JPS5897608A - Method and device for surface property - Google Patents

Method and device for surface property

Info

Publication number
JPS5897608A
JPS5897608A JP56195983A JP19598381A JPS5897608A JP S5897608 A JPS5897608 A JP S5897608A JP 56195983 A JP56195983 A JP 56195983A JP 19598381 A JP19598381 A JP 19598381A JP S5897608 A JPS5897608 A JP S5897608A
Authority
JP
Japan
Prior art keywords
measured
slit
optical system
light intensity
imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56195983A
Other languages
Japanese (ja)
Inventor
Misao Morita
森田 操
Koji Nakajima
孝司 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paint Co Ltd
Original Assignee
Nippon Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paint Co Ltd filed Critical Nippon Paint Co Ltd
Priority to JP56195983A priority Critical patent/JPS5897608A/en
Publication of JPS5897608A publication Critical patent/JPS5897608A/en
Priority to US07/076,715 priority patent/US4846578A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • G01B11/303Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces using photoelectric detection means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PURPOSE:To quantify the surface properties of a body to be measured accurately and easily by Fourier-transforming a spatial light intensity distribution in the surface of the body to be measured and measuring light power intensity of specific space frequency. CONSTITUTION:A rectangular pattern is reflected by the surface of a body to be measured and projected and imaged on the image formation surface of a linear solid-state image sensor 20. A spatial light intensity distribution signal obtained through the photoelectric conversion of the image sensor 20 is sent to a monitoring device 21 for a spatial light intensity distribution through a control circuit 22 and also sent to a microcomputer 24 through an interface 23. The microcomputer 24 processes the spatial light intensity distribution by Fourier transform to quantify the definition, luster, or surface roughness of the surface of said body according to the light power intensity of specific space frequency. The result is outputted to a printer 25, graphic display 26, graphic hard copying device 27, etc.

Description

【発明の詳細な説明】 鮮明度光沢や表面粗さの測定方法および装置(こ関する
DETAILED DESCRIPTION OF THE INVENTION Methods and apparatus for measuring sharpness, gloss, and surface roughness (related thereto).

光沢および表面粗さは物体表面の性質をきめる重要な因
子であり、特に塗膜の仕上り状態の評価においては色と
並んで重要な特性である。光沢度測定法についてはJI
S,Z−8741に規定されており、物理的光沢度とし
て鏡面光沢、対比光沢が、また心理的光沢として鮮明度
光沢が規定されているが、鏡面光沢と対比光沢に比較し
て鮮明度光沢は計量化が最も遅れており、この評価は現
在でも目視による官能評価が生体である。JISによれ
ば鮮明度光沢の定義は「裏面に他の物体の像のうつる程
度」であり、 この定義に基づいてい(つかの鮮明度光沢計が考案され
ている。それらのうちの代表的なものの一つはたとえば
実公昭41−19039号に開示された如(被測定体表
面にうつった種々の大きさの文字パターンの像がどこま
で読み取ることが可能であるかを数値化するものである
が、測定者の個人差により測定値が異なること、測定値
の分解能が悪いことなどの理由によりあまり使用されて
いない。
Gloss and surface roughness are important factors that determine the properties of an object's surface, and are as important characteristics as color, especially in evaluating the finished state of a paint film. For gloss measurement method, please refer to JI
S, Z-8741 specifies specular gloss and contrast gloss as physical gloss, and definition gloss as psychological gloss. quantification is the slowest, and even today, this evaluation is still based on visual sensory evaluation of living organisms. According to JIS, the definition of sharpness gloss is ``the extent to which the image of another object is transferred to the back surface.'' Based on this definition, some sharpness gloss meters have been devised. One of them is disclosed in Utility Model Publication No. 41-19039 (which quantifies the extent to which images of character patterns of various sizes projected on the surface of an object to be measured can be read). , it is not used much because the measured values vary due to individual differences between the measurers and the resolution of the measured values is poor.

また、たとえば特開昭50−153979に開示されて
いる例は、明暗境界を有するパターンを被測定体表面に
おける反射を介して、結像し、該結像パターンにおける
明暗境界部分の受光強度の変化率により、鮮明度光沢を
数値化するものであるが、この方法においては、被測定
面表面の反射率変動による受光強度変動に測定値が直接
的に影響されること、さらに被測定面の凹凸などの性状
により上記受光強度分布が単調減少とはならず、受光強
度の変化率から鮮明度光沢を数値化するための信号処理
が困難であることなどの問題点を有する。
Furthermore, in the example disclosed in JP-A No. 50-153979, a pattern having bright and dark boundaries is imaged through reflection on the surface of the object to be measured, and the received light intensity changes at the bright and dark boundary portions in the imaged pattern. This method quantifies the sharpness and glossiness based on the ratio, but in this method, the measured value is directly affected by fluctuations in the received light intensity due to changes in the reflectance of the surface to be measured, and also due to the unevenness of the surface to be measured. Due to these properties, the received light intensity distribution does not monotonically decrease, and there are problems such as difficulty in signal processing for quantifying sharpness and gloss from the rate of change in received light intensity.

さらにまた別の例としてたとえば特開昭52−1389
60に開示された鮮明度光沢計Iこつし)で第1図によ
り、その特徴を説明する。$1図(こ示す光源1、スリ
ット2およびレンズ3からなる光学系により被測定体表
面4に平行光線を45度または60度の方向に入射する
。その反射光Cま被測定体表面の状態に応じて散乱され
たものとなる。
Furthermore, as another example, for example, JP-A-52-1389
The characteristics of the sharpness gloss meter I Kotsushi disclosed in No. 60 will be explained with reference to FIG. Figure $1 (The optical system shown here consists of a light source 1, slit 2, and lens 3. Parallel light rays are incident on the surface 4 of the object to be measured in a direction of 45 degrees or 60 degrees.The reflected light C reflects the state of the surface of the object to be measured. It will be scattered according to the

鮮明度光沢はスリット像の反射光がiQ−ン6上でどの
程度鮮明かを光学的に測定するもので、Aターンの明部
における透過光の最大値をM、暗部における最小値をm
として次式によって定義される。
Sharpness gloss is an optical measurement of how clear the reflected light of the slit image is on the iQ-N6.The maximum value of the transmitted light in the bright part of the A turn is M, and the minimum value in the dark part is m.
is defined by the following equation.

