JPS5899106A - Air cooling type ozone generator - Google Patents

Air cooling type ozone generator

Info

Publication number
JPS5899106A
JPS5899106A JP19504981A JP19504981A JPS5899106A JP S5899106 A JPS5899106 A JP S5899106A JP 19504981 A JP19504981 A JP 19504981A JP 19504981 A JP19504981 A JP 19504981A JP S5899106 A JPS5899106 A JP S5899106A
Authority
JP
Japan
Prior art keywords
air
ozone generator
cooling air
temp
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19504981A
Other languages
Japanese (ja)
Other versions
JPS6059163B2 (en
Inventor
Hajime Imaizumi
今泉 一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP19504981A priority Critical patent/JPS6059163B2/en
Publication of JPS5899106A publication Critical patent/JPS5899106A/en
Publication of JPS6059163B2 publication Critical patent/JPS6059163B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PURPOSE:To generate ozone of always specified density irrespectively of the change in the temp. of cooling air by detecting the temp. of the cooling air and controlling the voltage to be applied to an ozone generator according to the detected temp. CONSTITUTION:Raw material air is introduced through the inlet 3f of an ozone generator 3, and is passed through a gap 3c for electric discharge (a symbol 3a is a grounding electrode and 3b is a high voltage electrode). This air is discharged through an outlet 3g as ozonized air. On the other hand the cooling air from a blower 1 is fed through a duct 2 to the outer side of the grounding electrode 3a, by which the air is cooled. In the above-mentioned apparatus, the signal obtained by detecting the temp. of the cooling air with a detector 6 is fed via a ratio setter 7 to an electric power positioner 8. The positioner 8 compares said signal with the instructed value from a transducer 9 and feeds the signal obtained by said comparison to a controller 5b which controls the voltage to be applied to the high voltage electrode 3b by running a driving motor 5a of an induction voltage regulator 5 forward or backward.

Description

【発明の詳細な説明】 この発明は空冷式オゾン発生装置、特に無声放電式オゾ
ン発生装置の印加電圧側−に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an air-cooled ozone generator, particularly to the applied voltage side of a silent discharge ozone generator.

従来この種の装置として第1図に示すものがあった。図
において、(1)は冷却空気を送気するプロワ、(2)
はとのプロワに接続するダクト、(3)はこのダクトに
接続するオゾン発生器、(3a)はこのオゾン発生器に
、前記冷却空気により冷却されるように設けられた接地
電極、(3b)はこの接地電極の内側に設けられた高電
圧電極、(3c)は両電極間に形成された放電空隙、(
3d)はこの放電空隙を維持するスペーサ、(3e)は
前記高電圧電極(3b)へ給電するだめの給電ブッシン
グ、(3f)は前記放電空隙(3c)へ空気を供給する
原料空気入口、(3g)は前記放電空隙(3c)からオ
ゾン化空気を排出するオゾン化空気出口、(4)は前記
高電圧電極(3b)に接続する高電圧変圧器、(5)は
この高電圧変圧器と電源の間に設けられた誘導電圧調整
器、(5a)はこの誘導電圧調整器の駆動用電動機、(
5b)はこの電動機制御用の制御装置である。
A conventional device of this type is shown in FIG. In the figure, (1) is a blower that supplies cooling air, (2)
A duct connected to Hato's blower, (3) an ozone generator connected to this duct, (3a) a ground electrode provided to this ozone generator so as to be cooled by the cooling air, (3b) is the high voltage electrode provided inside this ground electrode, (3c) is the discharge gap formed between both electrodes, (
3d) is a spacer that maintains this discharge gap; (3e) is a power supply bushing that supplies power to the high voltage electrode (3b); (3f) is a raw material air inlet that supplies air to the discharge gap (3c); 3g) is an ozonized air outlet for discharging ozonized air from the discharge gap (3c), (4) is a high voltage transformer connected to the high voltage electrode (3b), and (5) is this high voltage transformer. An induced voltage regulator provided between the power sources, (5a) is a driving motor for this induced voltage regulator, (5a)
5b) is a control device for controlling this electric motor.

