JPS5899705A - Noncontact roughness measuring instrument - Google Patents
Noncontact roughness measuring instrumentInfo
- Publication number
- JPS5899705A JPS5899705A JP6971082A JP6971082A JPS5899705A JP S5899705 A JPS5899705 A JP S5899705A JP 6971082 A JP6971082 A JP 6971082A JP 6971082 A JP6971082 A JP 6971082A JP S5899705 A JPS5899705 A JP S5899705A
- Authority
- JP
- Japan
- Prior art keywords
- measured
- light
- signal
- point image
- cylindrical lens
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明は、物体の表面を顕微鏡対物レンズを用い、点光
源により照射し、反射した光を半透明鏡を用い、二つの
像面に投影し、その一つの面では、受光器により、全光
量を測定、他の一面では、円筒レンズ(or′LxwD
x工ahIJL1CNS )ヲ通過した光を稲の受光器
により測定を行い、それらの光の比が、被測定物体表面
粗さに比例することを利用した粗さ測定器に係るもので
ある。Detailed Description of the Invention The present invention uses a microscope objective lens to illuminate the surface of an object with a point light source, and uses a semi-transparent mirror to project the reflected light onto two image planes. , the total amount of light is measured by a light receiver, and on the other hand, a cylindrical lens (or'LxwD
This is a roughness measuring device that uses the fact that the light that passes through the rice field is measured by a rice receiver, and the ratio of the measured light is proportional to the surface roughness of the object to be measured.
即ち、従来のダイヤモンド針を用いた粗さ測定器の標準
とされている表面粗さ測定器は、測定中、物体表面に接
触する為、被測定物表面に傷を残すばかりでなく、やわ
らかい物体の表面粗さや、高度に磨かれた物体の表面の
、ゆるやかな高低を、その表面を傷めず測定するのは、
不可能である。In other words, the conventional surface roughness measuring device that uses a diamond needle, which is considered the standard, comes into contact with the surface of the object during measurement, so it not only leaves scratches on the surface of the object to be measured, but also damages soft objects. Measuring the surface roughness of objects and the gentle heights of highly polished surfaces without damaging the surface is
It's impossible.
さらに、従来の多くの光学的粗さ測定器、たとえば、干
渉計1散乱光測定器、ホログラフィ−等、値の表示がダ
イヤモンド針を用いた標準のものと異る為応用が限られ
たり、測定精度が充分に上がらなかったり、又はゆるや
かに変化する表面の粗さの測定のみに限られる等の欠点
がある。Furthermore, many conventional optical roughness measuring instruments, such as interferometer 1 scattered light measuring instrument, holography, etc., have limited applications because the value display is different from the standard one using a diamond needle, and the measurement There are disadvantages such as insufficient accuracy or being limited to measuring only slowly changing surface roughness.
これに対し、本発明は光学的な粗さ測定器ではあるがダ
イヤモンド針を用いた測定器の上述した欠点を補うばか
りでなく、その精度)並びに測定値の表示が、ダイヤモ
ンド針を用いる測定器と同一であるすぐれた利点を持つ
ため、従来の光学的測定器の欠点をも補うものである。In contrast, although the present invention is an optical roughness measuring instrument, it not only compensates for the above-mentioned drawbacks of the measuring device using a diamond stylus, but also improves its accuracy and display of measured values. It has the same excellent advantages as the conventional optical measuring instruments, thus compensating for the disadvantages of conventional optical measuring instruments.
本発明による装置は1非接触測定であるため、物体面に
加工された穴がおいていても、測定には全く影響がない
。さらに、本発明による測定器は、用いる顕微鏡の対物
レンズの倍率を変えるだけで、粗さ測定に必要な解像力
を選択することができる。但し、本発明による測定器は
、円筒レンズを用いるためS測定に際し、円筒レンズの
方向が、被測定物体の表面のみぞに、なるべく直角にな
るようにセットする必要が“ある。Since the apparatus according to the present invention performs non-contact measurement, even if a hole is formed on the object surface, the measurement is not affected at all. Furthermore, with the measuring instrument according to the present invention, the resolving power required for roughness measurement can be selected simply by changing the magnification of the objective lens of the microscope used. However, since the measuring instrument according to the present invention uses a cylindrical lens, it is necessary to set the cylindrical lens so that the direction of the cylindrical lens is as perpendicular to the groove on the surface of the object to be measured when performing S measurement.
