JPS5897071A - Developing device - Google Patents

Developing device

Info

Publication number
JPS5897071A
JPS5897071A JP19559281A JP19559281A JPS5897071A JP S5897071 A JPS5897071 A JP S5897071A JP 19559281 A JP19559281 A JP 19559281A JP 19559281 A JP19559281 A JP 19559281A JP S5897071 A JPS5897071 A JP S5897071A
Authority
JP
Japan
Prior art keywords
toner
dielectric layer
image
developing
sleeve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19559281A
Other languages
Japanese (ja)
Other versions
JPH0415949B2 (en
Inventor
Koji Sakamoto
康治 坂本
Toshio Kaneko
利雄 金子
Fuchio Sugano
管野 布千雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP19559281A priority Critical patent/JPS5897071A/en
Publication of JPS5897071A publication Critical patent/JPS5897071A/en
Publication of JPH0415949B2 publication Critical patent/JPH0415949B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/06Apparatus for electrographic processes using a charge pattern for developing
    • G03G15/08Apparatus for electrographic processes using a charge pattern for developing using a solid developer, e.g. powder developer
    • G03G15/09Apparatus for electrographic processes using a charge pattern for developing using a solid developer, e.g. powder developer using magnetic brush
    • G03G15/0921Details concerning the magnetic brush roller structure, e.g. magnet configuration
    • G03G15/0928Details concerning the magnetic brush roller structure, e.g. magnet configuration relating to the shell, e.g. structure, composition
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2215/00Apparatus for electrophotographic processes
    • G03G2215/06Developing structures, details
    • G03G2215/0634Developing device
    • G03G2215/0636Specific type of dry developer device
    • G03G2215/0651Electrodes in donor member surface
    • G03G2215/0653Microelectrodes in donor member surface, e.g. floating

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Brush Developing In Electrophotography (AREA)

Abstract

PURPOSE:To reproduce a contact print and a line image adequately by forming a dielectric layer over the surface of a developing electrode, i.e. sleeve and providing an insulated electrode which is divided finely thereupon. CONSTITUTION:On the surface of a dielectric supporting body 12 made of stainless steel which houses a magnet 11 having numbers of, e.g. eight alternate poles N and S, an epoxy resin layer 13 with an about 300mum thickness is formed by powder coating as a dielectric layer. To the surface of the dielectric layer, spheroidized copper 14 is adhered with an epoxy adhesive. The spheroidized copper 14 forms a float electrode after the adherence of the spheroidized copper, the outer circumference surface of the dielectric layer 13 is polished to form the exposed surface of the spheroidized copper linearly in a plane shape. Respective electrodes of the spheroidized copper are insulated electrically from one another and a magnetic blade 18 for discharging is arranged in contact with the external circumferential surface of the dielectric layer 13.

Description

【発明の詳細な説明】 本発明は電子写真複写機又は静電記録装置に使用される
1成分系現像装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a one-component developing device used in an electrophotographic copying machine or an electrostatic recording device.

1成分系現像方法には大別して2つの方法が提案されて
いる。
Broadly speaking, two types of one-component developing methods have been proposed.

すなわち、トナーとして比較的低抵抗のトナーを用い、
潜像電界によシ潜像面のトナーに潜像と逆極性の電荷を
誘導して現像を行なう、誘電現像方法と呼ばれる方法と
、トナーとして比較的高抵抗のトナーを用い、トナーに
予め潜像の極性と逆極性の電荷を与えておき、このトナ
ーを潜像面に接触もしくは近接させて現像を行なう、真
電荷現像方法と呼ばれる方法とが提案されている。
That is, using a toner with relatively low resistance as the toner,
There is a method called the dielectric development method, in which a latent image electric field induces charges of opposite polarity to the latent image to the toner on the latent image surface, and a method called the dielectric development method uses a relatively high-resistance toner as the toner. A method called a true charge developing method has been proposed in which a charge having a polarity opposite to that of the image is applied and development is performed by bringing this toner into contact with or close to the latent image surface.

誘電現像方法は装置が簡単であるなどの長所を有するが
、トナーが低抵抗であるため普通紙への転写が困難であ
るという欠点を有する。
The dielectric development method has advantages such as a simple device, but has the disadvantage that it is difficult to transfer onto plain paper because the toner has low resistance.