次に動作について説明する。オゾン発生器(3)に誘導
電圧調整器(5)、高電圧変圧器(4)を経由して高電
圧を印加すると接地電極(3a)、高電圧電極(3b)
間に無声放電が生じる。誘導電圧調整器(5)による印
加電圧の調整は制御装置(5b)により電動機(5a)
を正逆回転して行う。無声放電の生じている放電空隙(
3c)に原料空気を送気するとオゾンが生成し、−オゾ
ン化空気としてオゾン化空気出口(3g)よシ取り出さ
れる。無声放電の放電電力はその約95チが熱となり、
プロワ(1)により送気される冷却空気により冷却され
る。
Next, the operation will be explained. When high voltage is applied to the ozone generator (3) via the induction voltage regulator (5) and high voltage transformer (4), the ground electrode (3a) and high voltage electrode (3b)
A silent discharge occurs in between. The voltage applied by the induction voltage regulator (5) is adjusted by the control device (5b) to the electric motor (5a).
Rotate forward and backward. Discharge gap where silent discharge occurs (
When feed air is supplied to 3c), ozone is generated and taken out as ozonized air through the ozonized air outlet (3g). Approximately 95 cm of the discharge power of silent discharge becomes heat,
It is cooled by cooling air sent by the blower (1).

ここでオゾンの生成には原料空気の乾燥度、放電空隙の
圧力、電極の温度の影響を受ける。このうち外的な条件
で変化するものは電極の温度である。すなわち冷却空気
の温度が変化すると、それに応じて電極の温度が変化す
る。冷却空気の温度変化と、オゾン生成効率の関係を第
2図に示す。
Here, the generation of ozone is influenced by the dryness of the raw air, the pressure in the discharge gap, and the temperature of the electrodes. Among these, the temperature of the electrode changes depending on external conditions. That is, when the temperature of the cooling air changes, the temperature of the electrode changes accordingly. Figure 2 shows the relationship between temperature changes in cooling air and ozone production efficiency.

また冷却空気温度をパラメータとしたオゾン発生特性を
第3図に示す。
Further, the ozone generation characteristics using the cooling air temperature as a parameter are shown in FIG.

従来の空冷式オゾン発生装置は以上のように構成されて
いるので、冷却空気の温度が変化するのに応じて、オゾ
ン発生器(3)のオゾン濃度が変化する欠点があった。
Since the conventional air-cooled ozone generator is configured as described above, it has a drawback that the ozone concentration in the ozone generator (3) changes as the temperature of the cooling air changes.

冷却空気は1日の間でも10℃以上、年間にしたら20
℃近い濃度差が生ずる。
Cooling air is over 10 degrees Celsius during the day, and over 20 degrees Celsius per year.
A concentration difference of nearly ℃ occurs.

このためオゾン濃度、オゾン発生量が安定しない不都合
があった。
Therefore, there was a problem that the ozone concentration and the amount of ozone generated were not stable.

この発明は上記のような従来のものの欠点を除去するた
めになされたもので、冷却空気の温度を検出し、冷却空
気温度に応じてオゾン発生器の印加電圧を変えることに
より、一定のオゾン濃度に維持することができる空冷式
オゾン発生装置を提供することを目的としている。
This invention was made in order to eliminate the drawbacks of the conventional ones as described above, and by detecting the temperature of cooling air and changing the voltage applied to the ozone generator according to the temperature of the cooling air, it is possible to maintain a constant ozone concentration. The purpose of the present invention is to provide an air-cooled ozone generator that can be maintained at

以下この発明の一実施例を図について説明する。An embodiment of the present invention will be described below with reference to the drawings.

第4図はこの発明の一実施例によるオゾン発生装置を示
すフロー図であり1図において、第1図と同一符号は同
一または相当部分を示す。(6)はダクト(2)内の冷
却空気の温度を検出する冷却空気温度検出器、(7)は
検出された冷却空気温度に応じた値を出力する比率設定
器、(8)はオゾン発生器(3)の放mcm力をフィー
ドバックする電力ポジショナ、(9)はオゾン発生器(
3)の放電電力を検出するトランスデユーサ、 tll
 、 Oυは高電圧変圧器(4)および誘導電圧rai
1整器(5)間に設けられた計器用変圧器、および変流
器である。
FIG. 4 is a flow diagram showing an ozone generator according to an embodiment of the present invention. In FIG. 1, the same reference numerals as in FIG. 1 indicate the same or corresponding parts. (6) is a cooling air temperature detector that detects the temperature of the cooling air in the duct (2), (7) is a ratio setting device that outputs a value according to the detected cooling air temperature, and (8) is an ozone generator. (9) is an ozone generator (
3) a transducer that detects the discharge power of tll
, Oυ is the high voltage transformer (4) and the induced voltage rai
These are an instrument transformer and a current transformer provided between one regulator (5).

