JPS5897417A - Controlling device for roll eccentricity - Google Patents

Controlling device for roll eccentricity

Info

Publication number
JPS5897417A
JPS5897417A JP56194878A JP19487881A JPS5897417A JP S5897417 A JPS5897417 A JP S5897417A JP 56194878 A JP56194878 A JP 56194878A JP 19487881 A JP19487881 A JP 19487881A JP S5897417 A JPS5897417 A JP S5897417A
Authority
JP
Japan
Prior art keywords
roll
eccentricity
phase
signals
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56194878A
Other languages
Japanese (ja)
Other versions
JPH0218169B2 (en
Inventor
Isao Imai
功 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP56194878A priority Critical patent/JPS5897417A/en
Publication of JPS5897417A publication Critical patent/JPS5897417A/en
Publication of JPH0218169B2 publication Critical patent/JPH0218169B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/58Roll-force control; Roll-gap control
    • B21B37/66Roll eccentricity compensation systems

Abstract

PURPOSE:To eliminate the phase lag of hydraulic rolling down, by providing a device used for obtaining the eccentricity frequency of back up rolls by counting phase signals for a fixed time and a function generator outputting the phase signals in accordance with said frequency to calculate the quantity of roll eccentricity earlier by the number of pulses equivalent to that of said phase signals. CONSTITUTION:Pulse signals (i), detected by pulse generators 3 attached to the shaft ends of back up rolls 2, are transmitted to a Fourier series expanding device 4 and to a device 5 used for determining the predicting angle of phase lag, and at the same time, signals detected by a load cell 6 are transmitted to said device 4. Further, the signals are respectively outputted from the device 5 to the device 4, and from the device 4 to a servovalve 8 used for controlling the quantity and pressure of a hydraulic oil fed to a hydraulic rolling down device 7. Thus, the phase lag of hydraulic rolling down can be eliminated by constituting the controlling system as mentioned above.

Description

【発明の詳細な説明】 本発明は、圧延機控ロールの偏心による板厚変動を制御
するに当り、油圧圧下装置の圧下位相遅れを除去するこ
とにより板厚制御を正確に行い得るようにしたロール偏
心制御装置に関する。
[Detailed Description of the Invention] The present invention makes it possible to accurately control plate thickness by eliminating the rolling phase delay of a hydraulic rolling device when controlling plate thickness variations due to eccentricity of a rolling mill backing roll. The present invention relates to a roll eccentricity control device.

圧延機控ロールの偏心を除去すれば、板厚精度が向上し
てより良い品質の板を得ることができる4、しかし、圧
延機の油圧圧下装置には、圧下位相遅れがあり、この位
相遅れのため、ロール偏心解析値の位相がずれてロール
偏心を十分消去する制御ができ々い場合がある。、これ
は、特にロールの加減速中には、解析データの結果がロ
ール偏心周波数の度合いに追いつかず、ロール偏心除去
が遅れがちになることから、ロールの加減速中に顕著で
ある1゜ 本発明の目的は、圧延機控ロールの偏心による板厚制御
を行う場合に、油圧圧下装置の圧下位相遅れを除去して
正確な板厚の製品を得ることのできるロール偏心制御装
置を提供することを目的としてなしたもので、控ロール
の回転角を測定するだめのパルスジェネレータと荷重検
出器で検出された圧延荷重信号を控ロール−周期の基本
波としてフーリエ解析をする装置とを有し、解析された
7−リエ係数を用いてパルスに応じた控ロール細毛・信
号を発生する装置において、パルス信号を一定時間カウ
ントし控ロールの偏心周波数を求める装置と、該周波数
に応じた位相を出力する関数器を設け、その位相に相当
するパルス分だけ早くロール偏心量を演算させ油圧圧下
の位相遅れを補正するよう構成したことを特徴とするも
のである。
If the eccentricity of the rolling mill backing roll is removed, the plate thickness accuracy can be improved and a plate of better quality can be obtained4. However, the hydraulic rolling machine of the rolling mill has a rolling phase lag, and this phase lag Therefore, the phase of the roll eccentricity analysis value may shift, and control to sufficiently eliminate roll eccentricity may not be possible. This is especially true during roll acceleration/deceleration, when the analysis data results cannot catch up with the roll eccentricity frequency, and removal of roll eccentricity tends to be delayed. An object of the invention is to provide a roll eccentricity control device that can eliminate the rolling phase delay of a hydraulic rolling device and obtain a product with accurate plate thickness when controlling plate thickness by eccentricity of a rolling mill backing roll. It has a pulse generator for measuring the rotation angle of the backing roll and a device for Fourier analysis of the rolling load signal detected by the load detector as the fundamental wave of the backing roll period. A device that uses the analyzed 7-lier coefficient to generate a backing roll thinning signal in response to a pulse, includes a device that counts pulse signals for a certain period of time to determine the eccentric frequency of the backing roll, and outputs a phase that corresponds to the frequency. The present invention is characterized in that a function unit is provided to calculate the amount of roll eccentricity earlier by a pulse corresponding to the phase thereof, thereby correcting a phase delay under hydraulic pressure.

