JPS5899679A - Refrigerator - Google Patents
RefrigeratorInfo
- Publication number
- JPS5899679A JPS5899679A JP19806381A JP19806381A JPS5899679A JP S5899679 A JPS5899679 A JP S5899679A JP 19806381 A JP19806381 A JP 19806381A JP 19806381 A JP19806381 A JP 19806381A JP S5899679 A JPS5899679 A JP S5899679A
- Authority
- JP
- Japan
- Prior art keywords
- float
- refrigerant
- valve
- float valve
- compressor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D2317/00—Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
- F25D2317/06—Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
- F25D2317/065—Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the air return
- F25D2317/0653—Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the air return through the mullion
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
2、一
本発明は、冷却システムの一部を成す圧縮機を0N−O
FF制御することにより、庫内温度制御を行なう冷凍装
置の改良に関する。Detailed Description of the Invention 2.1 The present invention provides an ON-O compressor that forms part of a cooling system.
The present invention relates to an improvement of a refrigeration system that controls the temperature inside the refrigerator by controlling the FF.
圧縮機には、レシプロ型圧縮機等の低圧容器タイプの圧
縮機と、ロータリ型圧縮機等の高圧容器タイプの圧縮機
があるが、本件では一例としてロータリ型圧縮機等の高
圧容器タイプの圧縮機を有する冷凍装置について説明す
る。There are two types of compressors: low-pressure container type compressors such as reciprocating type compressors, and high-pressure container type compressors such as rotary type compressors. A refrigeration system having a refrigerator will be explained.
従来より、この種の冷凍装置を採用した冷蔵庫において
は、冷却システムの一部を成す圧縮機を0N−OFF制
御することにより庫内温度制御を行なっている。周知の
ように圧縮機が停止する瞬間には凝縮器、及び圧縮機内
に多量の高温、高圧冷媒が滞溜しており、圧縮機の停止
と同時に、冷却システムの減圧装置であるキャピラリチ
ューブは本来の減圧の機能ではなく、高、低圧をバラン
スせしめる均圧管としての機能を有するため、凝縮器内
の高温高圧冷媒が蒸発器内に流入する。これと同時に、
ロータリ型圧縮機等、高圧容器タイプの圧縮機では運転
停止により、制圧側より低圧3ページ
側に、高圧高温冷媒が逆流する。従って、この高圧高温
冷媒は圧縮機吸込口より蒸発器出口へと逆流し、蒸発器
内へ流入する。BACKGROUND ART Conventionally, in refrigerators employing this type of refrigeration system, the temperature inside the refrigerator is controlled by ON-OFF control of a compressor forming a part of the cooling system. As is well known, at the moment the compressor stops, a large amount of high-temperature, high-pressure refrigerant accumulates in the condenser and compressor, and at the same time as the compressor stops, the capillary tube, which is the pressure reducing device of the cooling system, is The refrigerant in the condenser flows into the evaporator because the refrigerant in the condenser flows into the evaporator. At the same time,
In a high-pressure vessel type compressor such as a rotary compressor, when the operation is stopped, high-pressure, high-temperature refrigerant flows backward from the pressure control side to the low-pressure side. Therefore, this high-pressure high-temperature refrigerant flows back from the compressor suction port to the evaporator outlet and flows into the evaporator.
当然のことではあるが、このような高圧高温冷媒の蒸発
器への流入はそのまま冷蔵庫内の熱負荷の増加となり、
最終的には電気代の増加となる。Naturally, the flow of such high-pressure, high-temperature refrigerant into the evaporator directly increases the heat load inside the refrigerator.
The end result is an increase in electricity bills.
この種の欠点に対し、キャピラリチューブからの流入に
対し、凝縮器入口と蒸発器入口との間の一部に冷媒制御
弁を設けたものは特開昭56−16066号公報に示さ
れ、又実開昭65−96373号公報には、蒸発器出口
と圧縮機吸込口との閾に逆止弁を設けるものが知られて
いる。To solve this kind of drawback, a refrigerant control valve is provided in a part between the condenser inlet and the evaporator inlet for the inflow from the capillary tube, as disclosed in Japanese Patent Application Laid-Open No. 16066/1983. Japanese Utility Model Application Publication No. 65-96373 discloses a device in which a check valve is provided at the threshold between the evaporator outlet and the compressor suction port.
