JPS5896997A - Heat accumulating material - Google Patents

Heat accumulating material

Info

Publication number
JPS5896997A
JPS5896997A JP19590281A JP19590281A JPS5896997A JP S5896997 A JPS5896997 A JP S5896997A JP 19590281 A JP19590281 A JP 19590281A JP 19590281 A JP19590281 A JP 19590281A JP S5896997 A JPS5896997 A JP S5896997A
Authority
JP
Japan
Prior art keywords
heat storage
weight
cacl2
heat
supercooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19590281A
Other languages
Japanese (ja)
Inventor
Fumiko Kimura
木村 文子
Takahiro Wada
隆博 和田
Ryoichi Yamamoto
山本 「れい」市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP19590281A priority Critical patent/JPS5896997A/en
Publication of JPS5896997A publication Critical patent/JPS5896997A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • C09K5/063Materials absorbing or liberating heat during crystallisation; Heat storage materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)

Abstract

PURPOSE:To prevent the undercooling from occuring and increase the accumulating heat quantity per unit volume or weight by a method wherein crystal nucleus forming agent is added to a CaCl2-H2O system. CONSTITUTION:BaTiS3, BaZrS3, BaHfS3, BaVS3, BaNaS3 or BaTaS3 is added to the CaCl2-H2O system as crystal nucleus forming agent of CaCl2-H2O. Not exceeding 40 parts of crystal nucleus forming agent 10 100 parts of CaCl2-H2O system, by weight, is preferable, because the addition of too much crystal nucleus forming agent brings the decrease of accumulating heat quantity of the system as a whole.

Description

【発明の詳細な説明】 本発明はCaC12・6H20を生体とする蓄熱材に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat storage material using CaC12.6H20 as a living body.

蓄熱材には、物質の顕熱を利用したものと潜熱を利用し
たものとが知られている。潜熱を利用した黄熱材は、顕
熱を利用した蓄熱材と比較して、単位重量当り、または
単位体積当りの蓄熱量が犬きく、必要量の熱を蓄熱して
おくのに少量でよく、そのため蓄熱装置の小型化が可能
となる。また、潜熱を利用した蓄熱材は転移点において
一定温度で蓄熱と放熱が可能である。
There are known heat storage materials that utilize the sensible heat of substances and those that utilize latent heat. Compared to heat storage materials that use sensible heat, yellow heat materials that use latent heat can store more heat per unit weight or unit volume, and only a small amount is required to store the required amount of heat. Therefore, it is possible to downsize the heat storage device. Furthermore, heat storage materials that utilize latent heat can store and release heat at a constant temperature at the transition point.

従来からCaC12・6H20は融点的29℃、融解潜
熱43 cal /f と大きく、しかも融液はほぼ中
性で腐食性も少なく、安価なことなどから蓄熱材として
注目されてきた。しかし、CaC12は一度融解すると
、非常に過冷却状態はなりやすく、その融液は0℃に冷
却しても凝固しないことがある。
Conventionally, CaC12.6H20 has attracted attention as a heat storage material because it has a large melting point of 29° C. and a latent heat of fusion of 43 cal/f, and its melt is almost neutral, has little corrosivity, and is inexpensive. However, once CaC12 is melted, it is very likely to become supercooled, and the melt may not solidify even if it is cooled to 0°C.

過冷却状態は、凝固点まで冷、却されても融解潜熱を放
出せず、その温度以下に冷却されてしまう現象であるか
ら、融解潜熱を利用した蓄熱材にとって過冷却状態にち
りやすいということは致命的欠点である。
A supercooled state is a phenomenon in which the latent heat of fusion is not released even if the material is cooled to the freezing point, and the material is cooled below that temperature.This means that heat storage materials that utilize the latent heat of fusion are susceptible to dust in the supercooled state. This is a fatal flaw.