本発明と類似した発明は、譲渡(米国特許第4017、
188号)の方法がある一4猿渡の方法は従来のよく知
られたシモン(SIMON )の方法を修正したもので
ある。Inventions similar to the present invention are assigned (U.S. Patent No. 4017,
188) is a modification of the well-known conventional method of SIMON.
シモンの方法は、被測定物表面を、顕微鏡の対物レンズ
を用いて、点像で照射し、その点より反射された光を、
同じ対物レンズにより集光し、ぞの焦点の前後の位置に
おける光量を光軸上におかれた針穴を通して受光器で測
定する。Simon's method uses a microscope objective lens to illuminate the surface of the object as a point image, and the light reflected from that point is
The light is focused by the same objective lens, and the amount of light at positions before and after the focal point is measured by a light receiver through a needle hole placed on the optical axis.
その測定された二つの光量の差と、和の比が、被測定物
の照射されてる点と、対物レンズの間隔に比例すること
を用いた測定器であるが、このシモンの方法を表面粗さ
測定器として用いると、大きな誤差が生ずる。譲渡の方
法は、この誤差を少なくするために、シモンの用いた針
穴を受光面の大きな受光器に変え、さらに一方の受光器
の前面にスリットをおいて、焦点の前方での光量を測定
した。そのスリットを通過した光量と、反射された全光
量との比が、物点の位置に比例することを用いて、表面
粗さ測定器としたものである。This measuring device uses the fact that the difference between the two measured amounts of light and the ratio of the sum is proportional to the distance between the irradiated point of the object to be measured and the objective lens. When used as a measuring device, large errors occur. In order to reduce this error, the transfer method changed the needle hole used by Simon to a receiver with a larger light-receiving surface, and also placed a slit in the front of one of the receivers to measure the amount of light in front of the focal point. did. The surface roughness measuring device uses the fact that the ratio of the amount of light passing through the slit to the total amount of reflected light is proportional to the position of the object point.
但しS譲渡の方法に於ける受光器の受光面の直径は、ス
リットを通過した全光量を測定するために、スリットの
長さ、(例えば5ffiIIりよりも大きなものが要求
される。受光器から発生する電気的雑音は、その受光面
の大きさに比例し、さらに、測定値の誤差は、雑音に比
例して増加するので、譲渡の方法においては、測定誤差
を減らすためには走査速度を減少させ、るか(即ち測定
に必要な時間を増すか)又は、光源の強度を増加させる
ことが要求される。工業部品の製造過程で、その装置を
用いる場合には、通常、速く測定することが要求される
し、高強度の光源を用いると被測定物の表面を破損する
ことがある。However, in the S transfer method, the diameter of the light receiving surface of the light receiver is required to be larger than the length of the slit (for example, 5ffiII) in order to measure the total amount of light passing through the slit. The generated electrical noise is proportional to the size of the light-receiving surface, and the error in measurement values increases in proportion to the noise. If the device is used in the production of industrial parts, it is usually necessary to increase the intensity of the light source. However, using a high-intensity light source may damage the surface of the object to be measured.
本発明は1円筒レンズ(例えば焦点側1111! 2
mm )(5”+am/ 0.5”mn+)分の1に減
少すルコトカ明らかである。これは、本発明による装置
が、譲渡の方法による装置に比べて、被測定物の表面を
破損することなく、100倍の速さで測定ができること
を示す。The present invention uses one cylindrical lens (for example, focal side 1111!2
mm ) (5”+am/0.5”mn+) is clearly reduced. This shows that the device according to the invention can measure 100 times faster than the device according to the transfer method without damaging the surface of the object to be measured.
