JPH0415949B2 - - Google Patents

Info

Publication number
JPH0415949B2
JPH0415949B2 JP56195592A JP19559281A JPH0415949B2 JP H0415949 B2 JPH0415949 B2 JP H0415949B2 JP 56195592 A JP56195592 A JP 56195592A JP 19559281 A JP19559281 A JP 19559281A JP H0415949 B2 JPH0415949 B2 JP H0415949B2
Authority
JP
Japan
Prior art keywords
toner
developing
image
photoreceptor
latent image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56195592A
Other languages
Japanese (ja)
Other versions
JPS5897071A (en
Inventor
Koji Sakamoto
Toshio Kaneko
Fuchio Kanno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP19559281A priority Critical patent/JPS5897071A/en
Publication of JPS5897071A publication Critical patent/JPS5897071A/en
Publication of JPH0415949B2 publication Critical patent/JPH0415949B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/06Apparatus for electrographic processes using a charge pattern for developing
    • G03G15/08Apparatus for electrographic processes using a charge pattern for developing using a solid developer, e.g. powder developer
    • G03G15/09Apparatus for electrographic processes using a charge pattern for developing using a solid developer, e.g. powder developer using magnetic brush
    • G03G15/0921Details concerning the magnetic brush roller structure, e.g. magnet configuration
    • G03G15/0928Details concerning the magnetic brush roller structure, e.g. magnet configuration relating to the shell, e.g. structure, composition
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2215/00Apparatus for electrophotographic processes
    • G03G2215/06Developing structures, details
    • G03G2215/0634Developing device
    • G03G2215/0636Specific type of dry developer device
    • G03G2215/0651Electrodes in donor member surface
    • G03G2215/0653Microelectrodes in donor member surface, e.g. floating

Description

【発明の詳細な説明】 本発明は電子写真複写機又は静電記録装置に使
用される1成分系現像装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a one-component developing device used in an electrophotographic copying machine or an electrostatic recording device.

1成分系現像方法には大別して2つの方法が提
案されている。
Broadly speaking, two types of one-component developing methods have been proposed.

すなわち、トナーとして比較的低抵抗のトナー
を用い、潜像電界により潜像面のトナーに潜像と
逆極性の電荷を誘導して現像を行なう。誘導現像
方法と呼ばれる方法と、トナーとして比較的高抵
抗のトナーを用い、トナーに予め潜像の極性と逆
極性の電荷を与えておき、このトナーを潜像面に
接触もしくは近接させて現像を行なう、真電荷現
像方法と呼ばれる方法とが提案されている。
That is, a toner having a relatively low resistance is used as the toner, and a latent image electric field induces charges of opposite polarity to the latent image to the toner on the latent image surface to perform development. A method called the induction development method uses a relatively high-resistance toner, and the toner is charged with a polarity opposite to that of the latent image in advance, and this toner is brought into contact with or close to the surface of the latent image to develop it. A method called a true charge development method has been proposed.

誘電現像方法は装置が簡単であるなどの長所を
有するが、トナーが低抵抗であるため普通紙への
転写が困難であるという欠点を有する。
The dielectric development method has advantages such as a simple device, but has the disadvantage that it is difficult to transfer onto plain paper because the toner has low resistance.

真電荷現像方法は2成分現像方法並みの高画質
が得られる可能性を有するという長所を有する
が、以下のような問題点があり広く商品化される
に致つていない。すなわちトナーに予め一方の極
性の電荷を与えるには、トナー層が厚いとトナー
全体を一様に帯電させることが困難となるので、
トナー層を薄くする必要があり、現像に十分な真
電荷を与えるには、約50μ以下の通常のトナー粒
経で4〜5層以下のトナー層にすることが望まし
いことが実験的に確認されており、トナーをこの
ように薄い層にして現像を行なう場合にはライン
画像の再現性等の面からスリーブを潜像面にごく
近接させる必要が生ずる。
Although the true charge development method has the advantage of having the possibility of obtaining high image quality comparable to that of the two-component development method, it has been unable to be widely commercialized due to the following problems. In other words, in order to pre-charge the toner with one polarity, if the toner layer is thick, it is difficult to uniformly charge the entire toner.
It has been experimentally confirmed that it is necessary to make the toner layer thin, and in order to provide sufficient true charge for development, it is desirable to have a toner layer of 4 to 5 layers or less with a normal toner particle size of about 50μ or less. Therefore, when developing the toner in such a thin layer, it is necessary to place the sleeve very close to the latent image surface from the viewpoint of line image reproducibility.