本発明は、CaC12とH2Oとよりなる系に、B a
T L S3、B aZ r S a、B aHf S
 3、B aVS 3、B aNbS3およびB a 
T a S 3よりなる化合物群から選択された少なく
とも一つの結晶核形成材を添加含有させることで、過冷
却現象を防止し、単位体積尚り、または単位重量当りの
蓄熱量の大きな蓄熱材を提供しようとするものである。
In the present invention, B a
T L S3, B aZ r S a, B aHf S
3, B aVS 3, B aNbS3 and B a
By adding and containing at least one crystal nucleation material selected from the compound group consisting of T a S 3, supercooling phenomenon can be prevented and a heat storage material with a large amount of heat storage per unit volume or unit weight can be created. This is what we are trying to provide.

ところでCaC12・6H20はCaC1250−66
重量%とH2O49、34重量%とからなり、この組成
においては過冷却がおこらなければ約29℃で融解と凝
固がおこる。その際融解潜熱は43cal/yである。
By the way, CaC12.6H20 is CaC1250-66
% by weight and 49% by weight of H2O, and in this composition, melting and solidification occur at about 29° C. unless supercooling occurs. In this case, the latent heat of fusion is 43 cal/y.

1だ、CaC1246−5重量%とH2O53,5重量
%からなる系は、約28℃で均一なCaC12水溶液と
なる。この均一な水溶液を28℃以下に冷却すると、過
冷却がおこらなければ、CaC12・6)I20 が結
晶化しはじめ、冷却されるに従ってCaC12・6H2
0の比率が増加する。約20℃まそ冷却されたならば、
この系の全質量の約60重量%がCaCl2− eH2
0となり、残り60重量%がCaC12水溶液となる。
1. A system consisting of 5% by weight of CaC1246 and 53.5% by weight of H2O becomes a homogeneous aqueous solution of CaC12 at about 28°C. When this homogeneous aqueous solution is cooled to below 28°C, unless supercooling occurs, CaC12.6)I20 begins to crystallize, and as it cools, CaC12.6H2
The ratio of 0 increases. If it is cooled to about 20℃,
Approximately 60% by weight of the total mass of this system is CaCl2-eH2
0, and the remaining 60% by weight becomes a CaC12 aqueous solution.

そのため、CaC1246,5重量%とH2O53,5
重量%の系は28℃以上の温度から201:まで冷却さ
れると過冷却がほとんどなく、CaC12・6H2oが
うまく結晶化したとすると回収できる潜熱量は、22 
cal / !lとなる。
Therefore, CaC1246.5% by weight and H2O53.5
When the system is cooled from a temperature of 28°C or higher to 201°C, there is almost no supercooling, and if CaC12.6H2o is successfully crystallized, the amount of latent heat that can be recovered is 22°C.
cal/! It becomes l.

また、CaCl2H2O系の水の比率が高くなるととも
に、蓄熱材の有する比熱が増加し、顕熱による蓄熱量が
大きくなる。つまシ、CaC12と馬。
Furthermore, as the proportion of CaCl2H2O-based water increases, the specific heat of the heat storage material increases, and the amount of heat storage due to sensible heat increases. Tsumashi, CaC12 and horses.

との比率をコントロールすることで、潜熱と顕熱による
蓄熱を同時に行うことができる。しかし、あ甘りCaC
12濃度の低い系を用いると、潜熱を利〆 用した蓄熱材の特徴令失なわれてし甘う。そのため、C
aC1246−5重量%以上含有するC aC12−H
2O系を用いることが望ましい。
By controlling the ratio of heat to heat, latent heat and sensible heat can be stored at the same time. However, sweet CaC
If a system with a low concentration of 12 is used, the characteristics of the heat storage material that utilizes latent heat will be lost. Therefore, C
CaC12-H containing 5% by weight or more of aC1246-H
It is desirable to use 2O type.