次に、本発明を実施例により詳細に説明するつ第1図は
、本発明による測定器の略図で、■は光源、(至)は焦
光レンズ、(ハ)は反射鏡、(ト)は針穴−(ハ)は半
透明鏡、6■は他の反射鏡、aSは顕微鏡の対物レンズ
、QrJは被測定物体で、点光源で照射される。(11
の及び(120)は受光器、(115)は円筒レンズで
ある。即ち、針穴幹から′放射された光束(5Jは、半
透明鏡鴫(ハ)を通り、鏡団で反射され顕微鏡の対物レ
ンズα9を通り、被測定物表面0゜に点像を結像する。Next, the present invention will be explained in detail with reference to examples. Fig. 1 is a schematic diagram of a measuring instrument according to the present invention, where ■ is a light source, (to) is a focusing lens, (c) is a reflecting mirror, and (g) is a schematic diagram of a measuring instrument according to the present invention. is a needle hole, (c) is a semitransparent mirror, 6 is another reflecting mirror, aS is a microscope objective lens, and QrJ is an object to be measured, which is irradiated with a point light source. (11
and (120) are light receivers, and (115) is a cylindrical lens. That is, the light beam (5J) emitted from the needle hole stem passes through a semi-transparent mirror lens (c), is reflected by the mirror group, passes through the objective lens α9 of the microscope, and forms a point image on the surface of the object to be measured at 0°. do.
物体(IGにより反射された光は、もとの顕彼鏡対物レ
ンズαSにより、一部は半透明鏡(ハ)を素通りし1受
、光器(110)の受光面(110) に、針穴(至
)の像を作り、その全光量が受光器(110)で測定さ
れる。一方、半透明#I(ハ)により反射された光は、
その像面に結像するように集光するが、その前面に置か
れた円筒レンズ(115)により、一部の光のみが小受
光面(120)を有する受光器(120)の受光面(1
2のに結像され測定される。尚、受光器(11のの受光
面は、比較的大きなものが要求されるが、そあ受光器(
110)により測定される光量が、受光器(12のによ
り測定される光量よりはるかに大きいために、相対的な
信号(測定された光量)に対する雑音の比は、同程度に
保たれ、従って受光面の大きさく110)は、測定精度
にはあまり影響しない。The light reflected by the object (IG) passes through the original microscope objective lens αS, a portion of which passes through the semi-transparent mirror (c) and is received by the light receiving surface (110) of the light device (110). An image of the hole (to) is created and the total amount of light is measured by a light receiver (110).On the other hand, the light reflected by the semi-transparent #I (c) is
The light is focused to form an image on the image plane, but due to the cylindrical lens (115) placed in front of it, only part of the light is focused on the light receiving surface (120) of the light receiver (120), which has a small light receiving surface (120). 1
The image is imaged and measured on the second image. Note that the light receiving surface of the light receiver (No. 11) is required to be relatively large;
Since the amount of light measured by the receiver (110) is much larger than the amount of light measured by the receiver (12), the relative signal (measured amount of light) to noise ratio remains similar and therefore The surface size 110) does not significantly affect measurement accuracy.
第2図は、円筒レンズ(115)により集光された光束
の受光面(120)上に投影された像(150)と、受
光1l(120)との関係を示す。投影された像(11
)の一部、(135)の部分に対応する光量が受光器(
120)により測定される。FIG. 2 shows the relationship between the image (150) projected onto the light receiving surface (120) of the light beam condensed by the cylindrical lens (115) and the received light 1l (120). Projected image (11
), the amount of light corresponding to the part (135) is on the receiver (
120).