Cが大きければ鮮明度は高く、小さければ低くなる。し
かしながaこの装置におしAでも周囲光の影響により測
定値が変化すること、被測定体表面のそり、まがりによ
りパターン投影像が受光器7の受光絞りの位置からずれ
て、測定値が変化または測定不能となることなどの欠点
を有する。
The larger C is, the higher the sharpness is, and the smaller C is, the lower the sharpness is. However, a problem with this device is that the measured values change due to the influence of ambient light, and that the projected pattern image shifts from the position of the light receiving aperture of the light receiver 7 due to warpage or curvature of the surface of the object to be measured. It has drawbacks such as change or unmeasurability.

そこで、本発明は、矩形波パターンのエツジがどれだけ
シャープに被測定体表面に写るかによってその表面性状
たとえば鮮明度光沢が評価でき、かつ、矩形波パターン
が被測定体表面における反射を介して結像される結像面
上の光強度分布のシャープさと、被測定体表面に写され
る矩形波ノクターンのエツジのシャープさとが正の強い
相関性があり、しかも上記光強度分布がシャープであれ
ばあるほど、その光強度分布を空間周波数分析すれば高
周波成分が強くなるということに着目してな−したもの
で,矩形波パターンを、被測定体表面における反射を介
して、結像光学系により結像面上に投影結像し、該結像
面上の空間的光強度分布をフーリエ変換し特定空間周波
数における光ノクワー強度の大小によって、被測定体表
面の鮮明度光沢または表面粗さを定量化することにより
、測定者の個人差による影響をなくし、かつ分解能を向
上せしめ得るのみならず、既存の測定法の欠点であつた
被測定面価そり、まがりによる測定値への影響や、被測
定面の反射率の違いによる測定値への影響、さらに周囲
光のレベル変動の影響をきわめて少くして表面性状を正
確かつ簡単に定量化し得る表面性状測定方法を新規に提
供することを目的としている。
Therefore, the present invention is capable of evaluating the surface properties, such as sharpness and gloss, based on how sharply the edges of the rectangular wave pattern are reflected on the surface of the object to be measured. There is a strong positive correlation between the sharpness of the light intensity distribution on the imaging plane and the sharpness of the edges of the rectangular wave nocturne imaged on the surface of the object to be measured. This method was developed based on the fact that spatial frequency analysis of the light intensity distribution would result in stronger high-frequency components. The spatial light intensity distribution on the image forming surface is Fourier-transformed, and the sharpness, gloss, or surface roughness of the surface of the object to be measured is determined by the magnitude of the light intensity at a specific spatial frequency. By quantifying, it is possible not only to eliminate the influence of individual differences among the measurers and improve resolution, but also to eliminate the influence of warpage and curl of the measured surface value on the measured value, which were the drawbacks of existing measurement methods. The objective is to provide a new surface texture measurement method that can accurately and easily quantify the surface texture by minimizing the influence of differences in the reflectance of the surface to be measured on measured values, as well as the influence of changes in the level of ambient light. It is said that

また、本発明は後方よりスリットを照明する照明光学系
と、スリットの像を被測定体表面における反射を介して
結像面上に投影結像する結像光学系と、該結像面上の空
間的光強度分布を電気信号に変換する光電素子と、該光
電素子からの空間的光強度分布信号をフーリエ変換し、
特定空間周波数における光パワー強度を計算するデータ
処理系とで構成して、特定空間周波数における光パワー
強度の大小により、被測定体表面の鮮明度光沢または表
面粗さを定量化することにより、表面性状を正確かつ簡
単に定量化し得る装置を新規に提供することを目的とし
ている。
The present invention also provides an illumination optical system that illuminates a slit from behind, an imaging optical system that projects an image of the slit onto an imaging plane through reflection on the surface of a measured object, and a a photoelectric element that converts a spatial light intensity distribution into an electrical signal; a Fourier transform of the spatial light intensity distribution signal from the photoelectric element;
It is configured with a data processing system that calculates the optical power intensity at a specific spatial frequency, and it is possible to calculate the surface The purpose of this invention is to provide a new device that can accurately and easily quantify properties.

以下、本発明を図示の実施例により詳細に説明する。Hereinafter, the present invention will be explained in detail with reference to illustrated embodiments.

第2図に本装置の光学系の一実泥例の構成を示す。光学
台10上に回転軸コネクタ11を支点として回動自在に
光学レール12,13、微動ステージ14を配置し、光
学レール12上にはスリットの長さ方向が紙面と平行と
なるような方向でスリット中が0.1〜2聰の範囲で可
変できるスリット16と、該スリット16を照明する光
源“15を配置し、光学レール13上には投影結像レン
ズ19と、−次元固体イメージセンサ20(たとえば2
8IImかんか(で1列に配列した512個のフォトダ
イオードからなるフォートダイオードアレイ)を受光部
が紙面と垂直な方向に配列するような方向に配置する。
FIG. 2 shows an example of the configuration of the optical system of this device. Optical rails 12 and 13 and a fine movement stage 14 are arranged on the optical bench 10 so as to be rotatable about the rotation axis connector 11, and the optical rails 12 are arranged in such a way that the length direction of the slit is parallel to the paper surface. A slit 16 whose diameter can be varied in the range of 0.1 to 2 digits, and a light source 15 for illuminating the slit 16 are arranged, and a projection imaging lens 19 and a -dimensional solid-state image sensor 20 are arranged on the optical rail 13. (For example, 2
A Fort diode array consisting of 512 photodiodes arranged in a row is arranged in a direction such that the light receiving parts are arranged perpendicular to the plane of the paper.

光学レール12・13は測長目盛を備えており、該光学
レール12.13上に進退目在に配置される光源15、
スリット1′6、投影結像レンズ19、−次元固体イメ
ージセンサ20の位置が読み取り可能な構造となってい
る。
The optical rails 12 and 13 are equipped with a length measurement scale, and a light source 15 is arranged on the optical rails 12 and 13 in a forward and backward direction.
The structure is such that the positions of the slit 1'6, the projection imaging lens 19, and the -dimensional solid-state image sensor 20 can be read.