導電性スリーブの表面に導電性ブラシを形成
し、ブラシの毛の柔軟性を利用して、常に毛先を
感光体表面に接触させるようにした現像装置が従
来より知られるいるが、このような現像装置では
ブラシのすべての毛が同じ電位になつているた
め、現像電極、例えばスリーブが感光体表面に極
く近接したのと同じ結果となり、ライン画像は良
く再現されるが、ライン画像に比べてベタ画像に
よる電界が急激に増大するので、適当な階調性が
得られなくなる。ベタ画像の階調性を得ようとす
ると、ライン画像の再現性が不足して、両画像を
適正に再現することは従来の装置では困難であつ
た。この困難を解消するにはスリーブ表面に誘電
体層を設けて、スリーブと感光体表面との間の実
質的な現像ギヤツプを拡げてベタ画像の電界を減
少させることが考えられる。この場合ライン画像
の電界はさほど変化しない。しかしスリーブの表
面に厚い誘電体層を設けると、トナーとの摩擦に
よる摩擦帯電その他によつて誘電体層表面に電荷
が蓄積し、これが現像むらとなつて現われること
が知られている。
A developing device is conventionally known in which a conductive brush is formed on the surface of a conductive sleeve, and the flexibility of the bristles of the brush is used to keep the tips of the bristles in constant contact with the surface of the photoreceptor. In the developing device, all the bristles of the brush are at the same potential, so the result is the same as if the developing electrode, such as the sleeve, were brought very close to the surface of the photoreceptor, and line images are well reproduced, but compared to line images. Since the electric field due to the solid image increases rapidly, appropriate gradation cannot be obtained. When trying to obtain the gradation of a solid image, the reproducibility of a line image is insufficient, and it has been difficult for conventional devices to properly reproduce both images. To overcome this difficulty, it is conceivable to provide a dielectric layer on the sleeve surface to widen the substantial development gap between the sleeve and the photoreceptor surface, thereby reducing the electric field of the solid image. In this case, the electric field of the line image does not change much. However, it is known that when a thick dielectric layer is provided on the surface of the sleeve, charges are accumulated on the surface of the dielectric layer due to frictional charging due to friction with the toner, etc., and this appears as uneven development.

一般に電子写真複写機で複写を行なう場合、写
真等のベタ画像では、背景や画像の階調がそのま
ま再現されることが望ましく、文字や線図のよう
なライン画像ではたとえば鉛筆で書いた薄い線で
も明瞭に再現することが望まれる。オリジナルの
濃度(O.D)とコピーの濃度(I.D)との関係を
みた場合、ベタ画像では第1図の曲線Sが示すよ
うに、地肌の汚れを防止するためO.Dのある値の
所から画像の再現をはじめ、ほぼ45°の傾斜で進
み飽和濃度になるようにし、ライン画像では第1
図の曲線Lで示すようにO.Dの小さい値のところ
から曲線が速やかに立上つて飽和濃度になるよう
にすることが要求される。図において縦軸はI.D、
横軸はO.Dを示す。
Generally, when copying with an electrophotographic copying machine, it is desirable for solid images such as photographs to reproduce the background and gradation of the image as they are, and for line images such as characters and line drawings, for example, thin lines drawn with a pencil. However, it is desirable to be able to reproduce it clearly. Looking at the relationship between the density of the original (OD) and the density of the copy (ID), in a solid image, as shown by curve S in Figure 1, the image is changed from a certain value of OD to prevent staining of the background. Starting with reproduction, the process proceeds at an angle of approximately 45° to reach saturation density, and in the case of line images, the first
As shown by curve L in the figure, it is required that the curve quickly rises from a small value of OD and reaches the saturation concentration. In the figure, the vertical axis is ID,
The horizontal axis shows OD.