逆に、CaCl2−H2O系において、CaC12の含
有量を増加させて行くと、CaC1250−66重量%
以上含有する系では、うまく過冷却が破れたとしても系
全体がCaC12・6H20とならず、一部CaCl2
・4H20のまま残る。CaC12を55重量%以上含
むCaC12H2O系においては、単位質量当りの潜熱
量が22cal/y以下に゛なるため、実用的でなくな
る。そのため、実際に用いるCaCl2−H2゜系は、
CaC12を55重量%以下の範囲で含有するのが望ま
しい。
Conversely, in the CaCl2-H2O system, when the content of CaC12 is increased, CaC1250-66% by weight
In a system containing the above, even if supercooling is successfully broken, the entire system will not become CaCl2.6H20, and some CaCl2
・It will remain as 4H20. In a CaC12H2O system containing 55% by weight or more of CaC12, the amount of latent heat per unit mass is less than 22 cal/y, making it impractical. Therefore, the CaCl2-H2° system actually used is
It is desirable to contain CaC12 in a range of 55% by weight or less.

なお、結晶核形成材としてのB a T iSs、Ba
Zr53、B aHf S 3、B aVSs、B a
l’i’bSa ならびにB aT a Ssは、Ca
Cl2−H2O系において、CaC12−eH,,01
00重量部に対して、それぞれ0.1重量部程度添加含
有させるだけで効果を示し、さらに、それ以上加えても
十分効果を有する。
In addition, B a T iSs, Ba as a crystal nucleation material
Zr53, B aHf S 3, B aVSs, B a
l'i'bSa and B aT a Ss are Ca
In the Cl2-H2O system, CaC12-eH,,01
It is effective when added in an amount of about 0.1 part by weight to 0.00 parts by weight, and even if more than 0.0 parts by weight is added, the effect is sufficient.

しかしながら、実際に本発明の蓄熱材を空調用蓄熱装置
等で使用する場合、100〜1000に7種度用いるの
が普通である。そのような場合、CaC12・6H20
を融解させても均一な水溶液とはならず、上部にはCa
C12の低濃度溶液が存在し、下部には結晶核形成材の
沈澱物、およびCaC12と結晶核形成材との高濃度の
液体が存在する。そのため、均一な溶液中に加える結晶
核形成材の最少含有量に比べてはるかに少量でも、結晶
核形成材はCaC12溶液中に溶解せず、十分な効果を
有する。
However, when the heat storage material of the present invention is actually used in a heat storage device for air conditioning, etc., it is common to use 7 types out of 100 to 1000. In such cases, CaC12・6H20
Even if it is melted, it does not become a homogeneous aqueous solution, and Ca
There is a low concentration solution of C12, and below there is a precipitate of nucleating material and a liquid having a high concentration of CaC12 and nucleating material. Therefore, even if the amount of crystal nucleation material added to a homogeneous solution is much smaller than the minimum content, the crystal nucleation material does not dissolve in the CaC12 solution and has a sufficient effect.

そのため、結晶核形成に必要な前記結晶核形成材の最少
量つまり混合量の下限は、用いるCaC12−)o系の
量、蓄熱材を収納する容器の形状、その使用状態に応じ
てそれぞれについて適宜決めてやればよい。
Therefore, the minimum amount of the crystal nucleation material necessary for crystal nucleation, that is, the lower limit of the mixing amount, is determined as appropriate depending on the amount of CaC12-)o used, the shape of the container housing the heat storage material, and the usage condition. All you have to do is decide.

しかし、結晶核形成材をあまり大量に加えることは、蓄
熱材として好ましいことではない。というのは、全体か
らみるとその蓄熱量を減少させることになるからである
。そのため実用的にはCaC12H2O系10o重量部
に対して、結晶核形成材は40重量部を超えないことが
望ましい。
However, adding too much crystal nucleation material is not preferable as a heat storage material. This is because the amount of heat stored as a whole will be reduced. Therefore, in practical terms, it is desirable that the amount of the crystal nucleating agent does not exceed 40 parts by weight per 10 parts by weight of the CaC12H2O system.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

実施例1 CaC12・6H201000yと BaTi5s  
1−OF +CaCl2・6H20100oyとBaZ
r531−Oy。
Example 1 CaC12・6H201000y and BaTi5s
1-OF +CaCl2・6H20100oy and BaZ
r531-Oy.