以下、本発明について図面を参照しつつ説明する1゜ 先ず、ロール偏心検出の基本的原理について説明する3
、 ロール偏心と圧延荷重の関係は、次の式で表わすことが
できる。
The present invention will be explained below with reference to the drawings. 1. First, the basic principle of roll eccentricity detection will be explained 3.
, The relationship between roll eccentricity and rolling load can be expressed by the following formula.

ただし、Δp、;o−ル偏心による圧延荷重変動ΔS 
:ロール偏心変動成分 K ;圧延機のミル定数 M ;圧延拐の塑性定数 ロール偏心変動成分ΔSは控ロールの回転周期と一致す
るから、 ΔS−ΔSo CO3ご(0)t 十β)   ・・・
・・・・・・ (11)ただし、ΔSo;控ロールの偏
心量 ω ;控ロールの角速度 t;時間 β ;ロールのある位置から偏心の ある位置までの位相変化 式(i)を式(11)に代入して 従って、ロール偏心はΔPCが検出されれば求められる
。一般に、圧延荷重変動には相異なる周波数の多数の成
分が含まれる。従って、控ロールの回転数x(L)をY
軸に、圧延荷重PをY軸に示せば、圧延荷重Pは次のよ
うに、フーリエ級数で表すことができる。
However, Δp, rolling load fluctuation ΔS due to o-ru eccentricity
: Roll eccentricity variation component K; Mill constant M of the rolling mill; Plasticity constant of rolling stripping Since the roll eccentricity variation component ΔS matches the rotation period of the backing roll, ΔS−ΔSo CO3 (0) t + β)...
...... (11) However, ΔSo; eccentricity ω of the backing roll; angular velocity t of the backing roll; time β; the phase change equation (i) from the position of the roll to the position of the eccentricity is expressed by equation (11 ), and accordingly, the roll eccentricity can be determined if ΔPC is detected. Generally, rolling load fluctuations include many components with different frequencies. Therefore, the number of rotations x (L) of the backup roll is set to Y
If the rolling load P is shown on the Y-axis, the rolling load P can be expressed as a Fourier series as follows.