さらに複写機の露光光学系では、画像の空間周
波数と原稿から感光体に伝達される画像階調の伝
達関数(MTF)との間に第2図の曲線が示すよ
うな関係が得られ、空間周波数が0本/mm、すな
わちベタ画像の場合にはMTFが1であり、原稿
の画像はそのままのコントラストで感光体に送ら
れるが、空間周波数が大きくなるほど、すなわち
線が細くなるほどMTFが低下し、感光体上の階
像はコントラストの弱い線になる傾向にあるの
で、原稿上で同一濃度の画像でも感光体上の潜像
濃度が変り、ベタ画像の方がライン画像に比べて
電位が高くなる。このことからライン画像の潜像
を濃く現像することが要求される。図の縦軸に
MTF、横軸に空間周波数本/mmを示す。
Furthermore, in the exposure optical system of a copying machine, a relationship is obtained between the spatial frequency of the image and the transfer function (MTF) of the image gradation transmitted from the original to the photoreceptor, as shown by the curve in Figure 2. When the frequency is 0 lines/mm, that is, a solid image, the MTF is 1, and the original image is sent to the photoreceptor with the same contrast.However, as the spatial frequency increases, that is, as the lines become thinner, the MTF decreases. , because the horizontal image on the photoreceptor tends to be a line with weak contrast, the density of the latent image on the photoreceptor changes even if the image has the same density on the original, and the potential of the solid image is higher than that of the line image. Become. For this reason, it is required to develop the latent image of the line image to be dense. on the vertical axis of the figure
MTF, the horizontal axis shows spatial frequency lines/mm.

第3図に示すように現像電極1例えば現像スリ
ーブと感光体2とを互に間隔PGで対置させた現
像領域で、現像電極1の電位を例えば200V、感
光体2の誘電率ε=3.0、厚さd=20μの条件を仮
定し、感光体表面に種々の電荷パターンを作つ
て、感光体表面での電界の大きさをコンピユータ
ーシミユレーシヨンで求めたところ第4図に示す
ような例が得られた。図で横軸に感光体・現像電
極間間隔PGを縦軸に現像電界V/mを示し、実
線で示す曲線は黒ベタ画像に関する曲線を、破線
で示す曲線はO.D=0.2空間周波数=5本/mmの
低コントラストライン画像に関する曲線を表わ
す。尚黒ベタ画像の帯電電位Vs=800V、地肌電
位Vs=200Vである。
As shown in FIG. 3, in a developing region where a developing electrode 1, for example a developing sleeve, and a photoreceptor 2 are opposed to each other at a distance P G , the potential of the developing electrode 1 is set to 200 V, for example, and the dielectric constant ε of the photoreceptor 2 is 3.0. , assuming the condition that the thickness d = 20μ, various charge patterns were created on the photoreceptor surface, and the magnitude of the electric field on the photoreceptor surface was determined by computer simulation, as shown in Figure 4. An example has been obtained. In the figure, the horizontal axis shows the distance P G between the photoreceptor and the developing electrode, and the vertical axis shows the developing electric field V/m. The solid line is the curve for a black solid image, and the broken line is the curve OD = 0.2 Spatial frequency = 5 Represents the curve for a low contrast line image of books/mm. The charged potential Vs of the black solid image is 800V, and the background potential Vs is 200V.

黒ベタ画像では、感光体の表面には広い面積に
一様に電荷が分布し、感光体と現像電極との間に
ほとんど平行な電場が形成されているので間隔
PGが小さくなると急激に現像電界が増すが、ラ
イン画像の場合、感光体の表面には局部的に電荷
が存在し、これから出た電気力線は現像電極に向
う成分のほかに感光体の電荷存在部分に隣接する
潜像の形成されない地肌部分に向う成分をかなり
有するため間隔PGの変化によつては電位はほと
んど変化しない。
In a solid black image, charges are uniformly distributed over a wide area on the surface of the photoreceptor, and an almost parallel electric field is formed between the photoreceptor and the developing electrode, so the distance is
As P G becomes smaller, the developing electric field increases rapidly. However, in the case of a line image, there is a local charge on the surface of the photoreceptor, and the lines of electric force emitted from this are not only directed toward the developing electrode, but also the electric field of the photoreceptor. Since there is a considerable component toward the background area where no latent image is formed, which is adjacent to the charged area, the potential hardly changes as the distance P G changes.