第3fflにはにつの受光器(11の(120)から得
られた信号の処理方法の実施例を示している。即ち1本
国において、(110) (12のは、第1図の(11
0)(120)に対応する受光器、(200)(205
)は増幅器、(210)はアナ四グ(又はデジタル)に
割算を行う素子、(22のは記録装置1さらGC(22
5)は、被測定物体の動きを測定する機械的装置である
。即ち、受光器(11G)(12のにより得られた信号
は、増幅器(200)(205)により適当に増幅され
一アナログ(又はデジタル)の割算器(210)により
受光器(110)による信号により規格化された(割算
された)受光器(12のの信号が得られる。この信号は
、記録計の縦軸の信号として使われる。一方、機械的位
置測定器(225)により測定された被測定物体の位置
の情−報は、記録計に横軸の信号として送りこまれる。The third ffl shows an example of a method for processing signals obtained from two photoreceivers (11 and (120). In other words, in one home country, (110) (12)
0) (120), (200) (205)
) is an amplifier, (210) is an element that performs analog (or digital) division, (22 is the recording device 1 and GC (22
5) is a mechanical device that measures the movement of an object to be measured. That is, the signal obtained by the photoreceiver (11G) (12) is appropriately amplified by the amplifier (200) (205), and the signal from the photoreceiver (110) is converted by an analog (or digital) divider (210). A signal of the optical receiver (12) is obtained which is normalized (divided) by . This signal is used as the vertical axis signal of the recorder. Information on the position of the measured object is sent to the recorder as a signal on the horizontal axis.
このように記録された情報は、測定された物体の表面の
粗さのプロファイルを表わしている。The information thus recorded represents the roughness profile of the surface of the measured object.
このように、測定された値が、物体の粗さに対応してい
ることは以下で説明する。It will be explained below that the measured value thus corresponds to the roughness of the object.
物体(1(lの動きに従い点像の位置は、その物体表面
の粗さく凹凸)のため、光軸方向に前後する。その像点
の動きに従って円筒レンズを通る光量、即ち受光器(1
20)により測定される光量が変化する。この信号変化
の割合が、粗さの凹凸に比例しているのである。According to the movement of the object (1 (l), the position of the point image moves back and forth in the optical axis direction due to the roughness and unevenness of the surface of the object. The amount of light passing through the cylindrical lens, that is, the light receiver (1
20), the amount of light measured changes. The rate of this signal change is proportional to the roughness.
第4図は、鵜の実施例の略図で、半透明鏡14Q(第1
図の実施例の半透明鏡咽に対応している)を通過した光
束は直接受光器で受光される前に(第1図の実施例)二
つの鏡(175)(18ので反射され、さらに円筒レン
ズ(185)で集光され、小受光1117(11のを有
する受光器(110)によりその全光量が測定される。FIG. 4 is a schematic diagram of the cormorant embodiment, showing the semi-transparent mirror 14Q (first
The light beam that has passed through the translucent mirror (corresponding to the translucent mirror in the embodiment shown) is reflected by two mirrors (175) (18) (in the embodiment shown in Fig. 1) before being directly received by the receiver. The light is collected by a cylindrical lens (185), and the total amount of light is measured by a light receiver (110) having a small light receiver 1117 (11).
この実施例によると、受光器(110)による電気的雑
音がさらに減少−する。According to this embodiment, the electrical noise caused by the photoreceiver (110) is further reduced.
第1FIlにもどり、第1図の点線で囲まれた部分は、
三個の光軸に対し145°傾いた反射−続(155)(
160) (165)及び接眼レンズ(170)からな
りたっており、本発明をさらに有効にする為の装置で、
実測時の被測定物の位置決めのために用いられる。Returning to 1st FIl, the part surrounded by the dotted line in Fig. 1 is
Reflection tilted 145° with respect to three optical axes - continuation (155) (
160) (165) and an eyepiece (170), and is a device for making the present invention more effective,
Used for positioning the object to be measured during actual measurements.
即ち、点線に囲まれた部分は、図において上下に動くよ
うに工夫されており、上におされた状態では(図は、下
におかれた状態を示す)反射鏡(155)が、光源翰と
同じ高さの位置でとまる。In other words, the part surrounded by dotted lines is designed to move up and down in the figure, and when placed upwards (the figure shows the downward position), the reflecting mirror (155) is a light source. It stops at the same height as the kiln.