また光学レール12.13は回転軸コネクタ11に連結
されており、微動ステージ14の矢印■で示す移動方向
と光学レール12とのなす角〆、および微動ステージ1
4の移動方向と光学レール13のなす角はそれぞれ20
〜80度の範囲で設定’T k fi槽構造あり、設定
された角度は回転軸コネクタに目盛られた角度目盛によ
り読み取り可能である。微動ステージ14には試料ホル
ダ17が装着されており、該試料ホルダ17には被測定
体18がその表面方向が微動ステージ14の移動方向と
略直角な方向になるよう取り付けることができる。
Further, the optical rails 12 and 13 are connected to the rotating shaft connector 11, and the angle between the moving direction of the fine movement stage 14 shown by the arrow ■ and the optical rail 12, and the angle between the fine movement stage 1
The angles formed between the moving direction of 4 and the optical rail 13 are each 20
There is a T k fi tank structure that can be set in the range of ~80 degrees, and the set angle can be read by the angle scale graduated on the rotary shaft connector. A sample holder 17 is attached to the fine movement stage 14 , and the object to be measured 18 can be attached to the sample holder 17 so that its surface direction is substantially perpendicular to the moving direction of the fine movement stage 14 .

スリット16における空間的光強度分布は理想的な矩形
波と考えてよいが、この理想的な矩形波パターンを被測
定体18の表面における反射を介して投影結像レンズ1
9により投影結像した場合、被測定体18の表面状態に
応じた拡散または散乱し、理想的な矩形波の波形がくず
れたものとなるか、被測定体として塗膜を用いた場合の
実例を第3図に示す。第3図の横軸は一次元固体イメー
ジセンサ20が配置されている投影結像面の紙面に垂直
な方向の空間的距離を示し、たて軸は光強度を示してい
る。
The spatial light intensity distribution in the slit 16 can be considered to be an ideal rectangular wave, and this ideal rectangular wave pattern is projected onto the imaging lens 1 through reflection on the surface of the object to be measured 18.
When a projection image is formed by 9, it is diffused or scattered depending on the surface condition of the object to be measured 18, and the ideal rectangular waveform becomes distorted. is shown in Figure 3. The horizontal axis in FIG. 3 indicates the spatial distance in the direction perpendicular to the plane of the drawing of the projection image plane where the one-dimensional solid-state image sensor 20 is arranged, and the vertical axis indicates the light intensity.

この投影結像パターンを数値化する手法として、投影結
像パターンの明部と暗部の境界部分が鋭く変化している
パターンはど空間的高周波数成分強度が強くなるという
フーリエ級数展開の理論を応用することにを目し、空間
的光強度分布をフーリエ変換し、直流成分強度で規準化
したパワースペクトルを計算し、該パワースペクトルの
特定周波数におけるパワー強度を鮮明度光沢値として用
いている。第4図に第3図に示した空間的光強度分布デ
ータ例より計算されたパワースペクトルデータ例を示す
。第4図の横軸は、空間周波数を示し、たて軸は直流成
分強度を1としたパワー強度を示しており、また第4図
に示すA 、B 、Cのデータは第3図に示すA、B、
Cのデータに対応している。これにより、第4図に示す
如く、適宜な空間数 周@、、f xにおける光パワー強度の大小によって鮮
明度光沢を定量化することができる。
As a method for quantifying this projection imaging pattern, we apply the theory of Fourier series expansion, which states that patterns in which the boundary between bright and dark areas of a projection imaging pattern changes sharply have a strong spatial high frequency component intensity. With the aim of achieving this, the spatial light intensity distribution is Fourier transformed, a power spectrum normalized by the DC component intensity is calculated, and the power intensity at a specific frequency of the power spectrum is used as the sharpness gloss value. FIG. 4 shows an example of power spectrum data calculated from the example of spatial light intensity distribution data shown in FIG. The horizontal axis in Fig. 4 shows the spatial frequency, and the vertical axis shows the power intensity with the DC component intensity as 1.The data of A, B, and C shown in Fig. 4 are shown in Fig. 3. A, B,
It corresponds to the data of C. Thereby, as shown in FIG. 4, the sharpness and gloss can be quantified based on the magnitude of the optical power intensity at an appropriate number of spatial rotations @, , fx.

また、第5・6・7図は結像パターンか単一スリットの
場合で夫々スリット中を0.1m + 0.2m。
In addition, Figures 5, 6, and 7 show the imaging pattern or the case of a single slit, and the distance in the slit is 0.1 m + 0.2 m, respectively.

0.4朋とし、結像倍率を1,8倍、被測定体表面にと 対する投光角および受光角を45度した場合のデ△ −夕例である。このデータ例により、鮮明度光沢の検出
性のよい空間周波数は理想的鏡面において、結像面上に
結像されるべきスリット像の巾の2倍に示すスリット巾
を1綱とし、投光角および受光角が70度であって、結
像倍率が1.3倍の場合のデータ例においては、検出性
のよい周波数は上記〜9図中の各曲線は夫々各被測定体
の表面性状を表わす。
0.4, the imaging magnification is 1.8 times, and the projection angle and reception angle with respect to the surface of the object to be measured are 45 degrees. Based on this data example, the spatial frequency at which sharpness and gloss can be easily detected is determined by using a slit width that is twice the width of the slit image to be formed on the imaging surface on an ideal mirror surface, and a projection angle. In the data example where the acceptance angle is 70 degrees and the imaging magnification is 1.3 times, the frequencies with good detectability are as follows.Each curve in Figures 9 to 9 above represents the surface texture of each object to be measured. represent.

さらに、パワースペクトルにより鮮映度光沢を測定する
という本発明の方法は次のような多くの特長を有してお
り、実用上有利な方法である。即ち第3図において、投
影結像パターンの位置は、−次元固体イメージセンサ2
0の測定ウィンドウ内にあれば、その位置に関係なくパ
ワースペクトルは原理的には同一となること、また受光
強度が変化してもパワースペクトルは原理的には同一に
なるという性質があり、被測定体表面の反射率の違いに
よる反射装置の変化や、被測定体表面のそり、まがりな
どによる投影結像パターンの位置の移動などの影響をき
わめて少くして、投影結像パターンの形状のみの情報を
抽出するという特長を有しており、これらの特長は本発
明の方法による鮮明度光沢測定装置を具体的に構成する
場合に有利な点となる。
Furthermore, the method of the present invention, which measures sharpness and gloss using a power spectrum, has many features as described below, and is a practically advantageous method. That is, in FIG. 3, the position of the projected image formation pattern is -dimensional solid-state image sensor 2
0 measurement window, the power spectrum is in principle the same regardless of its position, and even if the received light intensity changes, the power spectrum is in principle the same. This minimizes the effects of changes in the reflecting device due to differences in the reflectance of the surface of the object to be measured, and shifts in the position of the projected image pattern due to warping or curling of the surface of the object to be measured, and allows only the shape of the projected image pattern to be reflected. It has the feature of extracting information, and these features are advantageous when specifically configuring the sharpness/gloss measuring device according to the method of the present invention.