例えばO.D=0.2で空間周波数が5本/mmの低
コントラストのライン画像を黒ベタ画像の飽和濃
度の1/2程度で再現しようとすれば、感光体と現
像電極との間の間隔PGは第4図から0.2mm程度に
選ぶ必要がある。ところが前記のようにトナー層
が数十μの薄い層である場合にはこの条件ではト
ナー層表面と感光体との間には大きなギヤツプを
生じてしまう。
For example, if you are trying to reproduce a low-contrast line image with OD = 0.2 and a spatial frequency of 5 lines/mm at about 1/2 the saturation density of a solid black image, the distance P G between the photoreceptor and the developing electrode is From Figure 4, it is necessary to select a value of about 0.2 mm. However, when the toner layer is as thin as several tens of microns as described above, under these conditions a large gap will occur between the surface of the toner layer and the photoreceptor.

ここで感光体表面からの距離と電界の大きさの
変化との関連を求めると、第5図に示すような結
果が得られた。図で横軸に空間周波数本/mmを、
縦軸に現像電界V/mをとり、感光体表面からの
距離μをパラメータとする曲線群を示した。第5
図では感光体表面と現像電極との間の間隔PG
0.5mmの場合の例が示されている。曲線群から感
光体の極く近傍(例えば5μ)では、ベタ画像
(0本/mm)に対してライン画像(例えば5本/
mm)が強調される条件となるが、感光体表面から
の距離が大きくなるにしたがつてライン画像の電
界が急激に低下してしまう。したがつてトナー層
表面と感光体との間のギヤツプを大きくして、現
像を行なつた場合、ライン画像の再現性が非常に
悪くなつてしまう。
When the relationship between the distance from the photoreceptor surface and the change in electric field magnitude was determined, the results shown in FIG. 5 were obtained. In the figure, the horizontal axis represents the spatial frequency /mm,
A group of curves is shown in which the developing electric field V/m is plotted on the vertical axis and the distance μ from the photoreceptor surface is used as a parameter. Fifth
In the figure, the distance between the photoreceptor surface and the developing electrode P G =
An example is shown for 0.5mm. From the curve group, in the vicinity of the photoreceptor (for example, 5μ), the line image (for example, 5 lines/mm) is different from the solid image (0 lines/mm).
mm) is emphasized, but as the distance from the photoreceptor surface increases, the electric field of the line image decreases rapidly. Therefore, if development is performed with a large gap between the surface of the toner layer and the photoreceptor, the reproducibility of line images will be extremely poor.

上記の問題を解消する方法として第6図に示す
ように交流磁界や交流電界を作用させてトナーの
クラウドを発生させ、トナーを感光体表面に近づ
ける方法が考えられたが、このような方法で感光
体表面に到達するトナーは全体の一部である。し
たがつて上記の問題を完全に解決することはでき
なかつた。第6図において1はスリーブ、2は感
光体、3は磁極、4に交流電源、5はドクターブ
レードを示す。
One way to solve the above problem was to generate a toner cloud by applying an alternating current magnetic field or an alternating electric field to bring the toner closer to the surface of the photoreceptor, as shown in Figure 6. The toner that reaches the surface of the photoreceptor is only a part of the whole. Therefore, the above problem could not be completely solved. In FIG. 6, 1 is a sleeve, 2 is a photoreceptor, 3 is a magnetic pole, 4 is an AC power source, and 5 is a doctor blade.

又スリーブの表面に誘電体層を設け、トナー層
自体を感光体表面に近づけることが考えられ、上
記の問題をかなり解決したが、この誘電体層表面
がトナーとの摩擦等により帯電し、この帯電を除
電しきれないまま使うため現像むらを生ずること
になつた。このような誘電体層を完全に除電する
ことはかなり難かしく、装置が複雑化してしまう
という欠点があつた。
It has also been considered to provide a dielectric layer on the surface of the sleeve and bring the toner layer itself close to the photoreceptor surface, which has solved the above problem to a large extent, but the surface of this dielectric layer becomes charged due to friction with the toner, etc. This resulted in uneven development because it was used before the static charge had been completely removed. It is quite difficult to completely eliminate static electricity from such a dielectric layer, which has the drawback of complicating the device.

本発明は上記の欠点を解消し、真電荷を有する
トナーの薄層でベタ画像とライン画像とを適正に
再現することができる現像装置を提供することを
目的としている。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a developing device capable of solving the above-mentioned drawbacks and properly reproducing solid images and line images with a thin layer of toner having a true charge.

