狭くした複数
の単位索子を整列させたダイオードアレーを用いると共
に、近隣単位素子出力間のアナログ演算処理回路を設け
たので必要単位素子数が少なくてすむ゛。そしてこの場
合、各単位素子を平行四辺形とし、或いは複列化するこ
とKより不感帯による影響を防止することができる。そ
してさらに近接単位素子出力間でアナログ演算処理を施
こすことにより不感帯による影響を防止出粂るに加えて
アンプ数等の必要機器数を大幅に減少させることができ
る。
The present invention has the above-described structure, and uses a diode array in which a plurality of unit elements with a narrow dead band width are arranged, and an analog arithmetic processing circuit between adjacent unit element outputs is provided, so that the number of required unit elements is small. I'll try it. In this case, the influence of the dead zone can be more effectively prevented by forming each unit element into a parallelogram or by forming it in double rows. Furthermore, by performing analog arithmetic processing between the outputs of adjacent unit elements, it is possible to prevent the effects of dead zones and to significantly reduce the number of required equipment such as the number of amplifiers.

【図面の簡単な説明】[Brief explanation of drawings]

第1図から第4図社従来例を示す正面図、第5図、第6
rIliは査発明の装置をガラス瓶胴部の検査に用いた
例を示し、館5図は平面図、第6図は正面図である。第
7図は本発明の装置をガラス瓶底部の検査に用いた例を
示す正面図、t1g8図から第14図は本発明に係るダ
イオードアレーの例を示す正面図、第15図は本発明の
装置の機構を示す回路図で・ある。 l・・・ガラス瓶、2・・・拡散板、3・・・レンズ系
、4…結像面、5・・・実像、6・・・タイオードアレ
ー、7・・・不感帯、ム8 、A、・・・B、”IB、
・・・単位素子、H9工、J、に、II、M…欠陥像 、 出願人 山′村硝子株式会社 第1図  第2図第3図 第4図 口     口   口 ロ     ロ   ロ 第5図 第7図           第8図 第9図 第13図         第に図
Figures 1 to 4 are front views showing the company's conventional example, Figures 5 and 6.
Figure 5 is a plan view and Figure 6 is a front view of an example in which the apparatus of the present invention is used to inspect the body of a glass bottle. FIG. 7 is a front view showing an example in which the device of the present invention is used to inspect the bottom of a glass bottle, FIGS. t1g8 to 14 are front views showing examples of the diode array according to the present invention, and FIG. This is a circuit diagram showing the mechanism. l... Glass bottle, 2... Diffusion plate, 3... Lens system, 4... Image forming surface, 5... Real image, 6... Tiode array, 7... Dead zone, M8, A ,...B,”IB,
... Unit element, H9 engineering, J, Ni, II, M... Defect image, Applicant Yama'mura Glass Co., Ltd. Figure 1 Figure 2 Figure 3 Figure 4 Mouth Mouth Roro Roro Figure 5 Figure 7 Figure 8 Figure 9 Figure 13 Figure 2

Claims (1)

【特許請求の範囲】 (1)  拡散光を被検査体に照射し、透過光をレンズ
系を用いて結像させ、結像面に配置した光電変換器によ
り光学像を電気信号に変換して被検査体の良否を判定す
る装置であって、前記光電変換器として不感帯幅を狭く
したvI数の単位素子を整列させたダイオードアレーを
用いると共に、近隣単位素子出力間のアナログ演算処理
回路を設けたことを特徴とする透明体の欠陥検出装置 (2)  ダイオードアレーは平行四辺形の単位素子゛
を用い、各単位素子の対応する一辺を同一直線上に整え
て1列に配置した特許請求の範囲第1項記載の透明体の
欠陥検出装置 (3)  ダイオードアレーは単位素子を2列に整列し
た特許請求の範囲第1項記載の透明体の欠陥検出装置 (4)ダイオードアレーは平行四辺形の単位素子を用い
、各単位素子の対応する一辺を同一直線上に整えた特許
請求の範囲第3項記載の透明体の欠陥検出装置 (5)単位素子の位置を2列間でずらした特許請求の範
囲第3項又は第4項記載の透明体の欠陥検出装置 (6)アナログ演算処理を上下の隣接2単位素子出力間
毎に行なう特許請求の範囲@1項から第5(7)  ア
ナ四グ演算処理を左右の近1liI2単位出力間で行な
う特許請求の範囲第3項から第5項の何れかに記載の透
明体の欠陥検出装置 (8)アナログ演算処理を上下左右の近lI4単位素子
毎に重複することなく行なう特許請求の範囲第3項から
第5項の何れかに記載の透明体の欠陥検出−置 (9)  アナログ演算処理は列毎に上下の単位素子出
力間で引き算したものを特徴とする特許請求の範囲第8
項記載の透明体の欠陥検出装置
[Claims] (1) The object to be inspected is irradiated with diffused light, the transmitted light is imaged using a lens system, and the optical image is converted into an electrical signal by a photoelectric converter placed on the imaging plane. A device for determining the quality of an object to be inspected, which uses a diode array in which vI number of unit elements with a narrow dead band width are arranged as the photoelectric converter, and is provided with an analog arithmetic processing circuit between adjacent unit element outputs. A defect detection device for a transparent body (2) The diode array uses parallelogram unit elements, and the corresponding sides of each unit element are aligned on the same straight line and arranged in a row. A defect detection device for a transparent body according to claim 1 (3) A defect detection device for a transparent body according to claim 1 in which the diode array has unit elements arranged in two rows (4) The diode array has a parallelogram shape. A defect detection device for a transparent body according to claim 3, in which unit elements are used, and corresponding sides of each unit element are aligned on the same straight line. (5) A patent in which the positions of the unit elements are shifted between two rows. Transparent body defect detection device (6) according to claim 3 or 4, wherein analog calculation processing is performed for each output of two upper and lower adjacent unit elements. A defect detection device for a transparent body according to any one of claims 3 to 5, which performs analog calculation processing between outputs of near 1liI2 units on the left and right. Detection of defects in a transparent body according to any one of claims 3 to 5, which is performed for each element without duplication Claim 8 characterized by
Transparent object defect detection device described in section
JP19939081A 1981-12-09 1981-12-09 Apparatus for detecting defect on transparent body Granted JPS5899738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19939081A JPS5899738A (en) 1981-12-09 1981-12-09 Apparatus for detecting defect on transparent body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19939081A JPS5899738A (en) 1981-12-09 1981-12-09 Apparatus for detecting defect on transparent body