また、上記実厖例では単一スリットの光強度分布をフー
リエ展開して、特定空間周波数に対するパワ強度を求め
たが、複数スリットに対する光強度分布をフーリエ展開
して、特定空間周波数に対するパワ強度求め、このくり
返しデータにより光沢鮮明度を゛測定するようにしても
よい。
In addition, in the above practical example, the light intensity distribution of a single slit was Fourier-expanded to find the power intensity for a specific spatial frequency, but the light intensity distribution for multiple slits was Fourier-expanded to find the power intensity for a specific spatial frequency. The gloss sharpness may be measured using this repeated data.

次に、投影結像パターンの空間的光強度分布を検出し、
演算処理をする為のデータ処理系について第10図に示
す一実施例のブロック図を参照しながら詳細に説明する
。−次元固体イメージセンサ20により光電変換された
空間的光強度分布信号は、−次元固体イメージセンサ2
0の駆動および信号読み出しと増巾の機能を持つ制御回
路22をへて、空間的光強度分布のモニター装置21へ
と送られ空間的光強度分布がモニターされると共ニマイ
クロコンピュータ24のインターフェース23へ送られ
る。マイクロコンピュータ24よりの指令信号により、
インターフェース23において、パルス状信号である空
間的光強度分布信号がサンプルホールドされ、さらにア
ナログ−ディジタル変換されて、インターフェース23
内のバッファメモリに記憶される。次にマイクロコンピ
ュータ24はインターフェース23内のバッファメモリ
に記憶されている空間的光強度分布データを読み出し、
パワースペクトルの計算など必要な処理をして、その結
果を必要に応じて、プリンタ25やグラフィックディス
プレイ装置26、さらにグラフィックハードコピー装置
27等へ出力することができる。
Next, detect the spatial light intensity distribution of the projection imaging pattern,
A data processing system for performing arithmetic processing will be described in detail with reference to a block diagram of an embodiment shown in FIG. The spatial light intensity distribution signal photoelectrically converted by the -dimensional solid-state image sensor 20 is the -dimensional solid-state image sensor 2
The signal is sent to the spatial light intensity distribution monitoring device 21 via the control circuit 22 which has the functions of driving the signal, reading out the signal, and amplifying the signal. Sent to 23. Based on the command signal from the microcomputer 24,
At the interface 23, the spatial light intensity distribution signal, which is a pulsed signal, is sampled and held, and further converted into an analog-to-digital signal.
stored in the internal buffer memory. Next, the microcomputer 24 reads out the spatial light intensity distribution data stored in the buffer memory in the interface 23,
Necessary processing such as power spectrum calculation can be performed, and the results can be output to a printer 25, a graphic display device 26, a graphic hard copy device 27, etc., as necessary.

マイクロコンピュータ24により鮮明度光沢値を計算す
る場合において、空間周波数全域におけるパワースペク
トルの計算は必すしも必要ではなく、測定されるべき鮮
明度光沢の範囲に応じて、特定範囲または特定空間周波
におけるパワー強度のみを計算してもよい。
When calculating the sharpness gloss value by the microcomputer 24, it is not necessary to calculate the power spectrum over the entire spatial frequency range, but depending on the range of sharpness gloss to be measured, it is necessary to calculate the power spectrum in a specific range or at a specific spatial frequency. Only the power intensity may be calculated.

またマイクロコンピュータ24は一次元固体イメージセ
ンサ20より得られた空間的光強度分布データより鮮明
度光沢値を計算するのみでなく、プログラムにより、投
影結像倍率を計算させることも可能であり、表示される
倍率により光学系の位置調整が可能であり、必要なら位
置調整を自動化することも可能である。さらにマイクロ
コンピュータ24はプログラムにより焦点位置の検出を
することも可能で、表示される焦点位置情報により、投
影結像レンズ19と一次元固体イメージセンサ20より
なる結像光学系または被測定体18が取り付けられた試
料ホルダー17の位置調整が可能で、必要なら位置調整
を目動化することも可能である。
In addition, the microcomputer 24 not only calculates the sharpness gloss value from the spatial light intensity distribution data obtained from the one-dimensional solid-state image sensor 20, but also can calculate the projection imaging magnification by a program, and display The position of the optical system can be adjusted depending on the magnification, and if necessary, the position adjustment can be automated. Furthermore, the microcomputer 24 can also detect the focal position according to a program, and depending on the displayed focal position information, the imaging optical system consisting of the projection imaging lens 19 and the one-dimensional solid-state image sensor 20 or the object to be measured 18 can be detected. It is possible to adjust the position of the attached sample holder 17, and if necessary, it is also possible to visualize the position adjustment.

第11図に、本発明の装置において特定空間周波数に対
するパワー強度に基すいて数値化して測定した塗膜面の
鮮明度光沢と目視評価の対応データの一例を示す。!1
1図において、横軸は目視評価値を示し、たて軸は本発
明装置による測定値を示している。これより、両者は相
関性が高いことが分かる。
FIG. 11 shows an example of correspondence data between the sharpness and gloss of the coating surface measured numerically based on the power intensity with respect to a specific spatial frequency using the apparatus of the present invention, and visual evaluation. ! 1
In FIG. 1, the horizontal axis shows the visual evaluation value, and the vertical axis shows the measured value by the apparatus of the present invention. This shows that the two are highly correlated.