しかし、前記冷媒制御弁としての電磁弁はその作動のだ
めの入力、及び難しいコントロール関係が必要となり、
コスト的に欠点を有していた。However, the solenoid valve as the refrigerant control valve requires input for its operation and a difficult control relationship.
It had a disadvantage in terms of cost.
かかる点に鑑み、本発明は前記冷媒制御、弁に電磁弁で
はなく、冷却システムの特性を活かし、凝縮器出口に存
在する液冷媒量の増減によりフロートを上下させ、弁部
を開閉するフロート弁を設けることにより、効果として
は全く電磁弁と同様で、かつ、電気入力が必要ない分だ
けさらに節電が可能となり、さらにフロート弁の動作を
安定化させるものである。In view of these points, the present invention provides a refrigerant control valve that does not use a solenoid valve, but utilizes the characteristics of the cooling system to move a float up and down depending on an increase or decrease in the amount of liquid refrigerant present at the condenser outlet, thereby opening and closing the valve part. By providing the float valve, the effect is exactly the same as that of a solenoid valve, and since no electrical input is required, it is possible to further save power, and furthermore, the operation of the float valve is stabilized.
即ち、フロート弁を動作させるだめのフロート浮力は、
液冷媒の状況によって影響を受けるもので、例えば、凝
縮が不足ぎみのときは気液混合の状態となり浮力の変動
を生じる。従って、フロート内の冷却は出来るかぎり完
全液化の冷媒が望ましく本発明は、補助凝縮器の後流に
フロート弁を介在させて、7 o −ト弁動作の安定を
計るものである。In other words, the float buoyancy that operates the float valve is:
It is affected by the state of the liquid refrigerant; for example, when there is insufficient condensation, a state of gas-liquid mixture occurs, causing fluctuations in buoyancy. Therefore, it is desirable to use completely liquefied refrigerant to cool the inside of the float as much as possible, and the present invention aims to stabilize the operation of the 7 o -to valve by interposing a float valve downstream of the auxiliary condenser.
以下に本発明の一実施例について添付図面に従い説明す
る。An embodiment of the present invention will be described below with reference to the accompanying drawings.
図において、1は冷蔵庫本体であり、断熱壁2より成る
キャビネット3の内部を上下に仕切る中仕切材4を設け
、上室を冷凍室5、下室を冷蔵室6に分割している。両
室5,6にはそれぞれ専用の冷凍室扉7、冷蔵室扉8を
有している。前記中仕切材4の内部には周知の冷却シス
テムの一部を成す蒸発器9と、庫内に冷気を送るファン
1oを備え、冷凍室用冷気吹出口11、冷蔵室用冷気吹
6ページ
出口12よりそれぞれの室6.6へ冷気を送り庫内を冷
却する。冷蔵室用冷気吹出口12には冷蔵室6内の温度
を検出し、前記冷蔵室用冷気吹出口12の開口面積を調
整するダンパ13を備えている。このダンパ13は従来
周知のダンパサーモスタットでよいので詳細な説明を省
略する。冷凍室5上面に冷凍室6内の温度を検出し、圧
縮機14の運転を0N−OFFさせるサーモスタット1
6を備えている。冷却システムは、密閉容器内が高圧と
なるロータリー型の圧縮機14.主凝縮器16a、補助
凝縮器1eb、キャピラリチューブ17、蒸発器9を順
次接続して構成し、蒸発器9の出口と圧縮機14の吸込
口との間には逆止弁18を設け、蒸発器9の出口と逆止
弁18の入口とを第1のサクションパイプ19、逆止弁
18の出口と圧縮機14の吸込口とを第2のサクション
パイプ2oでそれぞれ接続している。第1のサクション
パイプ19は蒸発器9側の一部を中仕切材4中に配設し
、他は断熱壁2中に埋設して配管されている。In the figure, reference numeral 1 denotes a refrigerator body, and a partition member 4 is provided to partition the inside of a cabinet 3 made of a heat insulating wall 2 into upper and lower parts, and the upper chamber is divided into a freezing chamber 5 and the lower chamber into a refrigerator chamber 6. Both chambers 5 and 6 have dedicated freezer compartment doors 7 and refrigerator compartment doors 8, respectively. Inside the partition member 4, an evaporator 9 forming part of a well-known cooling system and a fan 1o for sending cold air into the refrigerator are provided, including a cold air outlet 11 for the freezer compartment and a cold air outlet for the refrigerator compartment. 12 to each chamber 6.6 to cool the inside of the warehouse. The cold air outlet 12 for the refrigerator compartment is equipped with a damper 13 that detects the temperature inside the refrigerator compartment 6 and adjusts the opening area of the cold air outlet 12 for the refrigerator compartment. This damper 13 may be a conventionally known damper thermostat, so a detailed explanation will be omitted. A thermostat 1 is installed on the upper surface of the freezer compartment 5 to detect the temperature inside the freezer compartment 6 and turn the operation of the compressor 14 ON-OFF.