真電荷現像方法は2成分現像方法並みの高画質が得られ
る可能性を有するという長所な有するが、以下のような
問題点があり広く商品化されるに到っていない。すなわ
ちトナーに予め一方の極性の電荷を与えるには、トナ一
層が厚いとトナー全体を一様に帯電させることが困難と
なるので、トナ一層を薄くする必要があシ、現像に十分
な真電荷を与えるには、約50μ以下の゛通常のトナー
粒経て4〜5層以下のトナ一層にすることが望ましいこ
とが実験的に確認されておシ、トナーをこのように薄い
層にして現像を行なう場合にはライン画像の再現性等の
面からスリーブを潜像面にごく近接させる必要が生ずる
Although the true charge development method has the advantage of having the possibility of obtaining high image quality comparable to that of the two-component development method, it has not been widely commercialized due to the following problems. In other words, in order to pre-charge the toner with one polarity, it is difficult to charge the entire toner uniformly if the toner layer is thick, so it is necessary to make the toner layer thinner, and to obtain a true charge sufficient for development. It has been experimentally confirmed that it is desirable to form 4 to 5 layers of toner using normal toner particles of approximately 50μ or less in order to develop the toner in such a thin layer. When this is done, it is necessary to bring the sleeve very close to the latent image surface from the viewpoint of line image reproducibility.

9導電性スリーブの表面に導電性ブラシを形成し、ブラ
シの毛の柔軟性を利用して、常に毛先を感光体表面に接
触させるようにした現像装置が従来より知られているが
、このような現像装置ではプランのすべ゛ての毛が同じ
電位になっているため、現像電極、例えばスリーブが感
光体表面に極〈近接したのと同じ結果となり、ライン画
像は良く再現されるが、ライン画像に比べてベタ画像に
よる電界が急激に増大するので、適当な階調性が得られ
なくなる。ベタ画像の階調性を得ようとすると、ライン
画像の再1現性が不足して、両画像を適正に再現するこ
とは従来の装置では困難であった。この困難を解消する
にはスリーブ表面に誘電体層を設けて、スリーブと感光
体表面との間の実質的な現像ギャップを拡げてベタ画像
の電界を減少させることが考えられる。この場合ライン
画像の電界はさほど変化しない。しかしスリーブの表面
に厚い誘電体層を設けると、トナーとの摩擦による摩・
擦帯電その他によって誘電体層表面に電荷が蓄積し、こ
れが現像むらとなって現われることが知られている。
9. A developing device in which a conductive brush is formed on the surface of a conductive sleeve and the flexibility of the brush bristles is used to keep the bristles always in contact with the surface of the photoreceptor has been known. In such a developing device, all the hairs on the plan are at the same potential, so the result is the same as if the developing electrode, such as the sleeve, were extremely close to the surface of the photoreceptor, and line images are well reproduced. Since the electric field due to a solid image increases rapidly compared to a line image, appropriate gradation cannot be obtained. When attempting to obtain the gradation of a solid image, the reproducibility of the line image is insufficient, making it difficult for conventional apparatuses to properly reproduce both images. To overcome this difficulty, it is conceivable to provide a dielectric layer on the sleeve surface to widen the substantial development gap between the sleeve and the photoreceptor surface, thereby reducing the electric field of the solid image. In this case, the electric field of the line image does not change much. However, if a thick dielectric layer is provided on the surface of the sleeve, it will cause wear and tear due to friction with the toner.
It is known that charges accumulate on the surface of the dielectric layer due to triboelectric charging and other causes, and this appears as uneven development.

一般に電子写真複写機で複写を行なう場合、写真等のベ
タ画像では、背景や画像の階調がそのまま再現されるこ
とが望ましく、文字や線図のようなライン画像ではたと
えば鉛筆で書いた薄い線でも明瞭に再現することが望ま
れる。オリジナルの濃度(0,D )  とコピーの濃
度(1,D)との関係をみた場合、ベタ画像では第1図
の曲線Sが示すように、地肌の汚れを防止するためωの
ある値の所から画像の再現をはじめ、はぼ45°の傾斜
で進み飽和濃度になるようにし、ライン画像では第1図
の曲線りで示すように0.Dの小さい値のところから曲
線lが速やかに立上って飽和濃度になるようにすること
が要求される。図において縦軸は1.D、横軸は0、D
 ’&−示す。
Generally, when copying with an electrophotographic copying machine, it is desirable for solid images such as photographs to reproduce the background and gradation of the image as they are, and for line images such as characters and line drawings, for example, thin lines drawn with a pencil. However, it is desirable to be able to reproduce it clearly. Looking at the relationship between the density of the original (0, D) and the density of the copy (1, D), in a solid image, a certain value of ω is used to prevent staining of the background, as shown by the curve S in Figure 1. The image is reproduced from a certain point, and the image is advanced at an angle of 45 degrees until the saturation density is reached.In the case of a line image, as shown by the curved line in Fig. 1, the image is reproduced at 0. It is required that the curve 1 quickly rises from a small value of D to reach the saturation concentration. In the figure, the vertical axis is 1. D, horizontal axis is 0, D
'&-show.