0 p=−+A、cosωx+ A2 CO82ω、z+−
・−=−B、 、9iaωx+B2nn2ωx+ =−
・・・(iv)従って式(1■)より、ロール偏心変動
成分ΔSはロール偏心変動成分ΔSは式(1v)及び(
v)により、圧延荷重変動のフーリエ解析を行い、Δp
eを計算することにより求めることができる3、又、式
(1■)及び()のフーリエ解析を行うためには、数値
解析を用いなければならない3゜第1図に示す関数の周
期は2N個に等しく分(t−0,1,2、・・・・・・
、2N)だから、N 十−cosπt ・・・(vi) 0−ル偏心は控ロールの1周期の荷重変動に対応するの
で、これはに=1の場合である。しかしながら、第1周
期のP(2N)の値と初めのP(0)の値は理論的に同
一であるべきだが、第1図に示すように、実際には同一
でない、従って、P(0)とP(2N)の値の相異に応
じた線型補正を行う必要がある。A1とB1の未補正値
をAI’及びB、/とすると、式011)から、 もし行なわれる補正がA 1”及びB 、//であれば
、から、A 1’及びB 、//の式の第1項は零にな
る。し5tn−iは定数である。それをFl及びG1と
すれば、すると、A、及びB1は、 ΔPe(i)=A、 cos−t+B、 5tn−、、
t= (A +’ A 、” ) cos−乙+(Bl
’  Bl”C乙1し星(i == 0.1.2、・・
・・・、2N) ・・・・・・・°・ (xii)とな
る。
0 p=-+A, cosωx+ A2 CO82ω, z+-
・-=-B, ,9iaωx+B2nn2ωx+ =-
...(iv) Therefore, from equation (1■), the roll eccentricity fluctuation component ΔS is the roll eccentricity fluctuation component ΔS, which is expressed by the equation (1v) and (
v), Fourier analysis of rolling load fluctuation is performed and Δp
It can be obtained by calculating e3.Also, in order to perform Fourier analysis of equations (1■) and (), numerical analysis must be used.3゜The period of the function shown in Figure 1 is 2N. (t-0, 1, 2,...
, 2N) Therefore, N 0-cos πt (vi) 0-R eccentricity corresponds to one period of load fluctuation of the backing roll, so this is the case when 2=1. However, although the value of P(2N) in the first period and the value of P(0) at the beginning should be theoretically the same, as shown in Figure 1, they are not actually the same, so P(0 ) and P(2N) need to be linearly corrected according to the difference in their values. If the uncorrected values of A1 and B1 are AI' and B, /, then from equation 011), if the corrections to be made are A 1'' and B, //, then from A 1' and B, //, The first term of the equation becomes zero. Then, 5tn-i is a constant. If it is Fl and G1, then A and B1 are ΔPe(i)=A, cos-t+B, 5tn-, ,
t= (A +'A,") cos-Otsu+(Bl
'Bl''C Otsu 1 star (i == 0.1.2,...
..., 2N) ......°・ (xii).

又、控ロールの各回転ごとに計算されたA。Also, A calculated for each rotation of the backup roll.

及びB、の値は次式によりサンプリングされる1゜次に
前記基本原理を利用した本発明の実施例を第2図及び第
3図により説明する。
The values of and B are sampled by the following equation:

図中(1)は作業ロール、(2)は控ロールで、控ロー
ル(2)の軸端に取付けたパルスジェネレータ(3)で
検出したパルス信号りをフーリエ級数展開装置(4)及
び位相遅れの予測角度決定装置(5)に送信し得るよう
にすると共にロードセル(6)で検出した信号を前記フ
ーリエ級数展開装置(4)へ送信し得るようにし、前記
位相遅れの予測角度決定装置(5)からフーリエ級数展
開装置(4)へ信号を出力し得るようにし、フーリエ級
数展開装置(4)から、油圧川下装置(7)へ送給する
圧油の量及び圧力を制御するサーボ弁(8)へ信号を出
力し得るようにする。又図示して々いが、本制御系統に
は、ロールギャップ設定装置や油圧圧下装置(7)の位
置を検出する位置検出器、加算増幅器等を設ける。
In the figure, (1) is the work roll, (2) is the backing roll, and the pulse signal detected by the pulse generator (3) attached to the shaft end of the backing roll (2) is sent to the Fourier series expansion device (4) and the phase delay. The signal detected by the load cell (6) can be transmitted to the predicted angle determining device (5) of the phase lag, and the signal detected by the load cell (6) can be transmitted to the Fourier series expansion device (4). ) to the Fourier series expansion device (4), and controls the amount and pressure of pressure oil to be sent from the Fourier series expansion device (4) to the hydraulic downstream device (7). ). As shown in the figure, this control system is provided with a position detector, a summing amplifier, etc. for detecting the position of the roll gap setting device and the hydraulic pressure lowering device (7).