光源(イ)からの光は一直線(集光レンズ、針穴など通
らずに)反射鏡(155)(160)・でそれぞれ直角
に反射され、半透明鏡14G(ハ)等を経て、物体面a
〔を対物レンズa9で照射する。この時、物体面は、点
光源ではなく、広が゛つた光によって照射されている。The light from the light source (a) is reflected in a straight line (without passing through the condensing lens or needle hole) by the reflecting mirrors (155), (160) and at right angles, and passes through the semi-transparent mirror 14G (c), etc., to the object surface. a
[Irradiates with objective lens a9. At this time, the object surface is illuminated not by a point light source but by diffused light.
反側光は、再び対物レンズα9で集光され、半透明鏡(
ハ)で反射され、反射m(16−5) (半透明鏡(ハ
)と、円筒レンズ(115)の間に置かれている。)に
より、接眼鏡の方向に反射される。接眼鏡を通して物体
面が観測され、被測定物体の位置決めが、簡単に行なえ
る。The light from the opposite side is again focused by the objective lens α9, and then passed through the semi-transparent mirror (
It is reflected by reflection m (16-5) (placed between the semitransparent mirror (c) and the cylindrical lens (115)) toward the eyepiece. The object surface is observed through the eyepiece, and the object to be measured can be easily positioned.
第1図は、本発明の非接触粗さ測定器の使用の態・様を
示す説明図、第2図は、本発明の非接触測定器に用いら
れるピンホールと非測定物の像との関係を示す図、第3
図は本発明の非接触粗さ測定器の信号処理を行う電気回
路を示す説明図、第4図は他の実施例、非接触測定器の
使用の態様を示す説明図である。
(5;・・・光束 顛・・・被測定物体 a9・・・対
物レンズ■・・・光源 (ハ)・・・反射鏡 (至)・
・・焦点レンズ(至)・・・針穴 −・・・半透明鏡
(ハ)・・・半透明鏡(110)・・・受光器 (11
0)・・・受光面 (115)・・・円筒レンズ (1
20)・・・受光器 (120)・・・小受光面 (1
30)・・・像(155)・・・反射鏡 (160)・
・・反射鏡 (165)・・・反射鏡(17G)・・・
接眼レンズ
第1図
第2図
第4図
コ
し−1−」
21−FIG. 1 is an explanatory diagram showing the mode of use of the non-contact roughness measuring instrument of the present invention, and FIG. 2 is an illustration of the relationship between a pinhole and an image of a non-measurable object used in the non-contact measuring instrument of the present invention. Diagram showing relationships, 3rd
The figure is an explanatory diagram showing an electric circuit for performing signal processing of the non-contact roughness measuring instrument of the present invention, and FIG. 4 is an explanatory diagram showing another embodiment, a mode of use of the non-contact measuring instrument. (5;... Luminous flux 2... Object to be measured a9... Objective lens ■... Light source (c)... Reflector (to)
・・Focal lens (to) ・・Needle hole −・・Semi-transparent mirror
(c)...Semi-transparent mirror (110)...Receiver (11)
0)... Light receiving surface (115)... Cylindrical lens (1
20)...Receiver (120)...Small light receiving surface (1
30)...Image (155)...Reflector (160)
...Reflector (165)...Reflector (17G)...