この目的を、本発明は、静電潜像担持体に隣接
して配置されたトナー担持体と、該トナー担持体
の上に前記潜像担持体との間隔よりも薄い層厚の
トナー層を形成するトナー層厚規制部材とを有
し、前記トナー担持体の上に担持したトナーによ
つて前記静電潜像担持体上に形成された静電潜像
を現像する現像装置において、前記トナー担持体
表面に設けられた誘電体層と、該誘電体層の少な
くとも表面に設けられ互いに絶縁状態に多数の微
細に分割され且つ夫々が電気的に絶縁されている
電極と、該電極に蓄積された電荷を除電するため
の除電手段とを設けたことを特徴とする現像装置
により達成した。
To achieve this objective, the present invention provides a toner carrier disposed adjacent to an electrostatic latent image carrier, and a toner layer having a thickness thinner than the distance between the latent image carrier and the toner carrier. a developing device for developing an electrostatic latent image formed on the electrostatic latent image carrier by the toner carried on the toner carrier; a dielectric layer provided on the surface of the carrier; an electrode provided on at least the surface of the dielectric layer and divided into a number of finely divided electrodes each electrically insulated from each other; This has been achieved by a developing device characterized in that it is equipped with a static eliminating means for eliminating the electric charges generated.

本発明により、スリーブの電極は現像時には完
全にフロート状態にあるため、現像電界にほとん
ど影響を与えず、スリーブに蓄積される電荷は容
易に除去できるので、前記の誘電体層を設ける場
合の除電不完全による現像むらが解消され、しか
もこのようなスリーブにより、スリーブ表面のト
ナー層をかなり感光体表面に近づけても、ベタ画
像の電界は誘電体層の厚みにより弱められ適正な
エツジ効果が得られるようになつた。
According to the present invention, since the electrode of the sleeve is completely floating during development, it has almost no effect on the developing electric field, and the charge accumulated on the sleeve can be easily removed. Uneven development due to imperfections is eliminated, and with this kind of sleeve, even if the toner layer on the sleeve surface is brought quite close to the photoconductor surface, the electric field of the solid image is weakened by the thickness of the dielectric layer, and an appropriate edge effect can be obtained. I started to be able to do it.

本発明の詳細を図に示す実施例により説明す
る。
The details of the present invention will be explained with reference to embodiments shown in the figures.

第7図及び第8図において、N極とS極を交互
に配置した多数極、例えば8極の磁石11を内包
するステンレス製の誘電性支持体12の表面に約
300μの厚さのエポキシ樹脂層13が誘電体層と
して粉体塗装により形成される。誘電体層の表面
に直径約100μの球状銅粉14がエポキシ系の接
着剤により接着される。球状銅粉14はフロート
電極を形成する。球状銅粉接着後誘電体層13の
外周面が研摩され球状銅粉の外面に露出する面が
ほぼ平面状に形成される。各銅粉による電極は互
に電気的に絶縁状態にある。誘電体層13の外周
面に接するように除電手段として兼用される磁性
ブレード18(例えば0.1mm厚SK材)を配置す
る。
In FIGS. 7 and 8, a stainless steel dielectric support 12 containing a multi-pole magnet 11, for example 8 poles, in which N poles and S poles are arranged alternately has a surface of a dielectric support 12 made of stainless steel.
A 300μ thick epoxy resin layer 13 is applied as a dielectric layer by powder coating. Spherical copper powder 14 having a diameter of about 100 μm is adhered to the surface of the dielectric layer using an epoxy adhesive. Spherical copper powder 14 forms a float electrode. After adhering the spherical copper powder, the outer circumferential surface of the dielectric layer 13 is polished so that the surface exposed to the outer surface of the spherical copper powder is substantially flat. The electrodes made of each copper powder are electrically insulated from each other. A magnetic blade 18 (for example, made of 0.1 mm thick SK material) which also serves as a static eliminating means is arranged so as to be in contact with the outer peripheral surface of the dielectric layer 13 .