なお(5a)は速度検出器、(5b)は位相遅れの予測
角度の設定器である。
Note that (5a) is a speed detector, and (5b) is a setting device for a predicted phase delay angle.

運転時には、パルスジェネレータ(3)によりパルス信
号をフーリエ級数展開装置(4)と位相遅れの予測角度
決定装置(5)に送信すると共にロードセル(3)によ
り検出された圧延荷重をフーリエ級数展開装置(4)へ
送信する3、 パルス信号はフーリエ級数展開装置(4)において、i
=Qからi = 1.2.3、・・・、i、i+1、・
と順次カウントされ、各パルス信号ごとにフーリエ級数
展開がなされ、各フーリエ係数A、′、B、/が〜11
0式で演算される1、 一方、パルスジェネレータ(3)により検出され位相遅
れの予測角度決定装置(5)の速度検出器(5a)に送
られたパルス信号を一定時間カウントすることによりロ
ールの単位時間当りの回転数が計算できる。この回転数
と周波数とは毎秒当り同一である。ロールの回転数すな
わち周波数が分ればその周波数に対応した位相遅れを予
め実験的に求めてそれを位相遅れの予測角度決定装置(
5)の設定器(5h)に設定しておくことにより位相遅
れの予測角度Xを求めることができるから、その信号を
パルス数に変換してフーリエ級数展開装置(4)に送信
し、パルスのカウント値tに対して先行させるパルスの
カウント値ノを求め、とのノをもとに(xii )式よ
り圧延荷重変動Δp e (7,lを求め、サーボ弁(
8)へ信号を送って油圧圧下装置(7)を制御する。油
圧圧下装置(7)に位相遅れXがあるが、予めXだけ先
行してすなわち遅れを補償して油圧圧下装置(7)を作
動させているため周波数に対応して油圧圧下装置(7)
が作動し、ロール偏心による影響が制御される。。
During operation, the pulse generator (3) transmits pulse signals to the Fourier series expansion device (4) and phase delay prediction angle determination device (5), and the rolling load detected by the load cell (3) is transmitted to the Fourier series expansion device (4). 3. The pulse signal is sent to i in the Fourier series expansion device (4).
=Q to i = 1.2.3,...,i,i+1,.
are sequentially counted, Fourier series expansion is performed for each pulse signal, and each Fourier coefficient A, ', B, / is ~11
On the other hand, the roll is calculated by counting the pulse signal detected by the pulse generator (3) and sent to the speed detector (5a) of the phase delay prediction angle determining device (5) for a certain period of time. The number of revolutions per unit time can be calculated. The number of rotations and the frequency are the same per second. Once the number of rotations, that is, the frequency of the roll is known, the phase lag corresponding to that frequency is determined experimentally in advance, and the phase lag prediction angle determining device (
By setting the setting device (5h) in step 5), the predicted phase delay angle The count value of the pulse to be preceded by the count value t is determined, and the rolling load fluctuation Δp e (7, l is determined from equation (xii) based on the above, and the servo valve (
8) to control the hydraulic pressure lowering device (7). There is a phase lag X in the hydraulic lowering device (7), but since the hydraulic lowering device (7) is operated in advance by X in advance, that is, by compensating for the delay, the hydraulic lowering device (7) operates in accordance with the frequency.
is activated, and the influence of roll eccentricity is controlled. .