CaCl2* 6H201oooyとB aHf S 
s 1− Oj’ 。
CaCl2* 6H201oooy and B aHf S
s 1- Oj'.

CaCl2 ・6H20100OFとBa■31・oy
CaCl2 ・6H20100OF and Ba■31・oy
.

CaCl2− eH,,01ooo y 、!: Ba
NbS31.oy およびCaCl266H20100
0fとBaTa531 、Oy  をそれぞれ内径10
C)+m++、長さ1,00■の円筒形容器に収容し、
熱電対挿入管を付した栓で密封した。
CaCl2- eH,,01ooo y,! : Ba
NbS31. oy and CaCl266H20100
0f, BaTa531, Oy, each with an inner diameter of 10
C)+m++, housed in a cylindrical container with a length of 1,00 cm,
It was sealed with a stopper equipped with a thermocouple insertion tube.

これら6種の容器をウォーターバスに入れ40℃と1o
℃の間で加熱と冷却を連続して行なった。
Place these six types of containers in a water bath at 40°C and 1o
Heating and cooling were performed continuously between .

この6種類の本実施例の蓄熱材はほとんど過冷却を示さ
ず、安定して融解および凝固を繰り返した。
The six types of heat storage materials of this example showed almost no supercooling and repeatedly melted and solidified stably.

連続して1ooO回加熱と冷却を繰り返した際の過冷却
度つ1り凝固温度と過冷却の破れる温度との差の変化を
第1図から第6図に示す。第1図はBaTa53、第2
図はBaZ r S3、第3図はBaHf S 3、第
4図はB aVS3、第5図はBaNb5s 、第6図
はBaTa53をそれぞれ添加した際の過冷却度の変化
の様子を示した図である。図の横軸に加熱と冷却の繰り
返し回数を対数目盛で示し、縦軸に過冷却度を示した。
FIGS. 1 to 6 show changes in the difference between the degree of supercooling, the solidification temperature, and the temperature at which supercooling breaks when heating and cooling are repeated 100 times in succession. Figure 1 shows BaTa53,
The figure shows changes in the degree of supercooling when BaZrS3 is added, Figure 3 is BaHfS3, Figure 4 is BaVS3, Figure 5 is BaNb5s, and Figure 6 is BaTa53. be. The horizontal axis of the figure shows the number of repetitions of heating and cooling on a logarithmic scale, and the vertical axis shows the degree of supercooling.

これらの図より、本実施例の6種の蓄熱材は1000回
加熱冷却を繰り返しても、その過冷却度はそれぞれ3〜
4℃の範囲で安定しており、その機能が劣化せずに有効
に作用しているのがわかる。本実施例の蓄熱材の融解潜
熱はそれぞれ43cal/f/であり、蓄熱材として十
分な蓄熱量を有していた。
From these figures, even if the six types of heat storage materials of this example are heated and cooled 1000 times, the degree of supercooling is 3 to 3.
It can be seen that it is stable within a temperature range of 4 degrees Celsius, and its functions are working effectively without deterioration. The latent heat of fusion of the heat storage materials of this example was 43 cal/f/, and the amount of heat storage was sufficient as a heat storage material.

実施例2 CaC12,eH20750yとB aT 1S325
0りpcac12o6H2o1ooyとBaZr5s 
40f 。
Example 2 CaC12, eH20750y and B aT 1S325
0ripcac12o6H2o1ooy and BaZr5s
40f.

CaCl2 e6H20960yとBaHf53−50
F。
CaCl2 e6H20960y and BaHf53-50
F.