次に、本発明による表面粗さ測定について述べる。物体
表面の光沢と表面粗さとの間には密接な関連があること
が予測される為、本発明の鮮明度光沢測定装置による測
定値と表面粗さとの関連について検討した。ある塗膜を
被測定体としたー測定例を第12図に示す。第12図に
おいて、横軸は触針式粗度計による平均粗さ、たて軸は
本発明の装置による測定値であり、図中のA・Bはスリ
ット中の違いを示しているが、第12図でも明らかなど
と(、平均粗さと測定値とは一定の関係があり、本発明
の装置は表面粗さ測定装置としても使用可能であること
を示しており、特に触針式粗度計では測定不可能である
軟質な物体表面などの粗さも、非接触で測定可能な特徴
を有している。
Next, surface roughness measurement according to the present invention will be described. Since it is predicted that there is a close relationship between the gloss and surface roughness of the surface of an object, we investigated the relationship between the values measured by the sharpness gloss measuring device of the present invention and the surface roughness. FIG. 12 shows an example of measurement using a certain coating film as the object to be measured. In Fig. 12, the horizontal axis is the average roughness measured by the stylus roughness meter, and the vertical axis is the measured value by the device of the present invention, and A and B in the figure indicate the difference in the slit. It is clear from Fig. 12 that there is a certain relationship between the average roughness and the measured value, and that the device of the present invention can also be used as a surface roughness measuring device. The roughness of soft object surfaces, which cannot be measured with a meter, can also be measured without contact.

しかしながら、1ilZ図でも示唆されるごとく測定さ
れる表面粗さ域に応じて、スリット中を適切に設定する
ことが望ましい。すなわち、平均粗さが大きい場合には
、スリット中を第12図中曲線Bに示す如く大きく、平
均粗さが小さい場合には、スリット中を第12図中曲線
Aに示す如く小さく設定するのが望ましい。これらの知
見をもとに、本発明の装置の特性について、種々の実験
的検討を加えた結果、鮮明度光沢、表面粗さいずれの測
定においても、被測定体表面の鮮明度光沢14表面粗さ
の検出域を設定し、その検出域に応じた適切な光学系の
構成、即ちスリット中の設定、投光角、受光角の設定、
および投影結像倍率の設定が望ましいことが明らかとな
り特許請求の範囲第+31 +41+51項に記載した
軸回を備えていれば実用上充分であることが明らかとな
った。
However, as suggested by the 1ilZ diagram, it is desirable to set the inside of the slit appropriately depending on the surface roughness area to be measured. That is, when the average roughness is large, the inside of the slit is set to be large as shown by curve B in FIG. 12, and when the average roughness is small, the inside of the slit is set to be small as shown by curve A in FIG. is desirable. Based on these findings, we conducted various experimental studies on the characteristics of the device of the present invention, and found that in both the measurement of sharpness, gloss, and surface roughness, the sharpness, gloss, and surface roughness of the surface of the object to be measured. Set the detection area of the sensor, and configure the appropriate optical system according to the detection area, i.e., the settings in the slit, the emission angle, the acceptance angle setting,
It has become clear that it is desirable to set the projection imaging magnification, and that it is practically sufficient to have the axial rotation described in Claims Nos. 31 to 41 and 51.

さらに本発明の特徴の一つである非接触測定が可能なこ
とに看目し、本発明による鮮明度光沢測定装置および表
面粗さ測定装置の有用性をさらに増加せしめる装置につ
いて以下第13図に示す一実雁例にもとづき詳細に説明
する。第13図において被測定体18が取り付けられた
試料ホルダー17を収納することの可能なチャンバー3
0を設け、被測定体18と試料ホルダー17を外気より
分離可能とする。該チャンバー30には光学ガラスより
なる測定用窓31.32と図示しないが被測定体18を
チャンバー30より出し入れする為の扉を有している。
Furthermore, in view of the fact that non-contact measurement is possible, which is one of the features of the present invention, a device for further increasing the usefulness of the sharpness gloss measuring device and the surface roughness measuring device according to the present invention is shown in Fig. 13 below. This will be explained in detail based on the example shown below. In FIG. 13, a chamber 3 capable of housing a sample holder 17 with a measured object 18 attached thereto.
0 so that the object to be measured 18 and the sample holder 17 can be separated from the outside air. The chamber 30 has measurement windows 31 and 32 made of optical glass, and a door (not shown) for taking the object 18 in and out of the chamber 30.

チャンバー30はフィルター33、ダクト34、送風機
35をへて恒温恒湿器36と接続されており、第13図
には明示しないがダクト34とチャンバー30との接続
はチャンバー30内において空気流が紙面と垂直の方向
に流れるような構造になっており、試料ホルダー17に
よって空気流が阻害されることが少ない構造となってい
る。また該チャンバー30内には風速、風温、湿度を検
出する為の風速センサー41、風温センサー42、湿度
センサー43が設けられており、該各センサーからの出
力は信号変換器44へ送られ、所定の電気信号に変換さ
れた後、記録計45へ送られて記録されると共に、送風
機回転数制御装置46、温湿度制御装置47へ送られる
The chamber 30 is connected to a constant temperature and humidity chamber 36 through a filter 33, a duct 34, and a blower 35.Although not clearly shown in FIG. The structure allows the air to flow in a direction perpendicular to the sample holder 17, so that the air flow is less likely to be obstructed by the sample holder 17. Further, a wind speed sensor 41, a wind temperature sensor 42, and a humidity sensor 43 are provided in the chamber 30 to detect wind speed, wind temperature, and humidity, and the output from each sensor is sent to a signal converter 44. After being converted into a predetermined electrical signal, the signal is sent to a recorder 45 for recording, and is also sent to a blower rotation speed control device 46 and a temperature/humidity control device 47.

温湿度制御装置47は図示しないが加熱器、冷却機、加
湿機を操作して、恒温恒温器36内の空気を所定の温湿
度状態に制御する一方、送風機回転数制御装置46は、
チャンバー30内の空気流速が所定の流速になるよう送
風機35の回転数を制御する。
Although the temperature and humidity control device 47 is not shown, it operates a heater, a cooler, and a humidifier to control the air in the thermostatic chamber 36 to a predetermined temperature and humidity state, while the blower rotation speed control device 46
The rotational speed of the blower 35 is controlled so that the air flow velocity within the chamber 30 becomes a predetermined flow velocity.