It is equipped with 6. The cooling system is a rotary type compressor that generates high pressure inside a closed container14. The main condenser 16a, the auxiliary condenser 1eb, the capillary tube 17, and the evaporator 9 are connected in sequence, and a check valve 18 is provided between the outlet of the evaporator 9 and the suction port of the compressor 14. The outlet of the check valve 18 and the inlet of the check valve 18 are connected by a first suction pipe 19, and the outlet of the check valve 18 and the suction port of the compressor 14 are connected by a second suction pipe 2o. A part of the first suction pipe 19 on the side of the evaporator 9 is arranged in the partition member 4, and the other part is buried in the heat insulating wall 2.
61.−・・
補助凝縮器18bは、本体1の前面開口縁3aに熱交換
的に配設し、外気より温度の低い前面開口縁3aの発汗
を防止すると共に、主凝縮器16aにて凝縮する冷媒を
更に過冷却する。21は補助凝縮器16bの出口と、キ
ャピラリチューブ1アとの間に設けたフロート弁本体で
あり、フロート弁本体21と前記サクションパイプ19
を熱交換的に接触せしめ、断熱壁2中に埋設し、フロー
ト弁本体21内の冷媒の過冷却を促進させると共に、外
気からの加熱により過冷却液が、ガス化するのを防止し
ている。61. -... The auxiliary condenser 18b is disposed on the front opening edge 3a of the main body 1 for heat exchange, and prevents sweating on the front opening edge 3a, which has a lower temperature than the outside air, and also prevents the refrigerant condensed in the main condenser 16a. is further supercooled. 21 is a float valve body provided between the outlet of the auxiliary condenser 16b and the capillary tube 1a, and the float valve body 21 and the suction pipe 19
are in contact with each other for heat exchange and are embedded in the heat insulating wall 2 to promote supercooling of the refrigerant in the float valve body 21 and to prevent the supercooled liquid from being gasified by heating from the outside air. .
前記フロート弁本体21の内部にはフロート部22を収
納し、該フロート部22はクロロプレン、ニトリルゴム
等の発泡性材料からなる浮子部23とポール弁24から
なり、浮子部23はポール弁24の略半分をインサート
発泡して成る。フロート部22下方には前記ポール弁2
4にて閉鎖される弁座25を形成し、フロート弁出口2
6と連通した冷媒通路25aが設けられている。冷媒通
路26aは、弁座26側を小径に出口26側を大径にし
て7ページ
おり、前記小径は、キャピラリチューブ17の内径より
小さく、長さは非常に短かぐ形成し、出来るだけ弁座2
6での圧損が少なくかつ、ボール弁24の開放時に小さ
な開放力即ちわずかな浮力にて動作するようになしフロ
ート部22の浮子部23が小型化できる様にしている。A float part 22 is housed inside the float valve main body 21, and the float part 22 consists of a float part 23 made of a foaming material such as chloroprene or nitrile rubber, and a Pall valve 24. Approximately half of it is made of insert foam. The above-mentioned pole valve 2 is located below the float part 22.