Publications (2)

Publication Number Publication Date
JPS5899738A true JPS5899738A (en) 1983-06-14
JPH043498B2 JPH043498B2 (en) 1992-01-23

Family

ID=16406973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19939081A Granted JPS5899738A (en) 1981-12-09 1981-12-09 Apparatus for detecting defect on transparent body

Country Status (1)

Country Link
JP (1) JPS5899738A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0293510A2 (en) * 1987-06-04 1988-12-07 Kabushiki Kaisha Kirin Techno System Apparatus for inspecting side-wall of bottle
US7148961B1 (en) 2004-11-10 2006-12-12 Owens-Brockway Glass Container Inc. Container sidewall inspection

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS458941Y1 (en) * 1964-02-19 1970-04-25
JPS5036390A (en) * 1973-06-21 1975-04-05
JPS50137181A (en) * 1974-04-17 1975-10-31
JPS55149831A (en) * 1979-02-26 1980-11-21 Udaras Na Gaeltachta Defect detector for semitransparent article

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS458941Y1 (en) * 1964-02-19 1970-04-25
JPS5036390A (en) * 1973-06-21 1975-04-05
JPS50137181A (en) * 1974-04-17 1975-10-31
JPS55149831A (en) * 1979-02-26 1980-11-21 Udaras Na Gaeltachta Defect detector for semitransparent article

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0293510A2 (en) * 1987-06-04 1988-12-07 Kabushiki Kaisha Kirin Techno System Apparatus for inspecting side-wall of bottle
US7148961B1 (en) 2004-11-10 2006-12-12 Owens-Brockway Glass Container Inc. Container sidewall inspection

Also Published As

Publication number Publication date
JPH043498B2 (en) 1992-01-23

Similar Documents

Publication Publication Date Title
US4202631A (en) Apparatus for detecting defects in patterns
US5586058A (en) Apparatus and method for inspection of a patterned object by comparison thereof to a reference
US5619429A (en) Apparatus and method for inspection of a patterned object by comparison thereof to a reference
US7853068B2 (en) Pattern defect inspection method and apparatus
US4578810A (en) System for printed circuit board defect detection
US4532650A (en) Photomask inspection apparatus and method using corner comparator defect detection algorithm
JPH0310065B2 (en)
JPS60215286A (en) Method and apparatus for optoelectronic inspection of surface pattern of object
TW559969B (en) Pattern inspection method and inspection apparatus
JPS6083328A (en) Inspecting method of photo-mask
US4123170A (en) Apparatus for detecting defects in patterns
EP0016551A1 (en) Apparatus for inspecting translucent articles for faults
JPS5899738A (en) Apparatus for detecting defect on transparent body
US3738752A (en) Intensity spatial filter having non-uniformly spaced filter elements
JP2020016497A (en) Inspection device and inspection method
CN1998021A (en) Method for inspecting surfaces
JPH02102404A (en) Inspecting method for periodic pattern
JPS6352434A (en) Wafer external appearance inspecting apparatus
JPS5974628A (en) Method and apparatus for inspecting photo-mask
JP3844792B2 (en) Microscope inspection apparatus and method for articles
US7457454B1 (en) Detailed grey scale inspection method and apparatus
JPS6057929A (en) Method and apparatus for detecting defect of pattern
JPH0423817B2 (en)
JPS62299706A (en) Pattern inspecting instrument
JPS60157008A (en) Pattern inspecting device