上述のような構成により、チャンバー30内に所定の温
湿度の空気を所定の流速で流通させることが可能となる
。この装置を用いることにより、鮮明度光沢や表面粗さ
が環境条件により影響を受け、かつ非接触測定が必要な
場合の測定、典型的な例としては、被塗物に塗付された
塗料層表面の乾燥による鮮明度光沢または表面粗さの時
間的変化の追跡が可能となり、塗膜の仕上り表面性状に
大きな影響を与える塗膜の乾燥挙動の解析や塗装作業条
件の影響把握などに非常に有効で争ある。
With the above configuration, it is possible to circulate air at a predetermined temperature and humidity within the chamber 30 at a predetermined flow rate. This device can be used to measure sharpness, gloss, and surface roughness when they are affected by environmental conditions and non-contact measurement is required. It is now possible to track temporal changes in clarity, gloss, or surface roughness due to surface drying, and is extremely useful for analyzing the drying behavior of paint films, which have a large impact on the finished surface properties of paint films, and for understanding the effects of painting work conditions. Valid and disputed.

以上の説明で明らかとなったごと(、本発明による鮮明
度光沢および表面粗さの表面性状の測定の方法および装
置は、人間が目視評価を実施する場合の最も一般的な方
法であり、またJIS−Z−8741にも定義されてい
る「表面に他の物体の像のうつる程度」に忠実に定量的
評価をするものであると共に、従来の方法の欠点である
被測定体表面の反射率による影響や、被測定体表面のそ
り、まがりによる影響をきわめて少くすることが可能な
優れた特長を有する。また結像面に設置された一次元固
抹イメージセンサにより検出された光強度分布信号を演
算処理することにより投影結像倍率の調整、焦点位置の
調整の操作を正確かつじん速に実施することが可能であ
るという特長もあわせ持つものであり、これらの総合的
効果として優れた測定再現精度を得ることが可能である
As has become clear from the above description, the method and apparatus for measuring the surface properties of sharpness, gloss, and surface roughness according to the present invention is the most common method for human visual evaluation, and This method faithfully quantitatively evaluates "the degree to which the image of another object is transferred to the surface" as defined in JIS-Z-8741, and also evaluates the reflectance of the surface of the object to be measured, which is a drawback of conventional methods. It has the excellent feature of being able to extremely minimize the effects of warpage and curling of the surface of the object to be measured.It also has the excellent feature of minimizing the effects of warpage and curling of the surface of the object to be measured. It also has the advantage of being able to accurately and quickly adjust the projection imaging magnification and focus position by processing the information, and the overall effect of these functions is to provide excellent measurement results. It is possible to obtain repeatability accuracy.

さらにスリット巾、投光角、受光角および投影結像倍率
を可変できることにより広い範囲の鮮明度光沢および表
面粗さの測定が可能であること、さらにまた本発明の実
施は高価な光学素子を必要とせず安価な光学素子を用い
て構成可能であることなど数々の利点を有するものであ
る。
Furthermore, by being able to vary the slit width, projection angle, reception angle, and projection imaging magnification, it is possible to measure a wide range of clarity, gloss, and surface roughness, and furthermore, the implementation of the present invention does not require expensive optical elements. It has many advantages, such as being able to be constructed using inexpensive optical elements.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は公知の鮮明度光沢測定装置の原理的構成を示す
図、第2図、第13図は本発明の装置の実施例を示す図
、jlB図は結像面の空間的光強度分布をあられす図、
第4図は第3図の空間的光強度分布のパワースペクトル
をあられす図、第5.6゜7、8.9.図は夫々他の測
定例のパワースペクトルをあられす図、第10図は本発
明の一実施例のデータ処理装置のブロック図、第11図
は本発明の装置による測定値と鮮明度光沢の目視評価値
との対応関係を示す図、第12図は本発明の装置による
測定値と触針式粗度計による平均粗さとの対応関係を示
す図である。 10・・・光学台、12.13・・・光学レール、15
・・・光源、16・・・スリット、18・・・被測定体
、20・・・1次元固定イメージセンサ。 特 許 出 願 人 日本ペイント株式会社代理人弁理
士青山 葆はが2名 第6図 宇関用AI!;L(〆昂去) 第7図 0246810121416旧202224267−’
tつ字間@安に(X烏合:・ 第8図 ’2’l[麦狡(X冊り吾) 第9図 pi濠板(X諧眉−去)
FIG. 1 is a diagram showing the basic configuration of a known sharpness gloss measuring device, FIGS. 2 and 13 are diagrams showing an embodiment of the device of the present invention, and FIG. hail diagram,
Figure 4 shows the power spectrum of the spatial light intensity distribution in Figure 3, Figures 5.6°7, 8.9. The figures show the power spectra of other measurement examples, Figure 10 is a block diagram of a data processing device according to an embodiment of the present invention, and Figure 11 is a visual observation of the measured values and sharpness and gloss by the device of the present invention. FIG. 12 is a diagram showing the correspondence relationship between the evaluation values and the average roughness measured by the device of the present invention and the average roughness measured by the stylus roughness meter. 10...Optical bench, 12.13...Optical rail, 15
... Light source, 16... Slit, 18... Measured object, 20... One-dimensional fixed image sensor. Patent applicant: Nippon Paint Co., Ltd. Patent attorney Aoyama Aoyama and two people Figure 6 AI for Uzeki! ;L (〆昂 leave) Figure 7 0246810121416 old 202224267-'
t Tsuji space @ Anni (X 烏合:・ Fig. 8 '2' l [Mugi (X Book Rigo) Fig. 9 pi moat board (X 茧目-left)

Claims (7)