4, forming a valve seat 25 that is closed at the float valve outlet 2.
A refrigerant passage 25a communicating with 6 is provided. The refrigerant passage 26a has seven pages with a small diameter on the valve seat 26 side and a large diameter on the outlet 26 side.The small diameter is smaller than the inner diameter of the capillary tube 17, and the length is very short. 2
The float part 23 of the float part 22 can be made smaller by reducing the pressure loss at 6 and operating with a small opening force, that is, a slight buoyant force when the ball valve 24 is opened.
又、フロート弁出口26には、内径を前記キャピラリチ
ューブ17の外径と略同−に作られた出口バイブ26a
を挿入、固定している。又、フロート弁人口28には、
前記冷媒通路25aの小径より径の小さいフィルター2
8a 、28bと、モレキュラシープ等の乾燥剤28a
を設けており、冷却システム内の水分を吸着するととも
に、フロート弁本体21内に、金属くず等が侵入するの
を防止している。Further, the float valve outlet 26 is provided with an outlet vibe 26a whose inner diameter is approximately the same as the outer diameter of the capillary tube 17.
is inserted and fixed. In addition, for float valve population 28,
A filter 2 having a smaller diameter than the small diameter of the refrigerant passage 25a.
8a, 28b, and a desiccant 28a such as molecular sheep
is provided to adsorb moisture in the cooling system and to prevent metal scraps and the like from entering the float valve body 21.
また、フロート弁本体21は円筒に形成される一方、前
記浮子部23の外周は略六角に形成し、その対角長を前
記フロート弁本体21の内径より若干小さく形成されて
いる。Further, while the float valve main body 21 is formed in a cylindrical shape, the outer periphery of the float portion 23 is formed in a substantially hexagonal shape, and its diagonal length is formed to be slightly smaller than the inner diameter of the float valve main body 21.
さらに、浮子部23上面の外縁部には複数の凸状のスト
ッパー27.27・・・・・・が一体に形成され、フロ
ート弁入口28を形成したフロート弁本体上面21aと
当り、前記フロート部22の過度の動きを防止する寸法
関係に構成されている。従って、フロート弁本体21内
に液冷媒が存在する状態では浮子部23の浮力によりフ
ロート部22はフロート弁本体上面21aに押付けられ
る。この時、フロート弁入口28−凸状のストツノZ−
27間の通路−フロート弁本体21内周と浮子部23の
外周六角部との間隙−フロート弁出口26と冷媒流路が
形成されている。逆に、フロート弁本体21内の液冷媒
量が減少すると浮子部23の浮力が減少し、フロート部
22の自重により降下し、ボール弁24により弁座26
を閉路する。Furthermore, a plurality of convex stoppers 27, 27, etc. are integrally formed on the outer edge of the upper surface of the float portion 23, and contact the upper surface 21a of the float valve main body forming the float valve inlet 28, so that the float portion 22 is constructed in a dimensional relationship that prevents excessive movement. Therefore, when liquid refrigerant exists in the float valve body 21, the float part 22 is pressed against the upper surface 21a of the float valve body by the buoyancy of the float part 23. At this time, the float valve inlet 28 - convex stop horn Z -
27 - a gap between the inner periphery of the float valve main body 21 and the outer periphery hexagonal part of the float part 23 - the float valve outlet 26, and a refrigerant flow path is formed. Conversely, when the amount of liquid refrigerant in the float valve main body 21 decreases, the buoyancy of the float section 23 decreases, and the float section 22 descends due to its own weight, and the ball valve 24 causes the valve seat 26 to
Close the circuit.
またフロート弁入口28は補助凝縮器16b出口に接続
され、フロート弁の出ロノくイブ26&はキャピラリチ
ューブ17人口に接続されている。Further, the float valve inlet 28 is connected to the outlet of the auxiliary condenser 16b, and the outlet tube 26& of the float valve is connected to the capillary tube 17.