CaC12−eH2075oyとBaVSs  250
y。
CaC12-eH2075oy and BaVSs 250
y.

CaCl2・6H2o100yとBaNb5s 40y
CaCl2・6H2o100y and BaNb5s 40y
.

CaCl211鼾(,09tsoy とB aT aS
s  50 y  を実施例1と同様にそれぞれ内径1
00++m、長さ100叫の円筒形容器に収容し、熱電
対挿入管を付した栓で密封した。これら6種の容器をウ
ォーターバスに入れて、40℃と10℃の間を加熱と冷
却を連続して行なった。これら6種の蓄熱材はほとんど
過冷却を示さず、安定して融解および凝固を繰り返した
CaCl211 snoring (,09tsoy and B aT aS
s 50 y is the inner diameter of 1 as in Example 1.
The container was placed in a cylindrical container with a length of 100 mm and a length of 100 mm, and was sealed with a stopper equipped with a thermocouple insertion tube. These six types of containers were placed in a water bath and heated and cooled continuously between 40°C and 10°C. These six types of heat storage materials showed almost no supercooling and repeatedly melted and solidified stably.

第7図から第12図にそれぞれ連続して1000回の加
熱と冷却を繰り返した際の過冷却度の変fpの様子を示
す。第7図はBaTiS3、第8図はBaZr53、g
g 9図ij B aHf Ss、第10図はB aV
Sa、第11図はBaNb5   第12図はBaTa
53を各々11 添加した際の図である。これらの図よシ、本実施例の蓄
熱材は1000回の加熱冷却を繰シ返しても過冷却度が
3〜4℃の範囲で安定しており、その過冷却防止機能が
有効に作用しているのがわかる。本実施例の蓄熱材の融
解潜熱は、BaTiS3を添加した場合32 cal 
/ jE 、 BaZr53を添加した場合30 ca
l / y、 BaHf5sを添加した場合40cal
/p、B aVSsを添加した場合32cal/y。
FIGS. 7 to 12 each show how the degree of supercooling changes fp when heating and cooling are repeated 1000 times. Figure 7 shows BaTiS3, Figure 8 shows BaZr53, g
g Figure 9 ij B aHf Ss, Figure 10 B aV
Sa, Figure 11 is BaNb5 Figure 12 is BaTa
FIG. These figures show that the degree of supercooling of the heat storage material of this example remains stable within the range of 3 to 4°C even after repeated heating and cooling 1000 times, and its supercooling prevention function works effectively. I can see that it is. The latent heat of fusion of the heat storage material of this example is 32 cal when BaTiS3 is added.
/jE, 30 ca when BaZr53 is added
l/y, 40 cal when adding BaHf5s
/p, 32 cal/y when BaVSs is added.

B aNb Ssを添加した場合30 cal / f
 5BaTaS3を添加した場合40cal/、Fであ
り、いずれも蓄熱材として十分な蓄熱量を有している。
30 cal/f when adding B aNb Ss
When 5BaTaS3 is added, the amount is 40 cal/F, and both have a sufficient amount of heat storage as a heat storage material.

実施例3 CaC12−eH201000y、 BaTiS31 
、OFおよびBaVSs 1−OFを内径100諭、長
さ100胸の円筒形容器に収容し、熱電対挿入管を付し
た栓で密封した。その容器をウォーターバスに入れ40
nと10℃の間を加熱と冷却を連続して行なった。この
蓄熱材は、はとんど過冷却を示さず、安定して融解およ
び凝固を繰り返−した。
Example 3 CaC12-eH201000y, BaTiS31
, OF, and BaVSs 1-OF were placed in a cylindrical container with an inner diameter of 100 mm and a length of 100 mm, and the container was sealed with a stopper equipped with a thermocouple insertion tube. Put the container in a water bath for 40 minutes.
Heating and cooling were performed continuously between n and 10°C. This heat storage material rarely showed supercooling and repeatedly melted and solidified stably.