【特許請求の範囲】[Claims] (1)矩形波パターンを、被測定体表面における反射を
介して、結像光学系により結像面上に投影結像し、該結
像面上の空間的光強度分布をフーリエ変換し特定空間周
波数における光パワー強度の大小により、被測定体表面
の鮮廚度光沢または表面粗さを定量化するようにしたこ
とを特徴とする表面性状測定方法。
(1) A rectangular wave pattern is projected and imaged onto an imaging plane by an imaging optical system through reflection on the surface of the object to be measured, and the spatial light intensity distribution on the imaging plane is Fourier-transformed into a specific space. A method for measuring surface properties, characterized in that the sharpness, gloss, or surface roughness of a surface of an object to be measured is quantified based on the magnitude of optical power intensity at different frequencies.
(2)後方よりスリットを照明する照明光学系と、スリ
ットの像を被測定体表面における反射を介して結像面上
に投影結像する結像光学系と、該結像面上の空間的光強
度分布を電気信号に変換する光電素子と、該光電素子か
らの空間的光強度分布信号をフーリエ変換し、特定空間
周波数における光パワー強度を計算するデータ処理系よ
り構成される鮮明度光沢または表面粗さを測定する装置
(2) An illumination optical system that illuminates the slit from behind, an imaging optical system that projects and forms an image of the slit onto an imaging plane through reflection on the surface of the object to be measured, and a spatial Clarity, gloss, or A device that measures surface roughness.
(3)上記特許請求の範囲第2項に記載の装置において
、スリットの巾を0.1〜2rmの範囲で可変できる機
構を備えることを特徴とする装置。
(3) The device according to claim 2, characterized in that it is equipped with a mechanism that can vary the width of the slit within a range of 0.1 to 2 rm.
(4)上記特許請求の範囲第2項に記載の装置において
、被測定体表面に略垂直で、スリットを照明する照明系
とスリットを含む光学系の光軸と、スリット像を投影結
像する結像光学系の光軸とを含む平面において、被測定
体表面の垂線と照明系とスリットを含む光学系の光軸と
のなす投光角および被測定体表面の垂線と結像光学系の
光軸とのなす受光角をそれぞれ20〜80度の範囲で可
変できる機構を備えることを特徴とする装置。
(4) In the apparatus according to claim 2 above, the slit image is projected and imaged with the optical axis of the illumination system that illuminates the slit and the optical system that includes the slit, substantially perpendicular to the surface of the object to be measured. In a plane that includes the optical axis of the imaging optical system, the projection angle between the perpendicular to the surface of the object to be measured and the optical axis of the optical system including the illumination system and the slit, and the angle between the normal to the surface of the object to be measured and the imaging optical system. A device characterized by comprising a mechanism that can vary the light receiving angle formed with the optical axis within a range of 20 to 80 degrees.
(5)  上記特許請求の範囲第2項に記載の装置にお
いて、スリットの像を被測定体表面における反射を介し
て投影結像する場合の投影結像倍率を05〜20倍の範
囲で可変できる機構を備えることを特徴とする装置。
(5) In the apparatus according to claim 2, the projection imaging magnification when projecting the slit image through reflection on the surface of the object to be measured can be varied in the range of 0.5 to 20 times. A device characterized by comprising a mechanism.
(6)  上記特許請求の範囲第2項に記載の装置にお
いて、結像面におけるスリット像の空間的光強度分布信
号により焦点検出し、目動的に被測定体または、結像光
学系および光電変換素子を合焦点位置に移動させる機構
を備えることを特徴とする装置。
(6) In the apparatus according to claim 2, the focus is detected based on the spatial light intensity distribution signal of the slit image on the imaging plane, and the eye movement detects the object to be measured or the imaging optical system and the photoelectron. An apparatus comprising a mechanism for moving a conversion element to a focused position.
(7)上記特許請求の範囲第2項に記載の装置において
、被測定体のおかれる空間の温度、湿度、′風速を制御
できる機構を備えることを特徴とする装置。
(7) The apparatus according to claim 2, characterized in that it is equipped with a mechanism that can control the temperature, humidity, and wind speed of the space in which the object to be measured is placed.
JP56195983A 1981-12-05 1981-12-05 Method and device for surface property Pending JPS5897608A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP56195983A JPS5897608A (en) 1981-12-05 1981-12-05 Method and device for surface property
US07/076,715 US4846578A (en) 1981-12-05 1987-07-20 Surface characteristic measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56195983A JPS5897608A (en) 1981-12-05 1981-12-05 Method and device for surface property

Publications (1)

Publication Number Publication Date
JPS5897608A true JPS5897608A (en) 1983-06-10

Family

ID=16350253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56195983A Pending JPS5897608A (en) 1981-12-05 1981-12-05 Method and device for surface property

Country Status (2)

Country Link
US (1) US4846578A (en)
JP (1) JPS5897608A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59178305A (en) * 1983-03-28 1984-10-09 Mitsubishi Paper Mills Ltd Surface smoothness measuring apparatus
JPS61217708A (en) * 1985-03-22 1986-09-27 Nippon Paint Co Ltd Method and apparatus for measuring surface properties
US4636648A (en) * 1984-09-20 1987-01-13 Nippon Soken, Inc. Coating quality measuring device
US4682041A (en) * 1984-09-20 1987-07-21 Nippon Soken, Inc. Coating quality measuring device and method
JPH02271211A (en) * 1989-04-13 1990-11-06 Nissan Motor Co Ltd Evaluating method of painting sharpness
JPH04291136A (en) * 1990-11-13 1992-10-15 Hughes Aircraft Co Method and device for automatic evaluation of painted surface quality
US5550632A (en) * 1990-06-20 1996-08-27 Harata; Hiroaki Method for evaluating gloss and brightness character of coated paint film
JP2010271139A (en) * 2009-05-20 2010-12-02 Asmo Co Ltd Method and apparatus for evaluating wiper performance
JP2017083399A (en) * 2015-10-30 2017-05-18 大日本印刷株式会社 Optical diffusion degree measurement device and optical diffusion degree measurement method
CN108153501A (en) * 2016-12-06 2018-06-12 依视路国际集团(光学总公司) Image processing method and system