Eyepiece (Figure 1, Figure 2, Figure 4) 21-
Claims (1)
面9粗さに対応する信号を発生する装置であり、被測定
物体の表面上に点像を投影し1その点像を投影するため
に、顕微鏡の対物レンズを用い、螢光器を点像で照射さ
れている物体上の点の反射率に比例した信号を得るため
、対物レンズの後方に配位し、点像で照射されている表
面の点より反射された光を対物レンズの焦点の位置の前
方に置ふれた円筒レンズで集光し、その光の中心部分の
光量に比例する信号を得るために円筒型レンズの焦点付
近に小受光面を有する受光器を蛇位し、円筒型レンズの
受光器により測定された信号を1全反射光(反射率ンを
測定するための受光器により測定された信号で割算する
装置を備え、被測定物体上の点像の位置を測定する装置
ft−持ち、それらにより、一定の参照面から被測定物
体上の点像の位置までの距離に比例する信号を発生する
装置。 2、特許請求の範囲1に請求された形の非接触粗さ測定
器で、被測定物の位置決めを行えるよう肉眼で観察でき
る装置が加えられたもので、この装置は、数個の反射鏡
を用い、被測定物体表面の広い範囲を照射し、照射され
た被測定物体の表面が肉眼で、視察されるように**レ
ンズを用いており、さらに接眼レンズに、物体表面で、
反射され、対物レンズで集光された光を入射するように
反射鏡を請求1で述べられた円筒レンズの前方に位置し
、特許請求の範囲1で述べられた測定を行う際には、そ
の観察装置がじゃまにならないように機械的に位置をず
らせる機構を備えた装置。 五−非接触による光学的粗さ測定器で1被測定′物体の
表1面粗さに対応する信号を発生する装置であり、被測
定物体の表面上に点像を投影し、その点像を投影するた
めに顕微鏡の対物レンズを用い点像で照射されている表
面の点より反射された光を対物レンズの焦点の位置の前
方におかれた円筒レンズで集光し、その光の中心部分の
光量に比例する信号を得る゛ために、円筒レンズの焦点
付近に小受光面を有する受光器を配位し、第2の円筒レ
ンズで、小受光面を有する受光器を対物レンズの焦点の
後方に位置し、その円筒レンズの焦点面に集光された光
の中心部分を受光するようその受光器を位置し、第1の
円筒レンズの受光器(より測定された信号と第2の円筒
レンズの受光器で測定された信号の差と和の比を発生す
る装置を備え、被測定物体上の点像の位置を測定する位
置を持ち、それらにより、一定の参照面から被測定物体
上の点像゛の位置までの距離に比例する信号を発生する
装置。 4 特許請求の範囲5でのべられた測定装置に、請求シ
でのべられた観測装置を備えた非接触粗さ測・・定装置
。 五 点像を、被測定物体表面に照射する非接触粗さ測定
装置を用いて粗さを測定する方法で、その方法は、点像
により被測定物体表面を走査し、対−物レンズにより点
像を物体面に投影し、照射された点像の、対物レンズに
より再結像される像を半透明鏡な用い、2つの部分に分
け、全反射光に比較する信号を作り出し、円筒レンズで
集光された反射像の中心部分に比例する他の信号を作り
出し、上述の信号から電気的に処理された新しい信号を
作り出し、その信号を被測定面の照射されている点の位
置の函数として表示する方法を含む。[Claims] t A non-contact optical roughness measuring instrument that generates a signal corresponding to the surface roughness of an object to be measured, and projects a point image onto the surface of the object to be measured. To project the point image, a microscope objective is used, and a fluorophore is positioned behind the objective to obtain a signal proportional to the reflectance of the point on the object being illuminated by the point image. , in order to collect the light reflected from a point on the surface that is illuminated as a point image with a cylindrical lens placed in front of the focal point of the objective lens, and to obtain a signal proportional to the amount of light at the center of the light. A receiver with a small light-receiving surface is placed near the focal point of the cylindrical lens, and the signal measured by the receiver of the cylindrical lens is converted into 1 total reflected light (measured by the receiver for measuring the reflectance). a device for measuring the position of the point image on the object to be measured, by means of which the signal is proportional to the distance from a constant reference plane to the position of the point image on the object to be measured. A device that generates a signal. 2. A non-contact roughness measuring device as claimed in claim 1, in which a device that can be observed with the naked eye to position the object to be measured is added. , several reflecting mirrors are used to illuminate a wide range of the surface of the object to be measured, and a lens is used so that the irradiated surface of the object to be measured can be observed with the naked eye. On the surface of an object,
A reflecting mirror is located in front of the cylindrical lens stated in claim 1 so as to receive the reflected light and focused by the objective lens, and when performing the measurement stated in claim 1, A device that has a mechanism that mechanically shifts the position of the observation device so that it does not get in the way. 5-It is a non-contact optical roughness measuring device that generates a signal corresponding to the surface roughness of the object to be measured, and projects a point image onto the surface of the object to be measured. The objective lens of the microscope is used to project a point image, and the light reflected from the point on the surface is focused by a cylindrical lens placed in front of the focal point of the objective lens, and the center of the light is focused. In order to obtain a signal proportional to the amount of light in the area, a light receiver with a small light-receiving surface is arranged near the focal point of the cylindrical lens, and a second cylindrical lens is used to move the light receiver with a small light-receiving surface to the focus of the objective lens. and position its receiver to receive the central portion of the light focused on the focal plane of the cylindrical lens; It is equipped with a device that generates the ratio of the difference and sum of the signals measured by the receiver of the cylindrical lens, and has a position for measuring the position of a point image on the object to be measured. A device that generates a signal that is proportional to the distance to the position of the point image above. 