JPS5896802A - Production of fine metallic powder by wet reduction - Google Patents

Production of fine metallic powder by wet reduction

Info

Publication number
JPS5896802A
JPS5896802A JP19613681A JP19613681A JPS5896802A JP S5896802 A JPS5896802 A JP S5896802A JP 19613681 A JP19613681 A JP 19613681A JP 19613681 A JP19613681 A JP 19613681A JP S5896802 A JPS5896802 A JP S5896802A
Authority
JP
Japan
Prior art keywords
nickel
copper
powder
metallic
soln
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19613681A
Other languages
Japanese (ja)
Inventor
Tadaharu Ogawa
小川 忠治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP19613681A priority Critical patent/JPS5896802A/en
Publication of JPS5896802A publication Critical patent/JPS5896802A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/20Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To produce metallic nickel powder or metallic copper powder surely and safely with simple installations by subjecting the hydroxides or carbonates of nickel or copper obtained from sulfates of nickel or copper to wet reduction. CONSTITUTION:Caustic soda or sodium carbonate or a mixture thereof is added in the form of an aq. soln. to an aq. soln. of nickel sulfate or copper sulfate to allow fine particles or colloidal particles of hydroxides or carbonates of nickel or copper to deposit. Hydrazine or hydrazine hydrate, etc. are added as a reducing agent at about 3-8 equiv. to this slurry-like soln. and the soln. is heated to about 70-90 deg.C under stirring to complete reducing reaction, whereby the precipiate of metallic powder is formed. After standing and cooling, the supernatant liquid is run away, and the resultant precipitate is rinsed and is then vacuum dried, whereby fine metallic nickel powder or metallic copper powder of about 1 micron is obtained.

Description

【発明の詳細な説明】 この発明は1ミクロン以下の微細な金属ニッケル粉、及
び金属銅粉を湿式還元で製造する方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing fine metallic nickel powder of 1 micron or less and metallic copper powder by wet reduction.

これ等金属の粉末を製造する従来の方法には、電解法及
び水素還元法、熱分解法、熔融噴射法、ガス中蒸発法等
の所■乾式法があるが、すべて、煩雑な設備と高度の技
術を必要とする。これらに比べ、湿式還元は最も手がる
で且つ簡単な設備ですむが、従来の湿式還元法で1ミク
ロン以下の金属粉末を得るには、密閉容器での加圧を必
要としたり、或は高価な還元剤を大量に使用したりしな
ければばらない。
Conventional methods for manufacturing these metal powders include dry methods such as electrolytic method, hydrogen reduction method, pyrolysis method, melt injection method, and evaporation method in gas, but all of them require complicated equipment and advanced technology. technology is required. Compared to these methods, wet reduction is the most convenient and requires the simplest equipment, but in order to obtain metal powder of 1 micron or less using conventional wet reduction methods, pressurization in a closed container is required, or It is necessary not to use large amounts of expensive reducing agents.

本法は、これ等の欠点を除去し、簡単な設備で確実に、
且つ安全に1ミクロン以下の金属ニッケル及び銅の微粉
末を製造せんとするものである。
This method eliminates these drawbacks and reliably uses simple equipment.
Moreover, it is intended to safely produce metallic nickel and copper fine powders of 1 micron or less.

すなわち、本法では、ニッケル及び銅の化合物として最
も入手し易い硫酸ニッケル、及び硫酸銅を溶解した液に
苛性ソーダ又は炭酸ソーダ、或はこれ等の混合液を加え
て、水酸化物又は炭酸塩の型で該金属を含有hした粒子
を祈出させる。従って、きわめて細い粒子がこの段階で
生成する。粒子の細かさは液の濃度が最も影響し通常濃
度が低い程祈出粒子は細くなる。
That is, in this method, caustic soda, soda carbonate, or a mixture thereof is added to a solution in which nickel sulfate and copper sulfate, which are the most easily available nickel and copper compounds, are dissolved, and hydroxide or carbonate is dissolved. Particles containing the metal are poured into a mold. Therefore, very fine particles are produced at this stage. The fineness of the particles is most influenced by the concentration of the liquid, and normally the lower the concentration, the thinner the particles will be.