次に上記構成による動作について説明する。Next, the operation of the above configuration will be explained.
冷蔵室6内の冷蔵室用冷気吹出口12に設けたダンパ1
3により、冷蔵室用冷気吹出口12の開口部を調整し、
蒸発器9にて冷却され、77%09ベーソ
にて送られる冷気の冷蔵室6内への送風量を制御し、冷
蔵室6を所定・の温度に冷却する。Damper 1 provided at cold air outlet 12 for refrigerator compartment in refrigerator compartment 6
3, adjust the opening of the cold air outlet 12 for the refrigerator compartment,
The amount of cold air cooled by the evaporator 9 and sent at 77% 09B into the refrigerator compartment 6 is controlled to cool the refrigerator compartment 6 to a predetermined temperature.
また、冷凍室6内に備えたサーモスタット16により、
冷凍室6の温度を検出し、温度が所定の温度以上であれ
ば、圧縮機14.ファン7を運転し、所定の温度に制御
する。冷却運転中は、圧縮機14.主凝縮器16a、補
助凝縮器16b、キャピラリチューブ17.蒸発器9に
より正規の冷却システムを構成しており、圧縮機14を
運転し、冷媒が主凝縮器16a、補助凝縮器16bで凝
縮液化しはじめると、垂直に・七り付けられたフロート
弁本体21内部に冷媒液体がたまりはじめる。In addition, the thermostat 16 provided in the freezer compartment 6 allows
The temperature of the freezer compartment 6 is detected, and if the temperature is above a predetermined temperature, the compressor 14. The fan 7 is operated to control the temperature to a predetermined temperature. During cooling operation, the compressor 14. Main condenser 16a, auxiliary condenser 16b, capillary tube 17. The evaporator 9 constitutes a regular cooling system, and when the compressor 14 is operated and the refrigerant begins to condense and liquefy in the main condenser 16a and the auxiliary condenser 16b, the float valve body installed vertically Refrigerant liquid begins to accumulate inside 21.
この時フロート弁本体21内部では、弁座26゜ボール
弁24は、圧縮機14で圧縮された高圧冷媒がフロート
部22を押し下げ、冷媒がキャピラリチューブ17に流
れない様にシールされている。At this time, inside the float valve body 21, the valve seat 26° ball valve 24 is sealed so that the high-pressure refrigerant compressed by the compressor 14 pushes down the float portion 22 and the refrigerant does not flow into the capillary tube 17.
冷媒液体がフロート部22上面にまでたまってくると、
浮子部23の浮力作用によってフロート部22が浮き上
がり、冷媒液体がキャピラリチューブ17へ流れる。浮
子部23の比重及び体積の選1゜
択は、冷媒液体の比重と凝縮器16内部の高圧圧力と弁
座26側の冷媒通路面積とによって求められる。また纂
−のサクションパイプ9によす第2のサクションパイプ
2oの圧力が低くなるため、逆止弁18の冷媒通路も開
路され、冷却運転がされる。冷却運転が続き冷蔵庫本体
1内が冷却され、温度が低下してくると、本体1の前面
開口部3aと熱交換的に配設している補助凝縮器16b
内の冷媒が前面開口部3aと熱交換し、前面開口部3a
の温度を上昇させると共に、補助凝縮器16b内の冷媒
の温度を低下せしめ過冷却を促進し、フロにより、フロ
ート弁本体21を冷却し、フロート弁本体21内の冷媒
を更に過冷却する。When the refrigerant liquid accumulates up to the top surface of the float section 22,
The float part 22 floats due to the buoyant force of the float part 23, and the refrigerant liquid flows into the capillary tube 17. The specific gravity and volume of the float portion 23 are determined by the specific gravity of the refrigerant liquid, the high pressure inside the condenser 16, and the refrigerant passage area on the valve seat 26 side. Further, since the pressure in the second suction pipe 2o that is connected to the main suction pipe 9 becomes low, the refrigerant passage of the check valve 18 is also opened, and cooling operation is performed. When the cooling operation continues and the inside of the refrigerator main body 1 is cooled and the temperature decreases, the auxiliary condenser 16b, which is arranged to exchange heat with the front opening 3a of the main body 1,
The refrigerant inside exchanges heat with the front opening 3a, and the front opening 3a
At the same time, the temperature of the refrigerant in the auxiliary condenser 16b is lowered to promote supercooling, and the flow cools the float valve body 21, further supercooling the refrigerant in the float valve body 21.