ロール偏心の制御が連続的に行われている場合には、ロ
ールが1回転したか確認され、今回のパルスに対応した
フーリエ係数の傾きの補正が(×1)式によりなさ71
:、(xiii )式によりフーリエ係数がサンプリン
グきれ、次の傾きの補正の際に使用される6゜ なお、本発明は前述の実施例に限定されるものではなく
、本発明の要旨を逸脱しない範囲内で種々変更を加え得
ることは勿論である。
When roll eccentricity control is performed continuously, it is checked whether the roll has made one revolution, and the slope of the Fourier coefficient corresponding to the current pulse is corrected using the formula (×1)71
The Fourier coefficients are sampled according to the equation (xiii) and used in the next slope correction.The present invention is not limited to the above-mentioned embodiments, and does not depart from the gist of the present invention. Of course, various changes can be made within the scope.

本発明のロール偏心制御装置によれば、油圧圧下装置の
圧下位相遅れがなくなるだめ、ロールの加減速中におい
てもロール偏心の影響を十分消去することができ、従っ
て圧延板の製品品質が良好になる、管種々の優れた効果
を奏し得る。
According to the roll eccentricity control device of the present invention, since the rolling phase delay of the hydraulic rolling device is eliminated, the influence of roll eccentricity can be sufficiently eliminated even during acceleration and deceleration of the roll, and therefore the product quality of the rolled plate is improved. The tube can produce various excellent effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は周波数と圧延荷重の関係を示すグラフ、第2図
は本発明のロール偏心制御装置の説明図、第3図は第2
図の装置におけるフーリエ級数展開装置及び位相遅れの
予測角度決定装置の詳細を示す図である。 図中(3)ハパルスジエネレータ、(4)はフーリエ級
数展開装置、(5a)は速度検出器、(5b)は位相遅
れの予測角度の設定器、(6)はロードセル、(7)は
油圧圧下装置、(8)はサーボ弁を示す。3特許出願人 石川島播磨重工業株式会社
Fig. 1 is a graph showing the relationship between frequency and rolling load, Fig. 2 is an explanatory diagram of the roll eccentricity control device of the present invention, and Fig. 3 is a graph showing the relationship between frequency and rolling load.
FIG. 3 is a diagram showing details of a Fourier series expansion device and a phase delay prediction angle determining device in the device shown in the figure. In the figure, (3) is a Hapulus generator, (4) is a Fourier series expansion device, (5a) is a speed detector, (5b) is a setting device for the predicted phase delay angle, (6) is a load cell, and (7) is a Hydraulic pressure reduction device, (8) indicates a servo valve. 3 Patent applicant Ishikawajima Harima Heavy Industries Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1)控ロールの回転角を測定するだめのパルス/エネレ
ータと荷重検出器で検出された圧延荷重信号を控ロール
−周期の基本波としてフIJ工解析をする装置とを有し
、解析されたフーリエ係数を用いてパルスに応じた控ロ
ール偏心信号を発生する装置において、パルス信号を一
定時間カウントし控ロールの偏心周波数を求める装置と
、該周波数に応じた位相を出力する関数器を設け、その
位相に和尚するパルス分だけ早くロール偏心量を演算さ
せ油圧圧下の位相遅れを補正するよう構成したことを特
徴とするロール偏心制御装置。
1) It has a pulse/enerator for measuring the rotation angle of the backing roll and a device that performs FJ analysis using the rolling load signal detected by the load detector as the fundamental wave of the backing roll period. A device for generating a backup roll eccentricity signal according to a pulse using a Fourier coefficient, which includes a device that counts pulse signals for a certain period of time to determine the eccentricity frequency of the backup roll, and a function unit that outputs a phase corresponding to the frequency, A roll eccentricity control device characterized in that the roll eccentricity is calculated as early as the pulse that adjusts to the phase, and the phase delay under hydraulic pressure is corrected.
JP56194878A 1981-12-03 1981-12-03 Controlling device for roll eccentricity Granted JPS5897417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56194878A JPS5897417A (en) 1981-12-03 1981-12-03 Controlling device for roll eccentricity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56194878A JPS5897417A (en) 1981-12-03 1981-12-03 Controlling device for roll eccentricity

Publications (2)