さらに複写機の露光光学系では、画像の空間周波数と原
稿から感光体に伝達される画像階調の伝達関数(MrF
)との間に第2図の曲線が示すような関係が得られ、空
間周波数が0本/1u1すなわちベタ画像の場合にはM
rFが1であり、原稿の画像はそのままのコントラスト
で感光体に送られるが、空間周波数が大きくなるほど、
すなわち線が細くなるほどMTFが低下し、感光体上の
暗像はコントラストの弱い線になる傾向にあるので、原
稿上で同一濃度の画像でも感光体上の潜像濃度が変り、
ベタ画像の方がライン画像に比べて電位が高くな、−1
る。このことからライン画像の潜像を濃く現像すること
が要求される。図の縦軸にMrF、横軸に空間周波数本
/Uを示す。
Furthermore, in the exposure optical system of a copying machine, a transfer function (MrF
), the relationship shown by the curve in Figure 2 is obtained, and if the spatial frequency is 0 lines/1u1, that is, a solid image, M
When rF is 1, the original image is sent to the photoreceptor with the same contrast, but as the spatial frequency increases,
In other words, the thinner the line, the lower the MTF, and the dark image on the photoconductor tends to be a line with weak contrast, so even if the image has the same density on the original, the density of the latent image on the photoconductor changes.
The solid image has a higher potential than the line image, -1
Ru. For this reason, it is required to develop the latent image of the line image to be dense. The vertical axis of the figure shows MrF, and the horizontal axis shows spatial frequency /U.

第3図に示すように現像電極1例えば現像スリーブと感
光体2とを互に間隔P。で対置させた現像領域で、現像
電極1の電位を例えば200V、感光体2の誘電率ε=
3.0、厚さd=20μの条件を仮定し、感光体表面に
種々の電荷パターンを作って、感光体表面での電界の大
きさをコンピューターシミュレーションで求めたところ
第4図に示すような例が得られた。図で横軸に感光体書
現像電極間間隔Pび縦軸に現像電界V / m ’に示
し、実線で示す曲線は黒ベタ画像に関する曲線を、破線
で示す曲線HO,I)=0.2空間周波数=5本/Iu
の低コントラストライン画像に関する曲線を表わす。尚
黒ベタ画像の帯電電位Va=800賃地肌電位Vs=2
00Vである。
As shown in FIG. 3, the developing electrode 1, for example, the developing sleeve, and the photoreceptor 2 are spaced apart from each other by a distance P. In the developing area opposed to each other, the potential of the developing electrode 1 is set to, for example, 200 V, and the dielectric constant ε of the photoreceptor 2 is set to
3.0, thickness d = 20μ, various charge patterns were created on the photoreceptor surface, and the magnitude of the electric field on the photoreceptor surface was determined by computer simulation, as shown in Figure 4. An example has been obtained. In the figure, the horizontal axis shows the distance P between the photoconductor writing development electrodes, and the vertical axis shows the developing electric field V/m', where the curve shown by the solid line is the curve for a black solid image, and the curve shown by the broken line is the curve HO,I)=0.2. Spatial frequency = 5 lines/Iu
represents a curve for a low contrast line image of . Charged potential of black solid image Va=800 Land surface potential Vs=2
It is 00V.

黒ベタ画像では、感光体の表面には広い面積に一様に電
荷が分布し、感光体と現像電極との間にほとんど平行な
電場が形成されるので間隔PGが小さくなると急激に現
像電界が増すが、ライン画像の場合、感光体の表面には
局部的に電荷が存在し、これから出た電気力線は現像電
極に向う成分のは;1に感光体の電荷存在部分に隣接す
る潜像の形成されない地肌部分に向う成分をかなり有す
るため間隔P。の変化によっては電位はほとんど変化し
ない。
In a solid black image, charges are uniformly distributed over a wide area on the surface of the photoconductor, and an almost parallel electric field is formed between the photoconductor and the developing electrode, so when the distance PG becomes small, the developing electric field suddenly increases. However, in the case of a line image, there is a local charge on the surface of the photoreceptor, and the lines of electric force emitted from this component are directed toward the developing electrode; 1. The latent image adjacent to the charged portion of the photoreceptor The interval P is large because it has a considerable amount of components directed toward the skin area where no pores are formed. The potential hardly changes depending on the change in .