第13図に、連続して1ooo回の加熱冷却を繰り返し
た際の過冷却度の変化の様子を示す。この図よシ、本実
施例の蓄熱材は、1ooo回の加熱冷却を繰り返しても
過冷却度が3〜4℃の範囲で安定しており、その過冷却
防止機能が劣化せず有効に作用しているのがわかる。本
実施例の蓄熱材の融解潜熱は43 cal / 7であ
り、蓄熱材として十分な蓄熱量を有している。
FIG. 13 shows how the degree of supercooling changes when heating and cooling are repeated 100 times in succession. As shown in this figure, even if the heat storage material of this example is heated and cooled 100 times, the degree of supercooling remains stable in the range of 3 to 4 degrees Celsius, and its supercooling prevention function does not deteriorate and works effectively. I can see that you are doing it. The latent heat of fusion of the heat storage material of this example is 43 cal/7, and has a sufficient amount of heat storage as a heat storage material.

比較例 CaCl2・6H2o1000yを内径1001rr1
n1長さ100Mnの円筒形容器に収容し、熱電対挿入
管を付した栓で密封した。その容器をウォーターバスに
入れ40℃で融解し、IC)C’!で冷却した。
Comparative example CaCl2・6H2o1000y with inner diameter 1001rr1
It was placed in a cylindrical container with n1 length of 100 Mn and sealed with a stopper equipped with a thermocouple insertion tube. Place the container in a water bath and melt at 40°C. IC)C'! It was cooled down.

その融液は凝固点29℃になっても凝固せず、さらに1
0’C4で冷却しても凝固しなかった。
The melt does not solidify even when its freezing point reaches 29°C, and
It did not solidify even after cooling at 0'C4.

これより、結晶核形成材を添加しないCaC12−H2
o組成は、蓄熱材として不適当であることが明白である
From this, CaC12-H2 without adding crystal nucleating agent
It is clear that the o composition is unsuitable as a heat storage material.

以上、実施例で示したように、本発明の蓄熱材はCaC
l2−H2O系にCaC12−H2oノ結晶核形成材と
して、B a T iSa、BaHf53 、 BaH
f5s 、  BaVSs。
As shown in the examples above, the heat storage material of the present invention is CaC
BaTiSa, BaHf53, BaH as a CaC12-H2o crystal nucleating material in the l2-H2O system.
f5s, BaVSs.

B aNa S a、B a T a S3を加えたぬ
金物であるから、安価で安定したi熱と再生が行なえる
ものである。
Since it is a metal product that does not contain B aNa S a or B a Ta S3, stable i-heat and regeneration can be performed at low cost.

実施例で示したように結晶核形成材は単独で使用しても
、あるいは複数種を組み合わせて使用しても同等の効果
を得ることができる。
As shown in the examples, the same effect can be obtained even if the crystal nucleation materials are used alone or in combination.

【図面の簡単な説明】[Brief explanation of drawings]

第1図から第13図は、本発明の実施例の蓄熱材の1o
Oo回加熱と冷却を繰り返した際の過冷却度の変化の様
子を示すものである。 代理人の氏名 弁理士 中 尾 敏 男 はが1名第1
図 !蒼す込Ln数(@)゛ 第2図 識豪す幻1t、mi獣(曽) 第3@ 第4図 8蒙す募ξ</l」暖(@) *5m 第6図 癩渠ν鑓し画数(前ン 第7fl!J 第8図 柔東り返しl敢(ピ) 第9図 第10図 /(/   、噴良す遂LlαA寥と(@ン憾 咳食敬
郷E
FIGS. 1 to 13 show 1o of heat storage materials according to embodiments of the present invention.
It shows how the degree of supercooling changes when heating and cooling are repeated Oo times. Name of agent: Patent attorney Toshio Nakao (1st person)
figure! Blue sum Ln number (@) ゛ 2nd illustration phantom 1t, mi beast (Zeng) 3rd @ Fig. 4 8 recruitment ξ Number of strokes (before the seventh fl!