Publication Number Publication Date
JPS5897417A true JPS5897417A (en) 1983-06-09
JPH0218169B2 JPH0218169B2 (en) 1990-04-24

Family

ID=16331812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56194878A Granted JPS5897417A (en) 1981-12-03 1981-12-03 Controlling device for roll eccentricity

Country Status (1)

Country Link
JP (1) JPS5897417A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6216811A (en) * 1985-07-15 1987-01-26 Mitsubishi Heavy Ind Ltd Method for correcting phase delay of roll eccentricity control
JPS6431512A (en) * 1987-07-24 1989-02-01 Furukawa Aluminium Automatic controlling method for plate thickness in rolling mill
KR100419657B1 (en) * 1999-12-14 2004-02-25 주식회사 포스코 Apparatus for automatically controlling eccentricity of roll in hot mill process
EP1627695A1 (en) * 2004-08-17 2006-02-22 Siemens Aktiengesellschaft Method for the compensation of periodic disturbances

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5211300A (en) * 1975-01-29 1977-01-28 Horizons Research Inc Phosphonitrilic fluoride elastomer
JPS5643803A (en) * 1979-09-18 1981-04-22 Kokusai Denshin Denwa Co Ltd <Kdd> Antenna power feeding system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5211300A (en) * 1975-01-29 1977-01-28 Horizons Research Inc Phosphonitrilic fluoride elastomer
JPS5643803A (en) * 1979-09-18 1981-04-22 Kokusai Denshin Denwa Co Ltd <Kdd> Antenna power feeding system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6216811A (en) * 1985-07-15 1987-01-26 Mitsubishi Heavy Ind Ltd Method for correcting phase delay of roll eccentricity control
JPH0513732B2 (en) * 1985-07-15 1993-02-23 Mitsubishi Jukogyo Kk
JPS6431512A (en) * 1987-07-24 1989-02-01 Furukawa Aluminium Automatic controlling method for plate thickness in rolling mill
KR100419657B1 (en) * 1999-12-14 2004-02-25 주식회사 포스코 Apparatus for automatically controlling eccentricity of roll in hot mill process
EP1627695A1 (en) * 2004-08-17 2006-02-22 Siemens Aktiengesellschaft Method for the compensation of periodic disturbances

Also Published As

Publication number Publication date
JPH0218169B2 (en) 1990-04-24

Similar Documents

Publication Publication Date Title
US4126027A (en) Method and apparatus for eccentricity correction in a rolling mill
US6263714B1 (en) Periodic gauge deviation compensation system
EP0155301B1 (en) Rolling mill strip thickness controller
KR900003970B1 (en) Method of controlling elimination of roll eccentricity in rolling mill and device for carrying out the method
US4222254A (en) Gauge control using estimate of roll eccentricity
US4545228A (en) Roll eccentricity control system for a rolling apparatus
EP0015866B1 (en) Method of controlling roll eccentricity of rolling mill and apparatus for performing the same method
JPS5897417A (en) Controlling device for roll eccentricity
CA2325328C (en) Strip thickness control apparatus for rolling mill
JPH0460723B2 (en)
CN111036686B (en) Estimation compensation method for eccentricity of supporting roller of cold rolling mill
US3892112A (en) Rolling mill gauge control
JP4024905B2 (en) Thickness control device for rolling mill
JPS6114889B2 (en)
JPS6216811A (en) Method for correcting phase delay of roll eccentricity control
JPH11290919A (en) Device for controlling eccentricity of roll
JPS586568B2 (en) Plate thickness control method for skewer type continuous rolling mill
JP2716866B2 (en) Mass flow controller for tandem rolling mill
KR20030028903A (en) Operation control system of impact drop compensation volume and its control method
JPS61262415A (en) Method and device for controlling roll eccentricity of rolling mill
JPS6150047B2 (en)
JPS62197210A (en) Method and device for controlling continuous rolling mill
JPH0260401B2 (en)
JPH03258412A (en) Controller for rolling
JPH0815609B2 (en) Roll thickness control method