又、フロート弁本体21は断熱材2中に埋設している為
、一度過冷却された冷媒がコンプレッf′14の熱影響
等によりガス化することはなく、高外気温、過負荷条件
に於いても過冷却を安定して保持することが可能であり
、効率の良い冷却運転が行’11 Aニー=:’
なわれる。In addition, since the float valve main body 21 is buried in the heat insulating material 2, the refrigerant once supercooled will not be gasified due to the thermal influence of the compressor f'14, and will not be used under high outside temperature or overload conditions. It is possible to stably maintain supercooling even when the temperature is low, and efficient cooling operation can be performed.
ここで、サーモスタット16により圧縮機14が停止す
ると、凝縮器16及びフロート弁本体21内部にたまっ
ていた液化冷媒は、フロート弁本体21内部の浮子部2
3上面よりわずかに下がった位置までキャピラリチュー
ブ17を通って流れると、浮力が冷媒ガス圧力に比して
低下して弁座25がボール弁24によりシールされキャ
ピラリチューブ17から蒸発器9内へ冷媒が流れ込むこ
とはなくなる。Here, when the compressor 14 is stopped by the thermostat 16, the liquefied refrigerant accumulated inside the condenser 16 and the float valve body 21 is removed from the float part 2 inside the float valve body 21.
3 When the refrigerant flows through the capillary tube 17 to a position slightly lower than the upper surface, the buoyancy decreases compared to the refrigerant gas pressure, the valve seat 25 is sealed by the ball valve 24, and the refrigerant flows from the capillary tube 17 into the evaporator 9. will no longer flow in.
また、同時に圧縮機14内のオイルによる高・低圧の気
密が破壊され、圧縮機14内部の高圧高温冷媒は第2の
サクションパイプ2oへと逆流する。At the same time, the high- and low-pressure airtightness created by the oil in the compressor 14 is broken, and the high-pressure, high-temperature refrigerant inside the compressor 14 flows back into the second suction pipe 2o.
これにより、第一のサクションパイプ19は第2のサク
ションパイプ2oより低圧となるため、逆止弁18はそ
の冷媒通路が閉路する。As a result, the first suction pipe 19 has a lower pressure than the second suction pipe 2o, so that the refrigerant passage of the check valve 18 is closed.
尚、フロート弁入口28部に冷媒通路25aの径より小
さいフィルター28a、28b及び乾燥材280を設け
ているためフロート弁本体21内特開昭58−9967
に4)
に金属くず等が侵入することがなく冷媒通路26aが閉
路することはない。又冷媒通路25aの弁座26側の径
をキャピラリチューブ17の内径より小さくかつ、長さ
は非常に短かくしているので弁座26での圧損は少なく
、かつ、ボール弁24の開放時における弁吸着力、即ち
弁座面積とポール弁前後の圧力差の積を少さくできフロ
ート部22の浮子部23を小型化することができる。Note that since the float valve inlet 28 is provided with filters 28a, 28b whose diameter is smaller than the diameter of the refrigerant passage 25a and a drying material 280, the inside of the float valve main body 21 is
and 4) metal scraps etc. do not enter into the refrigerant passage 26a and the refrigerant passage 26a is not closed. Furthermore, since the diameter of the refrigerant passage 25a on the valve seat 26 side is smaller than the inner diameter of the capillary tube 17 and the length is very short, there is little pressure loss at the valve seat 26, and the valve adsorption when the ball valve 24 is opened is reduced. The force, that is, the product of the valve seat area and the pressure difference before and after the pole valve can be reduced, and the float part 23 of the float part 22 can be made smaller.