次に動作について説明する 冷却空気温度検出器(6)
により検出された冷却空気温度は、比率設定器(7)の
入力として与えられ、温度に応じて演算された出力が電
力ポジショナ(8)に与えられる。′鉱力ボジショナ(
8)は与えられた指令値とトランスデユーサ(9)の指
示値とを比較して、制御装置(5b)に誘導電圧調整器
(5)の駆動用電動機(5a)の正転、逆転の信号を与
え、これにより電動機(5a)を正転または逆転させて
、冷却空気温度に応じた放電電力になるように、オゾン
発生器(3)への印加電圧を調節する。
Next, the operation will be explained Cooling air temperature detector (6)
The detected cooling air temperature is given as an input to a ratio setter (7), and an output calculated according to the temperature is given to a power positioner (8). ′Mineral positioner (
8) compares the given command value with the indicated value of the transducer (9) and instructs the control device (5b) to rotate the drive motor (5a) of the induced voltage regulator (5) in the forward or reverse direction. A signal is given, thereby causing the electric motor (5a) to rotate forward or reverse, and adjusting the voltage applied to the ozone generator (3) so that the discharge power corresponds to the cooling air temperature.

この状況をさらに詳細に説明すると、例えば標準的な冷
却空気温度を20℃として、この状態の鋳尋電圧出力を
80%とする。こ、こで冷却空気のm度がlθ℃上昇し
たとすると、第2図あるいは第3図よりオゾン収率は約
7%低下する。したがつて比率設定器(7)の出力は約
7%増加するように設定しておく。比率設定器(7)の
温度と出方の関係は、第2図、第3図から得られるオゾ
ン発生特性に合わせて、適切な折線近似等により非直耐
性を校正するように設定する必要がある。
To explain this situation in more detail, let us say, for example, that the standard cooling air temperature is 20° C., and that the casting bottom voltage output in this state is 80%. Assuming that the m degree of the cooling air increases by lθ°C, the ozone yield decreases by about 7% as shown in FIG. 2 or 3. Therefore, the output of the ratio setter (7) is set to increase by about 7%. The relationship between the temperature and the output of the ratio setting device (7) must be set to calibrate the non-direct resistance using an appropriate broken line approximation, etc., in accordance with the ozone generation characteristics obtained from Figures 2 and 3. be.

なお、上記実施例では比率設定器(刀、電力ポジショナ
(8)、トランスデユーサ(9)を使用して印加電圧を
調節するようにしたが、他の類似の手段によってもよい
。また上記実施例では円筒形電極について述べたが、電
極構造が平板型であってもよく。
In the above embodiment, the applied voltage was adjusted using a ratio setter (sword, power positioner (8), and transducer (9)), but other similar means may also be used. In the example, a cylindrical electrode was described, but the electrode structure may be a flat plate type.

同様の効果が得られる。A similar effect can be obtained.

以上のように、この発明によれば、冷却空気温度に応じ
てオゾン発生器の印加電圧を調整するように構成したの
で、常に安定したオゾン濃度が得られる。また冬期間の
ように冷却空気温度が低い場合には消費電力を低減する
効果がある。
As described above, according to the present invention, since the voltage applied to the ozone generator is adjusted according to the cooling air temperature, a stable ozone concentration can be obtained at all times. It also has the effect of reducing power consumption when the cooling air temperature is low, such as during the winter.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の空冷式オゾン発生装置のフロー図、第2
図は冷却空気温度とオゾン収率の関係を耐曲線図、f4
3図は冷却空気温度をパラメータとするオゾン発生特性
を示す曲線図、第4図はこの発明の一実施例によるオゾ
ン発生装置のフロー図である。 +1)・・・プロワ、(2)・・・ダクト、131・・
・オゾン発生器、(4)・・・尚電圧変圧器、(5)・
・・酵導電圧調整器、(5a)・・・駆動用電勧磯、(
5b)・・・制装置、(6)・・・冷却空気温度検出器
、(力・・・比率設定器、+8)・・・電カボジショナ
、(9)・・・トランスデユーサ、ul・−・耐器用変
圧器、Qυ・・・変流器 なお図中、同一符号は同一または相当部分を示す。 代理人 為 野 信 −(外1名)
Figure 1 is a flow diagram of a conventional air-cooled ozone generator, Figure 2
The figure shows the relationship between cooling air temperature and ozone yield, f4
FIG. 3 is a curve diagram showing ozone generation characteristics using cooling air temperature as a parameter, and FIG. 4 is a flow diagram of an ozone generator according to an embodiment of the present invention. +1)... Prower, (2)... Duct, 131...
・Ozone generator, (4)...Voltage transformer, (5)・
・・Electric conduction voltage regulator, (5a) ・・Driving electrical conductor, (
5b)...Control device, (6)...Cooling air temperature detector, (Power...Ratio setting device, +8)...Electric cab positioner, (9)...Transducer, ul/- - Durability transformer, Qυ...Current transformer In the diagrams, the same reference numerals indicate the same or equivalent parts. Agent Nobu Tameno - (1 other person)