次に、還元剤としては、ヒドラジン又はヒドラジンヒド
ラートを3〜8当量使用したが、これは3当量以下では
反応が長くかかるから或は不安定なためで、また経済性
の点から8当量程度で押えたまでである。還元剤点火後
撹拌しながら加熱すると、反応は液の濃度、還元剤添加
当量等によって異なるが、ニッケルの場合70〜90℃
で反応を開始して温度の上昇と共にはげしさを増し、反
応完了■■■する。銅の場合はもっと低温より反応が始
まるが、この段階では弱く、最終的には85℃以上のは
げしい反応でないと完全な金属銅にならない。
Next, as a reducing agent, hydrazine or hydrazine hydrate was used in an amount of 3 to 8 equivalents, but this is because if the amount is less than 3 equivalents, the reaction will take a long time or is unstable, and from the economic point of view, about 8 equivalents are used. I was able to hold it down. When heated while stirring after igniting the reducing agent, the reaction will vary depending on the concentration of the liquid, the equivalent amount of reducing agent added, etc., but in the case of nickel, the reaction temperature will be 70 to 90°C.
The reaction starts and becomes more vigorous as the temperature rises until the reaction is complete. In the case of copper, the reaction begins at a much lower temperature, but it is weak at this stage, and complete metallic copper cannot be produced until the final reaction is violent at temperatures above 85°C.

いずれの場合も反応終了すると気泡は弱まり、液が透明
になる。次いで静置、冷却すると金属粉は沈殿するので
、上質塩を流し、水洗を数回行ない濾過後乾燥して製品
とする。乾燥は酸化防止のため、なるべく真空乾燥がよ
く、特に銅は酸化され易いので注意しなければならない
In either case, once the reaction is complete, the bubbles weaken and the liquid becomes transparent. When the metal powder is then left to stand and cooled, it precipitates, so high-quality salt is poured over it, washed with water several times, filtered, and dried to obtain a product. To prevent oxidation, vacuum drying is preferable, and care must be taken especially since copper is easily oxidized.

次に実施例に従って説明する。Next, an explanation will be given according to an example.

実施例(1) 硫酸ニッケル(NiSO4、5H2O)500gを1l
の水に溶かし、中和剤としては苛性ソーダ(NaOH)
150gを1lの水に溶解した。この両液を撹拌しなが
ら混合すると、水酸化ニッケルが直ちに祈出してけんだ
くした。このけんだく液に60%のヒドラジンヒドラー
トを450ml加えてよく撹拌しながら加熱したところ
、80℃を超したところで急激な反応が始まり、気泡が
盛んに立ち始めたため、加熱を弱めてあふれるのを防ぎ
つつ反応させたところ、88℃で反応は継続し、約1時
間して、液は無色になり、気泡の発生も止った・静置し
てニッケル粉を沈め、上澄液を流し、数回デカンテーシ
ョンを行ない水洗し、最後にアセトンで洗って濾過、減
圧乾燥した。
Example (1) 1 liter of 500 g of nickel sulfate (NiSO4, 5H2O)
Dissolve in water and use caustic soda (NaOH) as a neutralizing agent.
150 g was dissolved in 1 liter of water. When these two solutions were mixed with stirring, nickel hydroxide immediately started to form and swell. When 450 ml of 60% hydrazine hydrate was added to this suspension and heated while stirring well, a rapid reaction started when the temperature exceeded 80°C and bubbles started to form, so the heating was weakened to prevent overflowing. The reaction continued at 88°C, and after about 1 hour, the liquid became colorless and the generation of bubbles stopped.The nickel powder was allowed to stand still, and the supernatant liquid was poured off. It was decanted twice, washed with water, and finally washed with acetone, filtered, and dried under reduced pressure.

この様にして得られたニッケル粉は、約110gであっ
た。また電子顕微鏡で調べた結果、粒経は0.7ミクロ
ンであった。
The nickel powder thus obtained weighed about 110 g. Further, as a result of examination using an electron microscope, the grain size was 0.7 microns.