4. A non-contact roughness measuring device that is equipped with the measuring device described in claim 5 and the observation device described in claim 5. 5. A method of measuring roughness using a non-contact roughness measuring device that irradiates a point image onto the surface of an object to be measured. A point image is projected onto the object plane by an objective lens, and the image of the irradiated point image, which is re-formed by the objective lens, is divided into two parts using a semi-transparent mirror, and the signal is compared with the total reflected light. , generate another signal proportional to the central part of the reflected image focused by the cylindrical lens, generate a new electrically processed signal from the above signal, and transfer that signal to the illuminated surface of the surface to be measured. Includes methods for displaying points as a function of position.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US25775081A | 1981-04-27 | 1981-04-27 | |
US6257750 | 1981-04-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5899705A true JPS5899705A (en) | 1983-06-14 |
Family
ID=22977591
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6971082A Pending JPS5899705A (en) | 1981-04-27 | 1982-04-27 | Noncontact roughness measuring instrument |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5899705A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5927207A (en) * | 1982-08-07 | 1984-02-13 | Agency Of Ind Science & Technol | Noncontact type surface shape and roughness meter |
JPS6061605A (en) * | 1983-09-14 | 1985-04-09 | Agency Of Ind Science & Technol | Non-contact skid of roughness meter |
-
1982
- 1982-04-27 JP JP6971082A patent/JPS5899705A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5927207A (en) * | 1982-08-07 | 1984-02-13 | Agency Of Ind Science & Technol | Noncontact type surface shape and roughness meter |
JPS6061605A (en) * | 1983-09-14 | 1985-04-09 | Agency Of Ind Science & Technol | Non-contact skid of roughness meter |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5311286A (en) | Apparatus and method for optically measuring a surface | |
US4017188A (en) | Surface profile measuring device and method | |
JPS5999304A (en) | Method and apparatus for comparing and measuring length by using laser light of microscope system | |
JPH0610694B2 (en) | Automatic focusing method and device | |
Ishihara et al. | High-speed surface measurement using a non-scanning multiple-beam confocal microscope | |
KR940002356B1 (en) | Method and apparatus for noncontact automatic focusing | |
EP0234562B1 (en) | Displacement sensor | |
JPH0743110A (en) | Two-stage detecting type non-contact positioning device | |
JPH02161332A (en) | Device and method for measuring radius of curvature | |
GB2265215A (en) | Optical apparatus for measuring surface curvature | |
JPS5899705A (en) | Noncontact roughness measuring instrument | |
JPS5979104A (en) | Optical device | |
JP2542754B2 (en) | Positioning method and apparatus for probe for electric field measurement of integrated circuit | |
JPS63241407A (en) | Method and device for measuring depth of fine recessed part | |
JPH0755638A (en) | Device and method for measuring focal length of optical system | |
EP0157431A1 (en) | Procedure to measure the dimensions of a body in movement in a three-dimensional field, and an optoelectronic device to carry out such procedure | |
JPS6242327Y2 (en) | ||
US5631738A (en) | Laser ranging system having reduced sensitivity to surface defects | |
JPS6042606A (en) | Optical size measuring device | |
JP2001027580A (en) | Method and apparatus for measurement of transmission decentration of lens | |
JPS6319001B2 (en) | ||
JPH0755640A (en) | Device and method for measuring focal length of optical system | |
JPH0426685B2 (en) | ||
JP2003042720A (en) | Height measuring apparatus | |
JPS60211304A (en) | Measuring instrument for parallelism |