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5141320A (en) * 1989-04-13 1992-08-25 Nissan Motor Co., Ltd. Method and system for evaluating gloss and brightness character of coated paint film
GB2242976A (en) * 1990-04-12 1991-10-16 Rank Taylor Hobson Ltd Measuring surface characteristics
US5155558A (en) * 1990-09-19 1992-10-13 E. I. Du Pont De Nemours And Company Method and apparatus for analyzing the appearance features of a surface
JP3185031B2 (en) * 1991-06-17 2001-07-09 株式会社キーエンス Gloss detector
US5627646A (en) * 1995-07-21 1997-05-06 Ford Motor Company Method for locating flaws in a smooth surface of an object
FR2737294B1 (en) * 1995-07-26 1997-09-05 Satimage METHOD AND DEVICE FOR DETECTING THE SURFACE CONDITION OF WORKPIECES WITH REFLECTIVE SURFACE, APPLICABLE TO THE ROUGH TEST OF POLISHED WORKPIECES
US7274430B2 (en) * 1998-02-20 2007-09-25 Carl Zeiss Smt Ag Optical arrangement and projection exposure system for microlithography with passive thermal compensation
US6608919B1 (en) 1999-11-10 2003-08-19 Digimarc Corporation Method and apparatus for encoding paper with information
US6433867B1 (en) * 2000-01-11 2002-08-13 The Aerospace Corporation Contrast imaging method for inspecting specular surface devices
US7027165B2 (en) * 2001-04-06 2006-04-11 Akzo Nobel N.V. Method and device for surface evaluation
JP2004037317A (en) * 2002-07-04 2004-02-05 Murata Mfg Co Ltd Three-dimensional shape measuring method and three-dimensional shape measuring device
US20060192949A1 (en) * 2004-12-19 2006-08-31 Bills Richard E System and method for inspecting a workpiece surface by analyzing scattered light in a back quartersphere region above the workpiece
US20060169051A1 (en) * 2005-01-13 2006-08-03 Alman David H Method to specify acceptable surface appearance of a coated article
WO2009012255A2 (en) * 2007-07-17 2009-01-22 Hach Company Spatial frequency optical measurement instrument and method
JP5237205B2 (en) * 2009-06-17 2013-07-17 キヤノン株式会社 Image processing apparatus and control method thereof
JP5581282B2 (en) * 2011-08-31 2014-08-27 株式会社日立ハイテクノロジーズ Surface shape measuring device
WO2014126526A1 (en) 2013-02-14 2014-08-21 Qso Interferometer Systems Ab A method and apparatus for quantitative measurement of surface accuracy of an area
EP3193158B1 (en) * 2016-01-14 2020-06-17 Volkswagen AG System and method for assessing the visual appearance of a reflective surface
JP2017173300A (en) * 2016-03-16 2017-09-28 株式会社リコー Texture evaluation device, texture evaluation method, and program
JP6969164B2 (en) * 2017-05-31 2021-11-24 株式会社リコー Evaluation device, evaluation program and evaluation method
KR102491575B1 (en) * 2017-09-28 2023-01-25 삼성전자주식회사 Method for inspecting a semiconductor substrate and method for manufacturing a semiconductor device
US11703461B2 (en) * 2021-03-26 2023-07-18 Arun Anath Aiyer Optical sensor for surface inspection and metrology

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5749805A (en) * 1980-09-09 1982-03-24 Matsushita Electric Works Ltd Measuring device for roughness of surface

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3250177A (en) * 1963-04-05 1966-05-10 Shack Roland Vincent Image evaluation device
FR2123076B1 (en) * 1970-11-16 1973-06-08 Aquitaine Petrole

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5749805A (en) * 1980-09-09 1982-03-24 Matsushita Electric Works Ltd Measuring device for roughness of surface

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59178305A (en) * 1983-03-28 1984-10-09 Mitsubishi Paper Mills Ltd Surface smoothness measuring apparatus
JPH032243B2 (en) * 1983-03-28 1991-01-14 Mitsubishi Paper Mills Ltd
US4636648A (en) * 1984-09-20 1987-01-13 Nippon Soken, Inc. Coating quality measuring device
US4682041A (en) * 1984-09-20 1987-07-21 Nippon Soken, Inc. Coating quality measuring device and method
JPS61217708A (en) * 1985-03-22 1986-09-27 Nippon Paint Co Ltd Method and apparatus for measuring surface properties
JPH02271211A (en) * 1989-04-13 1990-11-06 Nissan Motor Co Ltd Evaluating method of painting sharpness
US5550632A (en) * 1990-06-20 1996-08-27 Harata; Hiroaki Method for evaluating gloss and brightness character of coated paint film
JPH04291136A (en) * 1990-11-13 1992-10-15 Hughes Aircraft Co Method and device for automatic evaluation of painted surface quality
JP2010271139A (en) * 2009-05-20 2010-12-02 Asmo Co Ltd Method and apparatus for evaluating wiper performance
JP2017083399A (en) * 2015-10-30 2017-05-18 大日本印刷株式会社 Optical diffusion degree measurement device and optical diffusion degree measurement method
CN108153501A (en) * 2016-12-06 2018-06-12 依视路国际集团(光学总公司) Image processing method and system
CN108153501B (en) * 2016-12-06 2023-10-31 依视路国际集团(光学总公司) Image processing method and system

Also Published As

Publication number Publication date
US4846578A (en) 1989-07-11

Similar Documents

Publication Publication Date Title
JPS5897608A (en) Method and device for surface property
JP5178001B2 (en) Equipment for nondestructive evaluation of insulating coatings
KR100768626B1 (en) Transient thermography measurement of a metal layer thickness
JP2003505692A (en) Imaging method based on synthetic thermal criteria
JP2003505683A (en) Thermal resonance imaging method
US8422007B2 (en) Optical measurement device with reduced contact area
US5122672A (en) Surface quality analyzer apparatus and method
JP2007033099A (en) Gloss characteristic evaluation method, gloss characteristic evaluation device, and program
JP3878799B2 (en) Level measuring device
CN101556141A (en) Fourier transformation method for measuring irregular slit width and device
US4527898A (en) Distinctness of image meter
Fleming et al. Advances in projection moiré interferometry development for large wind tunnel applications
US6947150B2 (en) Method and apparatus for determining out-of-plane defects in a paper sample
JPS61217708A (en) Method and apparatus for measuring surface properties
JP3710276B2 (en) Method and apparatus for measuring MTF
JP3665176B2 (en) Method for measuring MTF of diffuse reflection
JP2006513417A (en) Method and apparatus for determining the height or shape of an object
JP3122560B2 (en) Method and apparatus for measuring gloss of painted surface
JP2838187B2 (en) Optical CT measurement method
Kuivalainen Glossmeters for the measurement of gloss from flat and curved objects
CN110411983A (en) A kind of high-resolution diffraction imaging method and device
CN116915972A (en) High-resolution camera MTF testing device and method based on edge image analysis
KR20020073978A (en) Method of measuring the thickness of thin film layer using infrared thermal image system
JP2021009030A (en) Measuring apparatus, measuring method and program
CN117288335A (en) Online calibration method of thermometer