例えばO,D = 0.2で空間周波数が5本/、の低
コントラストのライン画像を黒ペタ画像の飽和濃度の1
/2程度で再現しようとすれば、感光体と現像電極との
間;の間隔PGは第4図から帆2Iu程度に選ぶ必要が
ある。ところが前記のようにトナ一層が数十μの薄い層
である場合にはこの条件ではトナ一層表面と感光体との
間には大きなギャップを生じてしまう。
For example, a low contrast line image with O, D = 0.2 and a spatial frequency of 5/, is reduced to 1 of the saturation density of a black peta image.
In order to reproduce the value of approximately /2, the distance PG between the photoreceptor and the developing electrode must be selected to be approximately 2 Iu from FIG. However, when the toner layer is a thin layer of several tens of microns as described above, under these conditions, a large gap is created between the surface of the toner layer and the photoreceptor.

ここで感光体・表面からの距離と電界の大きさの変化と
の関連を求めると、第5図に示すような結果が得られた
。図で横軸に空間周波数本/朋を、縦軸に現像電界V/
m ’にとり、感光体表面からの距離μをパラメータと
する曲線群を示した。第5囚でハ感光体表面と現像電極
との間の間隔PG= 0.5藺の場合の例が示されてい
る。曲線群から感光体の極゛′<近傍(例えば5μ)で
は、ベタ画像(0本/U)に対し′てライン画像(例え
ば5本/關)が強調される条件となるが、感光体表面か
らの距離が太きくべるにしたがってライン画像の電界が
急激に低下してしまう。したがってトナ一層表面と感光
体との間のギャップを大きくして、現像を行なった場合
、ライン画像の再現性が非常に悪くなってしまう。
When the relationship between the distance from the photoreceptor/surface and the change in electric field magnitude was determined, the results shown in FIG. 5 were obtained. In the figure, the horizontal axis represents the spatial frequency V/, and the vertical axis represents the developing electric field V/
For m', a group of curves with distance μ from the photoreceptor surface as a parameter is shown. In the fifth case, an example is shown in which the distance PG between the photoreceptor surface and the developing electrode is 0.5. From the curve group, when the photoconductor is extremely close to < 5μ (for example, 5 μ), the line image (for example, 5 lines/U) is emphasized compared to the solid image (0 lines/U), but the photoconductor surface The electric field of the line image decreases rapidly as the distance from the line increases. Therefore, if development is performed with a larger gap between the toner surface and the photoreceptor, the reproducibility of line images will be extremely poor.

上記の問題を解消する方法として第6図に示すように交
流磁界や交流電界を作用させてトナーの。
As a method to solve the above problem, as shown in FIG. 6, an alternating current magnetic field or an alternating electric field is applied to the toner.

クラウドを発生させ、トナーを感光体表面に近づける方
法が考えられたが、このような方法で感光体表面に到達
するトナーは全体の一部である。したがって上記の問題
を完全に解決することはできなかった。第6図において
lはスリーブ、2は感光体、3は磁極、4に交流電源、
5はドクターブレードを示す。
A method has been considered in which a cloud is generated to bring the toner closer to the surface of the photoreceptor, but only a portion of the toner reaches the surface of the photoreceptor using this method. Therefore, the above problem could not be completely solved. In Fig. 6, l is a sleeve, 2 is a photoreceptor, 3 is a magnetic pole, 4 is an AC power supply,
5 indicates a doctor blade.

又スリーブの表面に誘電体層を設け、トナ一層自体を感
光体表面に近づけることが考えられ、上記の問題をかな
り解決したが、この誘電体層表面がトナーとの摩擦等に
ぶり帯電し、この帯11除電しきれないまま使うため現
像むらt衡することになった。このような誘電体層を完
全に除電することはかなり難かしく、装、置が複雑化し
てしまうという欠点があった。
It has also been considered to provide a dielectric layer on the surface of the sleeve to bring the toner layer closer to the surface of the photoreceptor, which has largely solved the above problems, but the surface of this dielectric layer becomes statically charged due to friction with the toner, etc. Since this band 11 was used without being completely neutralized, uneven development occurred. It is quite difficult to completely eliminate static electricity from such a dielectric layer, which has the drawback of complicating the equipment.