また前記フロート弁本体21内周と浮子部23の六角部
の対角長は略同−として構成されているため、フロート
部22のガタッキ及びシール不良等は発生しない。さら
に、浮子部23はクロロプレン、ニトリルゴム等の発泡
材料から構成されているので、フロンガス等の冷媒には
膨潤作用もない。Furthermore, since the diagonal lengths of the inner periphery of the float valve main body 21 and the hexagonal portion of the float portion 23 are approximately the same, rattling of the float portion 22 and poor sealing do not occur. Furthermore, since the float portion 23 is made of a foamed material such as chloroprene or nitrile rubber, a refrigerant such as fluorocarbon gas does not have a swelling effect.
以上の説明からも、明らかであるように、本発明による
冷凍装置は、圧縮機、主凝縮器、補助凝縮器、キャピラ
リチューブ、蒸発器サクションチー−プを順次接続して
構成する冷却システムにより冷蔵庫の庫内を冷却すると
ともに、前記圧縮機13 ページ
の0N−OFF運転により庫内温度を制御せしめ、かつ
冷蔵庫本体の前面開口縁に前記補助凝縮器を熱交換的に
配設し、前記補助凝縮器の下流側に内部に存在する液冷
媒の増減により開閉するフロー弁を設けたものであるた
め、冷媒流れを制御するフロート弁本体内のフロート部
に浮力を生じさせる冷媒を補助凝縮器により過冷却即ち
完全液化を行った液冷媒にて作動することができ、フロ
ート弁内の冷媒状態の不安定な状態即ち気液混合状態を
減少し、安定した制御を行なえるものである。As is clear from the above description, the refrigeration system according to the present invention uses a cooling system configured by sequentially connecting a compressor, a main condenser, an auxiliary condenser, a capillary tube, and an evaporator suction cheep. In addition to cooling the inside of the refrigerator, the temperature inside the refrigerator is controlled by ON-OFF operation as described in page 13 of the compressor, and the auxiliary condenser is disposed on the front opening edge of the refrigerator body for heat exchange, and the auxiliary condenser is Since a flow valve is installed on the downstream side of the container that opens and closes depending on the increase or decrease of the liquid refrigerant inside, the refrigerant that creates buoyancy in the float part of the float valve body that controls the refrigerant flow is overflowed by an auxiliary condenser. It is possible to operate with a liquid refrigerant that has been cooled, that is, completely liquefied, and it is possible to reduce the unstable state of the refrigerant in the float valve, that is, the gas-liquid mixed state, and to perform stable control.
更に、フロート弁本体とサクションチューブの熱交換、
あるいはフロート弁本体を断熱材中に埋設することによ
り、フロート弁本体内での気化を減少し一層安定した動
作を行なえ、低ランニングコストの冷凍装置をえること
ができる。Furthermore, heat exchange between the float valve body and suction tube,
Alternatively, by embedding the float valve body in a heat insulating material, vaporization within the float valve body can be reduced, more stable operation can be achieved, and a refrigeration system with low running costs can be obtained.
第1図は本発明装置の一実施例を応用した冷蔵庫の断面
図、第2図は第1図のn−u’線における要部断面図、
第3図は冷却システム配管図、第4図はフロート弁本体
の断面図、第6図は第4図の14 − ・
要部の分解斜視図を示す。
14・・・・・・圧縮機、16a・・・・・・主凝縮器
、1eb・・・・・補助凝縮器、17・・・・・・キャ
ピラリチューブ、18−・・・・e逆止弁、19.20
・−・・・・第1.第2のサクションノーイブ、21
・・・・・・フロート弁本体。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名11
図
112図
19 1320
第4図FIG. 1 is a sectional view of a refrigerator to which an embodiment of the device of the present invention is applied, and FIG. 2 is a sectional view of essential parts taken along line nu' in FIG. 1.