第7図に示す現像スリーブ16に1mg/cm2程度
のトナー層15を磁性トナーにより形成する。こ
のときのトナー帯電量は約7μC/g程度である。
トナーの体積平均粒経は約7μ、真比重は1.8であ
る。
A toner layer 15 of about 1 mg/cm 2 is formed using magnetic toner on the developing sleeve 16 shown in FIG. The toner charge amount at this time is approximately 7 μC/g.
The volume average particle diameter of the toner is approximately 7μ, and the true specific gravity is 1.8.

上記のように形成した現像スリーブ16すなわ
ちトナー担持体に対しトナー層15の表面と感光
体すなわち静電潜像担持体の表面との間の間隔で
ある現像ギヤツプが0.05mmになるように感光体1
7を配置し、線速比1:1で現像を行なつたとこ
ろ適当なエツジ効果がある良好な画像が得られ
た。
With respect to the developing sleeve 16, that is, the toner carrier formed as described above, the photoconductor is adjusted so that the development gap, which is the distance between the surface of the toner layer 15 and the surface of the photoconductor, that is, the surface of the electrostatic latent image carrier, is 0.05 mm. 1
7 and development was carried out at a linear speed ratio of 1:1, a good image with a suitable edge effect was obtained.

第2実施例として感光体と現像スリーブ16の
トナー層15の表面の間の現像ギヤツプを0.15mm
に変え、感光体17と現像スリーブ16の線速比
を1:3で現像したところほぼ同等のエツジ効果
で更にSN比の良い画像が得られた。
As a second embodiment, the developing gap between the photoreceptor and the surface of the toner layer 15 of the developing sleeve 16 is set to 0.15 mm.
When the image was developed at a linear velocity ratio of 1:3 between the photoreceptor 17 and the developing sleeve 16, an image with almost the same edge effect and even better signal-to-noise ratio was obtained.

第2実施例では現像ギヤツプが大きくなつたた
め、感光体表面に近接するトナーの割合が少なく
なるが、これを現像スリーブの線速比を高めるこ
とにより補う。すなわちスリーブ表面でのトナー
層のむらが画像に現われにくくすることにより画
質が向上するものと考えられる。
In the second embodiment, since the developing gap becomes large, the proportion of toner close to the surface of the photoreceptor decreases, but this is compensated for by increasing the linear velocity ratio of the developing sleeve. That is, it is thought that the image quality is improved by making it difficult for unevenness of the toner layer on the sleeve surface to appear in the image.

最初の実施例において誘電層の厚さをさらに大
にして感光体スリーブ線速比を大きくしても同様
な効果が得られる。
Similar effects can be obtained by increasing the thickness of the dielectric layer in the first embodiment and increasing the linear velocity ratio of the photoreceptor sleeve.

現像ギヤツプを更に小さくすればスリーブ表面
の電極がライン画像の電界を強調するような効果
が得られるようになる。
If the developing gap is made even smaller, the electrodes on the sleeve surface will have the effect of emphasizing the electric field of the line image.

第9図及び第10図に示すようにステンレス製
非磁性スリーブ12′の周面に直径約100μ程度の
球状鉄粉等の磁性体19をエポキシ系接着剤20
により均一に分散して接着し外周面を研摩して形
成した現像スリーブ16′を用いることもできる。
現像スリーブ16′の表面に1mg/cm2程度の薄い
磁性トナーの層15′を形成して感光体17に現
像ギヤツプ1.2mmで対向配置し、感光体と現像ス
リーブの線速比1:2で現像を行なつたところベ
タ画像、ライン画像ともに良好な画像の再現を行
なつた。尚トナーの帯電量は約10μC/g、体積
平均粒経約7μ、真比重は1.8であつた。このよう
に現像効率が大幅に向上するという効果が得られ
たのは第10図に示すように表面に磁性体19を
分散してあり、磁力線がこの磁性体に集中し、ス
リーブ表面で不均一な磁場を形成するため、磁石
11の回転により磁性体間をトナーが移動する場
合に、磁性トナー15がスリーブから反発される
ような力を受け、トナーが跳躍することにより、
感光体表面に到達するトナーの量が増加すること
によるものと考えられる。
As shown in FIGS. 9 and 10, a magnetic material 19 such as spherical iron powder with a diameter of about 100 μm is applied to the circumferential surface of a stainless steel non-magnetic sleeve 12' using an epoxy adhesive 20.
It is also possible to use a developing sleeve 16' formed by uniformly dispersing and adhering and polishing the outer peripheral surface.
A thin layer 15' of magnetic toner of about 1 mg/cm 2 is formed on the surface of the developing sleeve 16', and is placed facing the photoreceptor 17 with a developing gap of 1.2 mm, with a linear velocity ratio of 1:2 between the photoreceptor and the developing sleeve. When developed, both the solid image and the line image were well reproduced. The toner had a charge amount of about 10 μC/g, a volume average particle size of about 7 μ, and a true specific gravity of 1.8. The reason why the effect of greatly improving the developing efficiency was obtained is that the magnetic material 19 is dispersed on the surface as shown in FIG. In order to form a magnetic field, when the toner moves between the magnetic bodies due to the rotation of the magnet 11, the magnetic toner 15 receives a repelling force from the sleeve, and the toner jumps.
This is thought to be due to an increase in the amount of toner reaching the surface of the photoreceptor.