本発明は上記の欠点を解消し、真電荷を有するトナーの
薄層でベタ画像とライン画像とを適正に再現することが
てきる現像装置を提供することを目的としている。
SUMMARY OF THE INVENTION An object of the present invention is to provide a developing device capable of solving the above-mentioned drawbacks and properly reproducing solid images and line images with a thin layer of toner having a true charge.

この目的を本発明は現像電極すなわちスリーブの表面に
誘電体層を設け、その上に互に絶縁状態にある微細に分
割された電極を設けることにより達成した。
This object has been achieved by the present invention by providing a dielectric layer on the surface of the developing electrode or sleeve, on which are provided finely divided electrodes which are insulated from each other.

本発明により、スリーブの電極は現像時には完全にフロ
ート状態にあるため、現像電界にほとんど影響を与えず
、スリーブに蓄積される電荷は容易に除去できるので、
前記の誘電体層を設ける場合の除電不完全による現像む
らが解消され、しかもこのようなスリーン°により、ス
リー7表面のトナ一層をかなり感光体表面に近づけても
、ベタ画像の電界は誘電体層の厚みにより弱められ適正
なエツジ効果が得られるようになった°= 本発明の詳Mf3を図に示す実施例により説明する。
According to the present invention, the sleeve electrode is completely floating during development, so it has little effect on the development electric field, and the charge accumulated on the sleeve can be easily removed.
The uneven development caused by incomplete charge removal when providing the dielectric layer described above is eliminated, and with this screen angle, even if the toner layer on the surface of the three 7 is brought quite close to the photoreceptor surface, the electric field of the solid image is not affected by the dielectric layer. The thickness of the layer makes it possible to obtain a suitable edge effect. The details of the present invention Mf3 will be explained in detail with reference to the embodiments shown in the drawings.

第7区及び第8図において、N極とS極を交互に配置し
た多数極、例えば8極のs石11ヲ内包する2テンレス
製の誘電性支持体12の表面に約300μの厚さのエポ
キシ樹脂層13が誘電体層として粉体塗装によ□り形成
される。誘電体層の表面に直径約100す球状銅粉14
がエポキシ系の接着剤により接着される。球状銅粉14
はフロート電極を形成する。
In Section 7 and FIG. 8, a dielectric support 12 made of stainless steel with a thickness of about 300 μm is coated on the surface of a dielectric support 12 made of stainless steel containing a multi-pole, for example, 8-pole S-stone 11 in which N and S poles are arranged alternately. An epoxy resin layer 13 is formed as a dielectric layer by powder coating. Spherical copper powder 14 with a diameter of approximately 100 mm is placed on the surface of the dielectric layer.
are bonded using epoxy adhesive. Spherical copper powder 14
forms a float electrode.

球状銅粉接着後誘電体層13の外周面が研摩され球状銅
粉の外面に露出する面がほぼ平面状に形成される。各銅
粉による電極は互に電気的に絶縁状態にある。誘電体層
13の外周面に接するように除電兼用磁性ブレード18
(例えば0.11IJ厚SK材)を配置する。
After adhering the spherical copper powder, the outer circumferential surface of the dielectric layer 13 is polished so that the surface exposed to the outer surface of the spherical copper powder is substantially flat. The electrodes made of each copper powder are electrically insulated from each other. A magnetic blade 18 that also serves as a charge remover is placed in contact with the outer peripheral surface of the dielectric layer 13.
(For example, SK material with a thickness of 0.11 IJ) is placed.

第7区に示す現像スリーブ16に1mg/cj程度のト
ナ一層15ヲ磁性トナーにより形成する。このときのト
ナー帯電量は約7μ軸程度である。トナーの、体積平均
粒経は約7μ、真比重は1.8である。
On the developing sleeve 16 shown in the seventh section, 15 layers of toner of about 1 mg/cj are formed using magnetic toner. The amount of toner charge at this time is approximately 7μ axis. The volume average particle diameter of the toner is approximately 7 μ, and the true specific gravity is 1.8.