Claims (1)

【特許請求の範囲】 (11放電部分の冷却を空気によって行う無声放電式オ
ゾン発生装置において、冷却空気温度を検出する検出器
と、検出された冷却空気温度に応じて(2)検出された
冷却空気温度に応じた値を出力する比率設定器、放電電
力を検出するトランスデユーサ、ならびに前記比率設定
器およびトランスデユーサの指示値を比較して電圧調整
信号を発する電カボジショナーを備えたことを特徴とす
る特許−求の範囲第1項記載の空冷式オゾン発生装置。 (3)電圧調整信号は誘導電圧調整器の駆動用電動機の
正逆回転信号として与えられることを特徴とする特許請
求の範囲第2項記載の空冷式オゾン発生装置。
[Claims] (11) In a silent discharge ozone generator in which a discharge portion is cooled by air, there is provided a detector for detecting cooling air temperature; A ratio setter that outputs a value according to air temperature, a transducer that detects discharge power, and an electric cabostation that compares the indicated values of the ratio setter and the transducer and generates a voltage adjustment signal. The air-cooled ozone generator according to claim 1. (3) The voltage adjustment signal is given as a forward/reverse rotation signal of the driving motor of the induction voltage regulator. The air-cooled ozone generator according to scope 2.
JP19504981A 1981-12-03 1981-12-03 Air-cooled ozone generator Expired JPS6059163B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19504981A JPS6059163B2 (en) 1981-12-03 1981-12-03 Air-cooled ozone generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19504981A JPS6059163B2 (en) 1981-12-03 1981-12-03 Air-cooled ozone generator

Publications (2)

Publication Number Publication Date
JPS5899106A true JPS5899106A (en) 1983-06-13
JPS6059163B2 JPS6059163B2 (en) 1985-12-24

Family

ID=16334690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19504981A Expired JPS6059163B2 (en) 1981-12-03 1981-12-03 Air-cooled ozone generator

Country Status (1)

Country Link
JP (1) JPS6059163B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101384802B1 (en) * 2012-12-27 2014-04-14 주식회사 포스코 Apparatus for manufacturing molten iron and method for manufacturing thereof
CN116906229A (en) * 2023-06-02 2023-10-20 苏州快捷智能科技有限公司 Energy-saving and emission-reducing device and control system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07104379B2 (en) * 1986-12-19 1995-11-13 日本電気株式会社 Signal power detection circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101384802B1 (en) * 2012-12-27 2014-04-14 주식회사 포스코 Apparatus for manufacturing molten iron and method for manufacturing thereof
CN116906229A (en) * 2023-06-02 2023-10-20 苏州快捷智能科技有限公司 Energy-saving and emission-reducing device and control system
CN116906229B (en) * 2023-06-02 2024-04-26 苏州快捷智能科技有限公司 Energy-saving and emission-reducing device and control system

Also Published As

Publication number Publication date
JPS6059163B2 (en) 1985-12-24

Similar Documents

Publication Publication Date Title
US4877588A (en) Method and apparatus for generating ozone by corona discharge
US4159426A (en) Energy conversion system
JP5210596B2 (en) Ozone generator
JPS5899106A (en) Air cooling type ozone generator
EP0351432A1 (en) Ozone generator
JPH11144749A (en) Method of controlling generation of fuel cell
GB1438808A (en) Method of controlling the material feed to a processing machine driven by an electric drive motor
SU1341465A1 (en) Air conditioning system
JP2641886B2 (en) Ozone generator
JPS62237226A (en) Hot water mixing device
SU1355849A1 (en) Device for controlling process of activation in electric furnace with fluidized bed
JPS57119857A (en) Control method for electrostatic precipitator
JPS5910927B2 (en) ozone generator
JPH08188404A (en) Control circuit of electric current inverter for generating ozone
JPS6138645A (en) Operating method of electrical dust precipitator
JPS63260802A (en) Ozone-generation ceramic tube or plate having built-in heater
JPS5334694A (en) Ozone generating apparatus
JP2003026407A (en) Method and device for controlling ozone production rate
US2789244A (en) Positive feed consumable electrode device
SU792222A1 (en) Apparatus for adjusting jet-type control systems
JPS63315505A (en) Ozone generator
SU408401A1 (en) With i? S? lL United States Novocherkassk Order of the Red Banner of Labor Polytechnic Institute Sergo Ordzhonikidze and the Kursk plant "Akkumul tor"
JPH0371180B2 (en)
SU1346367A1 (en) Power supply for arc welding
JPH02293303A (en) Ozonizer