第9図に示す現像スリーブによる上記の例の場
合と同じ条件でステンレス製スリーブのみよりな
る現像スリーブを用いた場合と比較すると、この
場合はベタ画像はある程度再現できたがライン幅
0.1mm程度のライン画像はほとんど再現されず、
第9図の現像スリーブが優れた効果を示すことが
明白になつた。
When compared with the case where a developing sleeve made of only a stainless steel sleeve was used under the same conditions as in the above example using the developing sleeve shown in Fig. 9, in this case a solid image could be reproduced to some extent, but the line width
Line images of about 0.1mm are hardly reproduced,
It has become clear that the developing sleeve shown in FIG. 9 exhibits excellent effects.

第7図の誘電体層13の上に第10図の磁性体
19と接着剤20よりなる磁性体パターンを形成
するようにすれば本発明者等がすでに提案してい
る島状フロート電極の効果も得られる。
By forming a magnetic material pattern made of the magnetic material 19 and adhesive 20 in FIG. 10 on the dielectric layer 13 shown in FIG. 7, the effect of the island-shaped float electrode already proposed by the present inventors You can also get

本発明によるベタ画像とライン画像の両方を適
正に再現することが可能になつた。
According to the present invention, it has become possible to properly reproduce both solid images and line images.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ベタ画像とライン画像の画像濃度特性曲
線を示す図、第2図は複写機の露光光学系の画像
の空間周波数に対する伝達関数の変化を示す図、
第3図は現像領域を略図で示す説明図、第4図は
黒ベタ画像と低コントラストライン画像について
の感光体と現像電極間の間隔と感光体表面の現像
電界の大きさとの関係を示す図、第5図は画像の
空間周波数と現像電界との関係を示す図、第6図
は従来の現像装置の一例の説明略図、第7図は本
発明に係る現像スリーブの説明図、第8図は第7
図の部分拡大図、第9図は本発明の別の実施例の
説明図、第10図は第9図う部分拡大図である。 11……磁石、12……導電性支持体、13…
…誘電体層、14……電極、15……トナー、1
6,16′……トナー担持体、17……静電潜像
担持体、19……磁性体、20……接着剤。
Fig. 1 is a diagram showing the image density characteristic curves of a solid image and a line image, Fig. 2 is a diagram showing changes in the transfer function with respect to the spatial frequency of the image of the exposure optical system of the copying machine,
FIG. 3 is an explanatory diagram schematically showing the developing area, and FIG. 4 is a diagram showing the relationship between the distance between the photoreceptor and the developing electrode and the magnitude of the developing electric field on the surface of the photoreceptor for black solid images and low contrast line images. , FIG. 5 is a diagram showing the relationship between the spatial frequency of an image and a developing electric field, FIG. 6 is a schematic illustration of an example of a conventional developing device, FIG. 7 is an explanatory diagram of a developing sleeve according to the present invention, and FIG. 8 is the seventh
FIG. 9 is an explanatory diagram of another embodiment of the present invention, and FIG. 10 is a partially enlarged diagram of FIG. 11... Magnet, 12... Conductive support, 13...
...Dielectric layer, 14... Electrode, 15... Toner, 1
6, 16'... Toner carrier, 17... Electrostatic latent image carrier, 19... Magnetic material, 20... Adhesive.