上記のように形成した現像スリーブ16すなわちトナー
担持体に対しトナ一層150表面と感光体すなわち静電
潜像担持体の表面との間の間隔である現像ギャップが0
.05+uになるように感光体17を配置し、線速比1
:1で現像を行なったところ適当なエツジ効果のおる良
好な画像が得られた。
For the developing sleeve 16, that is, the toner carrier formed as described above, the developing gap, which is the distance between the surface of the toner layer 150 and the surface of the photoreceptor, that is, the electrostatic latent image carrier, is 0.
.. The photoreceptor 17 is arranged so that the linear velocity ratio is 05+u, and the linear velocity ratio is 1.
When the image was developed at a ratio of 1:1, a good image with a suitable edge effect was obtained.

第2実施例として感光体と現像スリーブ16のトナ一層
150表面の間の現像ギャップ1に0.15+uに変え
、感光体17と現像スリーブ16の線速比vt:aで現
像したところほぼ同等のエツジ効果で更にSN比の良い
画像が得られた。
As a second example, when the development gap 1 between the photoreceptor and the surface of the toner layer 150 of the developing sleeve 16 was changed to 0.15+u, and the linear velocity ratio vt:a of the photoreceptor 17 and the developing sleeve 16 was used, almost the same result was obtained. An image with an even better signal-to-noise ratio was obtained due to the edge effect.

第2実施例では現像ギャップが犬きくなったため、感光
体表面に近接するトナーの割合が少なくなるが、これを
現像スリーブの線速比を高めることにより補う。すなわ
ちスリーブ表面でのトナ一層のむらが画像に現われに、
<くすることにより画質が向上するものと考えられる。
In the second embodiment, since the developing gap becomes narrower, the proportion of toner close to the surface of the photoreceptor decreases, but this is compensated for by increasing the linear velocity ratio of the developing sleeve. In other words, even more uneven toner on the sleeve surface appears in the image,
It is thought that the image quality improves by making the image smaller.

最初の実施例において誘電層の厚さをさらに大にして感
光体スリーブ線速比誉大きくしても同様な効果が得られ
る。
Similar effects can be obtained by increasing the thickness of the dielectric layer in the first embodiment to increase the relative linear velocity of the photoreceptor sleeve.

現像ギャップを更に小さくすればスリーブ表面の電極が
ライン画像の電界を強調するような効果が得られるよう
になる。
If the developing gap is made even smaller, an effect can be obtained in which the electrodes on the sleeve surface emphasize the electric field of the line image.

第9図及び第10図に示すようにステンレス製非畠性ス
リーブ12′の周面に直径約100μ程度の球状鉄。
As shown in FIGS. 9 and 10, spherical iron having a diameter of approximately 100 μm is provided on the circumferential surface of the stainless steel non-fertile sleeve 12'.

粉等の磁性体19ヲ工ボキシ系接着剤20により均一に
分散して接着し外周面を研摩して形成した現像スリーブ
16′ヲ用いることもできる。現像スリーブ16′の表
面に1 mg/cA程度の薄い磁性トナーの1i15’
を形成して感光体17に現像ギャップ0.2Uで対向配
置し、感光体と現像スリーブの線速比1:2で現像ケ行
なったところペタ画像、ライン画像ともに良好な画像の
再現を行なった。尚トナーの帯電量は約10μ例1体積
平均粒経約7μ〜真比重は1・8であった。このように
現像効率が大幅に向上するという効果が得られたのは第
10図に示すように表面に磁性体19を分散してあり、
磁力線がこの磁性体に集中し、スリー−゛表面で不均一
な磁場を形成するため、磁石11の回転により磁性体間
をトナーが移動する場合に、磁性トナー15がスリーブ
から反発されるような力を受け、トナーが跳躍すること
により、感光体表面に到達するトナーの量が増加するこ
とによるものと考えられる。
It is also possible to use a developing sleeve 16' formed by applying a magnetic material 19 such as powder, uniformly dispersed and bonded with a boxy adhesive 20, and polishing the outer peripheral surface. 1i15' of a thin magnetic toner of about 1 mg/cA is applied to the surface of the developing sleeve 16'.
was formed and placed facing the photoconductor 17 with a development gap of 0.2U, and development was performed at a linear speed ratio of 1:2 between the photoconductor and the developing sleeve, and both the peta image and the line image were well reproduced. . The charge amount of the toner was approximately 10 μm in Example 1, the volume average particle size was approximately 7 μm, and the true specific gravity was 1.8. The effect of greatly improving the developing efficiency was obtained by dispersing magnetic material 19 on the surface as shown in FIG.
The lines of magnetic force are concentrated on this magnetic body and form a non-uniform magnetic field on the surface of the sleeve, so when the toner moves between the magnetic bodies due to the rotation of the magnet 11, the magnetic toner 15 is repelled from the sleeve. This is thought to be due to the fact that the amount of toner reaching the surface of the photoreceptor increases as the toner jumps under the force.