Claims (1)

【特許請求の範囲】 (11CaCl2と町ρとよりなる系に、B a T 
iS s、B a Z r S s、B a Hf S
 s、B aVS 3、B aNb Sa、およびBa
Ta53よりなる化合物群から選択された少なくとも一
つの結晶核形成材を添加含有させてなることを特徴とす
る蓄熱材。 (2JCa C12とH2Oとよりなる系においで、C
aCl2が46.5〜55重量%含まれていることを特
徴とする特許請求の範囲第1項記載の蓄熱材。 (3)  C&C12とH2Oとよりなる系1oO重量
部に対する結晶核形成材の配合量が40重量部を超えな
いことを特徴とする特許請求の範囲第1項記載の蓄熱材
[Claims] (In the system consisting of 11CaCl2 and town ρ, B a T
iS s, B a Z r S s, B a Hf S
s, BaVS 3, BaNb Sa, and Ba
A heat storage material characterized in that it contains at least one crystal nucleation material selected from the group of compounds consisting of Ta53. (2JCa In a system consisting of C12 and H2O, C
The heat storage material according to claim 1, characterized in that aCl2 is contained in an amount of 46.5 to 55% by weight. (3) The heat storage material according to claim 1, characterized in that the amount of the crystal nucleating agent added to 100 parts by weight of the system consisting of C&C12 and H2O does not exceed 40 parts by weight.
JP19590281A 1981-12-04 1981-12-04 Heat accumulating material Pending JPS5896997A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19590281A JPS5896997A (en) 1981-12-04 1981-12-04 Heat accumulating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19590281A JPS5896997A (en) 1981-12-04 1981-12-04 Heat accumulating material

Publications (1)

Publication Number Publication Date
JPS5896997A true JPS5896997A (en) 1983-06-09

Family

ID=16348882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19590281A Pending JPS5896997A (en) 1981-12-04 1981-12-04 Heat accumulating material

Country Status (1)

Country Link
JP (1) JPS5896997A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112978795A (en) * 2021-03-02 2021-06-18 绍兴文理学院 BaZrS3Preparation method and application of nanocrystalline

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112978795A (en) * 2021-03-02 2021-06-18 绍兴文理学院 BaZrS3Preparation method and application of nanocrystalline
CN112978795B (en) * 2021-03-02 2022-04-29 绍兴文理学院 BaZrS3Preparation method and application of nanocrystalline

Similar Documents

Publication Publication Date Title
JPS5896997A (en) Heat accumulating material
EP0146304B1 (en) Heat storage material
US4540502A (en) Heat storage material
JP2006131856A (en) Latent heat cold storage material composition
JP2981890B1 (en) Thermal storage device and thermal management method in the device
JPS6121579B2 (en)
JPS59109578A (en) Heat storage material
ES2213769T3 (en) REVERSIBLE COMPOSITIONS OF CHANGE OF HYDRATIONED MAGNESIUM CHLORIDE PHASE TO STORE ENERGY.
JPS6318989B2 (en)
JPS5942034B2 (en) heat storage material
JPS604583A (en) Latent thermal energy storage material
JPS60163988A (en) Thermal energy storage material
JPH0292987A (en) Cold-storing material composition
JPS6147189B2 (en)
JPH0660308B2 (en) Heat storage material
JPS5899696A (en) Heat-accumulating material
JPS63137982A (en) Heat storage material composition
JPS58117275A (en) Thermal energy storage material
JPS617378A (en) Thermal energy storage material
JPH0450358B2 (en)
JPS60130672A (en) Thermal energy storage material
JPS61155488A (en) Heat-storing material
JPS60260676A (en) Thermal energy storage material
JPH0443951B2 (en)
JPS60130671A (en) Thermal energy storage material