Claims (1)

【特許請求の範囲】 1 静電潜像担持体に隣接して配置されたトナー
担持体と、該トナー担持体の上に前記潜像担持体
との間隔よりも薄い層厚のトナー層を形成するト
ナー層厚規制部材とを有し、前記トナー担持体の
上に担持したトナーによつて前記静電潜像担持体
上に形成された静電潜像を現像する現像装置にお
いて、 前記トナー担持体表面に設けられた誘電体層
と、該誘電体層の少なくとも表面に設けられ互い
に絶縁状態に多数の微細に分割され且つ夫々が電
気的に絶縁されている電極と、該電極に蓄積され
た電荷を除電するための除電手段とを設けたこと
を特徴とする現像装置。
[Scope of Claims] 1. A toner carrier disposed adjacent to the electrostatic latent image carrier, and a toner layer formed on the toner carrier with a thickness thinner than the distance between the latent image carrier and the latent image carrier. a toner layer thickness regulating member for developing an electrostatic latent image formed on the electrostatic latent image carrier by the toner carried on the toner carrier; A dielectric layer provided on the surface of the body; an electrode provided on at least the surface of the dielectric layer and divided into a number of finely divided electrodes each electrically insulated from each other; A developing device characterized by being provided with a static eliminating means for eliminating electric charge.
JP19559281A 1981-12-07 1981-12-07 Developing device Granted JPS5897071A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19559281A JPS5897071A (en) 1981-12-07 1981-12-07 Developing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19559281A JPS5897071A (en) 1981-12-07 1981-12-07 Developing device

Publications (2)

Publication Number Publication Date
JPS5897071A JPS5897071A (en) 1983-06-09
JPH0415949B2 true JPH0415949B2 (en) 1992-03-19

Family

ID=16343705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19559281A Granted JPS5897071A (en) 1981-12-07 1981-12-07 Developing device

Country Status (1)

Country Link
JP (1) JPS5897071A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH077227B2 (en) * 1983-11-28 1995-01-30 株式会社リコー Developer carrier
JP2005173485A (en) 2003-12-15 2005-06-30 Canon Inc Developing device, process cartridge and image forming apparatus
JP4510493B2 (en) 2004-03-29 2010-07-21 キヤノン株式会社 Image forming apparatus
JP4785407B2 (en) 2005-04-18 2011-10-05 キヤノン株式会社 Developing device, process cartridge, and image forming apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5316441B2 (en) * 1971-12-28 1978-06-01
JPS5498248A (en) * 1978-01-20 1979-08-03 Ricoh Co Ltd Development apparatus for static latent image
JPS56125753A (en) * 1980-03-07 1981-10-02 Canon Inc Developing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS572996Y2 (en) * 1976-07-22 1982-01-19

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5316441B2 (en) * 1971-12-28 1978-06-01
JPS5498248A (en) * 1978-01-20 1979-08-03 Ricoh Co Ltd Development apparatus for static latent image
JPS56125753A (en) * 1980-03-07 1981-10-02 Canon Inc Developing method

Also Published As

Publication number Publication date
JPS5897071A (en) 1983-06-09

Similar Documents

Publication Publication Date Title
US4342822A (en) Method for image development using electric bias
JPH0353632B2 (en)
GB2045114A (en) Magnetic brush
US4662311A (en) Developing device
JPH0473795B2 (en)
JPH0415949B2 (en)
US4657374A (en) Development system for photoreceptor having surface potential and a large amount of charge
JPS6255147B2 (en)
JPS58144863A (en) Magnetic brush developing apparatus
JP3366968B2 (en) Developing device
JPH0259466B2 (en)
US4633808A (en) Developing process for electrophotography using a two-component developer
JP3080423B2 (en) One-component developing device
JPH0310116B2 (en)
JPS5926025B2 (en) electrostatic recording device
JPH1124388A (en) Developing device
JPH0132505B2 (en)
JP2979801B2 (en) Electrophotographic photoreceptor
JPH0528378B2 (en)
JPH0374391B2 (en)
JPS641021B2 (en)
JPS60102670A (en) Method and apparatus for developing toner image
JPS5921550B2 (en) How to develop an electrostatic latent image
JPS58152265A (en) Image recorder
JPS61219069A (en) Developing device