FIG. 3 is a cooling system piping diagram, FIG. 4 is a sectional view of the float valve body, and FIG. 6 is an exploded perspective view of the main parts of FIG. 4. 14...Compressor, 16a...Main condenser, 1eb...Auxiliary condenser, 17...Capillary tube, 18-...e Back check Valve, 19.20
・-・・・・First. Second suction nove, 21
...Float valve body. Name of agent: Patent attorney Toshio Nakao and 1 other person11
Figure 112 Figure 19 1320 Figure 4
Claims (3)
ーブ、蒸発器、サクションチューブを順次接続して構成
する冷却システムにより、断熱材により断熱された庫内
を冷却するとともに、前記圧縮機の0N−OFF運転に
より庫内温度を制御せしめ、かつ本体の前面開口縁に、
前記補助凝縮器を熱交換的に配設し、更に前記補助凝縮
器の下流側に、内部に存在する液冷媒の増減により開閉
するフロート弁本体を設けた冷凍装置。(1) A cooling system consisting of a compressor, a main condenser, an auxiliary condenser, a capillary tube, an evaporator, and a suction tube are connected in sequence to cool the inside of the refrigerator, which is insulated with a heat insulating material, and to The temperature inside the refrigerator is controlled by 0N-OFF operation, and there is a
A refrigeration system in which the auxiliary condenser is disposed for heat exchange, and further includes a float valve body downstream of the auxiliary condenser that opens and closes depending on the increase or decrease of liquid refrigerant present inside the auxiliary condenser.
換的に配設した前記特許請求の範囲第一1項記載の冷凍
装置。(2) The refrigeration apparatus according to claim 11, wherein the float valve body and the suction tube are arranged for heat exchange.
なる前記特許請求の範囲第一/−項、または第2項記載
の冷凍装置。(3) The refrigeration system according to claim 1 or 2, wherein the float valve main body is embedded in the heat insulating material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19806381A JPS5899679A (en) | 1981-12-08 | 1981-12-08 | Refrigerator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19806381A JPS5899679A (en) | 1981-12-08 | 1981-12-08 | Refrigerator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5899679A true JPS5899679A (en) | 1983-06-14 |
JPS6363832B2 JPS6363832B2 (en) | 1988-12-08 |
Family
ID=16384906
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19806381A Granted JPS5899679A (en) | 1981-12-08 | 1981-12-08 | Refrigerator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5899679A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4717121B2 (en) * | 2006-12-28 | 2011-07-06 | 株式会社 エニイワイヤ | Sensor slave station system |
-
1981
- 1981-12-08 JP JP19806381A patent/JPS5899679A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4717121B2 (en) * | 2006-12-28 | 2011-07-06 | 株式会社 エニイワイヤ | Sensor slave station system |
Also Published As
Publication number | Publication date |
---|---|
JPS6363832B2 (en) | 1988-12-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6076366A (en) | Refrigerating cycle system with hot-gas bypass passage | |
JP2006189240A (en) | Expansion device | |
US4261180A (en) | Refrigerator | |
US5205131A (en) | Refrigerator system with subcooling flow control | |
JPS5899679A (en) | Refrigerator | |
US2188893A (en) | Refrigerating apparatus | |
JP2000205664A (en) | Refrigerating cycle system | |
JPS5819677A (en) | Refrigerator | |
JPH0221509B2 (en) | ||
CN100498137C (en) | Overheat balancer used for heat pump water heater | |
EP0504738A1 (en) | Refrigerator system with subcooling flow control valve | |
JPS5816167A (en) | Refrigerator | |
JPS5919256Y2 (en) | refrigeration cycle | |
JPH07139826A (en) | Freezer device | |
JPS5872849A (en) | Refrigerator | |
CA2063026C (en) | Refrigerator system with subcooling flow control | |
JPS6353463B2 (en) | ||
JPS5872850A (en) | Refrigerator | |
JPH0510614A (en) | Screw refrigerator | |
JPH11344264A (en) | Freezing cycle device | |
JPH0113968Y2 (en) | ||
KR940022035A (en) | Refrigerator freezer | |
KR950006246Y1 (en) | Apparatus equle pressure of airconditioner | |
JPH1114169A (en) | Air conditioner for vehicle | |
JPH1194368A (en) | Freezing cycle device |