第9図に示す現像スリーブによる上記の例の場合と同じ
条件でステンレス製スリーブのみよりなる現像スリーブ
を用いた場合と比較すると、この場合はベタ画像はある
程麿再現できたがライン幅0 、1lIj程度のライン
画像はほとんど再現されず、第9図の現像スリーブが優
れた効果を示すことが明白になった。
When compared with the case where a developing sleeve made of only a stainless steel sleeve was used under the same conditions as in the above example using the developing sleeve shown in FIG. 9, in this case, the solid image could be reproduced to a certain extent, but the line width was 0, A line image of about 1lIj was hardly reproduced, and it became clear that the developing sleeve shown in FIG. 9 exhibited an excellent effect.

第7図の誘電体層13の上に第10図の磁性体19と接
着剤20よりなるa性体ノくターンを形成するようにす
れば本発明者等がすでに提案している島状フロート電極
の効果も得られる。
By forming an a-type turn made of the magnetic material 19 and adhesive 20 shown in FIG. 10 on the dielectric layer 13 shown in FIG. The effect of electrodes can also be obtained.

本発明によるベタ画像とライン画像の両方を適正に再現
することが可能になった。
According to the present invention, it has become possible to properly reproduce both solid images and line images.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ペタ画像とライン画像の画偉濃度特性曲at示す
図、第2図は複写機の露光光学系の画像の空間周波数に
対する伝達関数の、゛変化を示す図、第3図は現像領域
twlI■で示す説明図、第4図は黒ベタ画像と低コン
トラストライン画像についての感光体と現像電植間の間
隔と感光体表面の現像電界の大きさとの関係を示す図、
第5図は画像の空間周波数と現像電界との関係を示す図
、第6図は従来の現像装置の一例の説明略図、第7図は
本発明ニ係る現像スリーブの説明図、第8図は第7図の
部分拡大図、第9図は本発明の別の実施例の説明図、第
10図は第9図う部分拡大図である。 11・・・磁石     12・・・導電性支持体13
・・・誘電体層   14・・・電極15・・・トナー
    16.16’・・・トナー担持体17・・・静
電潜像担持体 1修・・s性体20・・・接着剤 、−へ −一く〉\ε) /        −−N
Figure 1 shows the image density characteristic curves of peta images and line images, Figure 2 shows the change in the transfer function of the exposure optical system of the copying machine with respect to the spatial frequency of the image, and Figure 3 shows the development area. An explanatory diagram indicated by twlI■, FIG. 4 is a diagram showing the relationship between the distance between the photoreceptor and the developing electric field and the magnitude of the developing electric field on the surface of the photoreceptor for black solid images and low contrast line images,
FIG. 5 is a diagram showing the relationship between the spatial frequency of an image and a developing electric field, FIG. 6 is a schematic illustration of an example of a conventional developing device, FIG. 7 is an explanatory diagram of a developing sleeve according to the present invention, and FIG. FIG. 7 is a partially enlarged view of FIG. 7, FIG. 9 is an explanatory view of another embodiment of the present invention, and FIG. 10 is a partially enlarged view of FIG. 11... Magnet 12... Conductive support 13
...Dielectric layer 14...Electrode 15...Toner 16.16'...Toner carrier 17...Electrostatic latent image carrier 1 Modification...S material 20...Adhesive, -to-ichiku〉\ε) / --N

Claims (3)

【特許請求の範囲】[Claims] (1)静電潜像担持体に隣接して配置され内部に多数の
磁極を有する磁石を内包したトナー担持体含有し、該ト
ナー担持体上のトナーに予め定められた極性の電荷を付
与して静電潜像の現像を行なう現像装置において、 前記トナー担持体表面に誘電体層が形成され、該誘電体
層の少なくとも表面に互に絶縁状に多数の微細に分割さ
れた電極が設けられ、トナー担持体の電極配置部分の外
面にトナーが薄い層として付着していることを特徴とす
る現像装置。
(1) A toner carrier disposed adjacent to the electrostatic latent image carrier and containing a magnet having a large number of magnetic poles therein, and a charge of a predetermined polarity is applied to the toner on the toner carrier. In a developing device for developing an electrostatic latent image, a dielectric layer is formed on the surface of the toner carrier, and a large number of finely divided electrodes are provided on at least the surface of the dielectric layer in an insulating manner. A developing device characterized in that toner is attached as a thin layer to the outer surface of an electrode arrangement portion of a toner carrier.
(2)トナーとして磁性トナーが用いられ、前記トナー
担持体に内包される磁石が回転されることを特徴とする
特許請求の範囲第1項に記載の現像装置。
(2) The developing device according to claim 1, wherein a magnetic toner is used as the toner, and a magnet included in the toner carrier is rotated.
(3)トナー担持体上の磁性トナーの層がトナー担持体
と静電潜像担持体との間の間隔よりも薄く形成されてい
ることを特徴とする特許請求の範囲第1項又は第2項に
記載の現像装置。
(3) Claim 1 or 2, characterized in that the magnetic toner layer on the toner carrier is formed thinner than the distance between the toner carrier and the electrostatic latent image carrier. Developing device described in Section 1.
JP19559281A 1981-12-07 1981-12-07 Developing device Granted JPS5897071A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19559281A JPS5897071A (en) 1981-12-07 1981-12-07 Developing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19559281A JPS5897071A (en) 1981-12-07 1981-12-07 Developing device

Publications (2)

Publication Number Publication Date
JPS5897071A true JPS5897071A (en) 1983-06-09
JPH0415949B2 JPH0415949B2 (en) 1992-03-19

Family

ID=16343705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19559281A Granted JPS5897071A (en) 1981-12-07 1981-12-07 Developing device

Country Status (1)

Country Link
JP (1) JPS5897071A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60115971A (en) * 1983-11-28 1985-06-22 Ricoh Co Ltd Developer carrying member
US7233758B2 (en) 2003-12-15 2007-06-19 Canon Kabushiki Kaisha Developing apparatus featuring a developer carrying member with an elastic surface layer
US7251441B2 (en) 2004-03-29 2007-07-31 Canon Kabushiki Kaisha Developing apparatus including magnetic field generating means, for use with a developer which includes a magnetic toner component
US7379693B2 (en) 2005-04-18 2008-05-27 Canon Kabushiki Kaisha Developing apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5316441U (en) * 1976-07-22 1978-02-10
JPS5498248A (en) * 1978-01-20 1979-08-03 Ricoh Co Ltd Development apparatus for static latent image
JPS56125753A (en) * 1980-03-07 1981-10-02 Canon Inc Developing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5316441B2 (en) * 1971-12-28 1978-06-01

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5316441U (en) * 1976-07-22 1978-02-10
JPS5498248A (en) * 1978-01-20 1979-08-03 Ricoh Co Ltd Development apparatus for static latent image
JPS56125753A (en) * 1980-03-07 1981-10-02 Canon Inc Developing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60115971A (en) * 1983-11-28 1985-06-22 Ricoh Co Ltd Developer carrying member
US7233758B2 (en) 2003-12-15 2007-06-19 Canon Kabushiki Kaisha Developing apparatus featuring a developer carrying member with an elastic surface layer
US7251441B2 (en) 2004-03-29 2007-07-31 Canon Kabushiki Kaisha Developing apparatus including magnetic field generating means, for use with a developer which includes a magnetic toner component
US7379693B2 (en) 2005-04-18 2008-05-27 Canon Kabushiki Kaisha Developing apparatus

Also Published As

Publication number Publication date
JPH0415949B2 (en) 1992-03-19

Similar Documents

Publication Publication Date Title
US5001517A (en) Developing apparatus for reverse-developing an electrostatic latent image
JPS6342257B2 (en)
US4342822A (en) Method for image development using electric bias
JPH0353632B2 (en)
JPS5897071A (en) Developing device
JPH0223864B2 (en)
JPS6255147B2 (en)
JPS6410071B2 (en)
JPS5880675A (en) Developing device
JP2517206B2 (en) Electrophotographic equipment
JPS6118972A (en) Recording method using photoconductive toner
JPH0132505B2 (en)
JPH06194928A (en) Magnetic brush electrostatic charger
JPH07261412A (en) Electrostatic charge latent image bearing body
JPS5921550B2 (en) How to develop an electrostatic latent image
JPH0431879A (en) Developing device
JP2000338708A (en) Image forming device
JPS6053960A (en) Formation of image
JPS61219069A (en) Developing device
JPS6410072B2 (en)
JPH0738093B2 (en) Development device
JPS58152265A (en) Image recorder
JPH09258549A (en) Developing device
JPH06250508A (en) Developing device
JPH03259286A (en) Developing device