実施例(2) 硫酸ニッケル500gを3lの水に溶かし、中和剤には
苛性ソーダ101gと炭酸ソーダ(NO4CO3)67
gを1lの水に溶かした液を使用し、還元剤その他実施
例(1)と同様にしたところ、還元は92℃で維持した
。出来たニッケル粉の粒経は0.3ミクロンであった。
Example (2) Dissolve 500 g of nickel sulfate in 3 liters of water, and use 101 g of caustic soda and 67 g of soda carbonate (NO4CO3) as neutralizing agents.
Using a solution prepared by dissolving 1.5 g in 1 liter of water, the same reducing agent and other methods as in Example (1) were used, and the reduction was maintained at 92°C. The particle size of the resulting nickel powder was 0.3 microns.

実施例(3) 硫酸銅(C12SO4・5H2O)500gを1.5l
の水に溶かした液と、苛性ソーダ160gを2lの水に
溶かした液とを混合して、水酸化銅の微粒子を祈出させ
、充分撹拌混合してから60%ヒドラジンヒドラート4
50mlを加えて撹拌加熱したところ、50℃から気泡
が出て反応が始まり、90℃を超すと反応は更に盛んに
なり、加熱を始めてから65分で完了した。
Example (3) 500g of copper sulfate (C12SO4.5H2O) to 1.5L
A solution of 160 g of caustic soda dissolved in 2 liters of water was mixed with a solution of 160 g of caustic soda dissolved in 2 liters of water to extract fine particles of copper hydroxide, and after thorough stirring and mixing, 60% hydrazine hydrate 4
When 50 ml of the mixture was added and heated with stirring, the reaction started with bubbles appearing at 50°C, and when the temperature exceeded 90°C, the reaction became more active and was completed in 65 minutes from the start of heating.

静置後沈降した銅粉は、よく洗浄し、濾過後真空乾燥し
た。銅粉の粒経は0.2ミクロンであった。
The copper powder that settled after standing was thoroughly washed, filtered, and then vacuum dried. The grain size of the copper powder was 0.2 microns.

実施例(4) 実施例(3)の苛性ソーダを炭酸ソーダ215gに■え
、他は実施例(3)同様に行なった。
Example (4) The same procedure as in Example (3) was carried out except that the caustic soda of Example (3) was added to 215 g of soda carbonate.

反応は85℃を超すとはげしくなったが、反応時間は、
加熱を始めてから45分で完了した。
The reaction became more rapid when the temperature exceeded 85°C, but the reaction time was
Heating was completed in 45 minutes after starting.

銅粉の粒経は、0.3ミクロンであった。The grain size of the copper powder was 0.3 microns.

以上の如く本法は、従来の湿式還元と異なり、液相から
直接金属を還元祈出するのではなく、先ず中和によって
、金属の水酸化化合物或は炭酸塩の微粒子を祈出させる
ので、非常に細かい粒子とすることが出来、従ってこれ
を還元した金属粒子は更に細いものとして得られる。ま
た静置も通常の撹拌槽と加熱装置が生体で、特別なもの
はいらず、常圧反応で充分である。
As mentioned above, unlike conventional wet reduction, this method does not directly reduce the metal from the liquid phase, but first removes fine particles of the metal hydroxide compound or carbonate through neutralization. It can be made into very fine particles, and therefore the metal particles obtained by reducing it can be obtained as even finer particles. Furthermore, for the purpose of standing still, a normal stirring tank and heating device are used for the living body, no special equipment is required, and a normal pressure reaction is sufficient.

即ち本法によれば、工業的に入手し易い、硫酸ニッケル
及び硫酸銅を原料とし、極めて簡単な設備と操作で1ミ
クロン以下の金属ニッケル及び金属銅の微粉を製造する
ことが可能です。
In other words, according to this method, it is possible to produce fine powders of metallic nickel and metallic copper of 1 micron or less using extremely simple equipment and operations using industrially easily available nickel sulfate and copper sulfate as raw materials.

Claims (1)

【特許請求の範囲】[Claims] ニッケル或は銅の硫酸塩溶液から、該金属微粉末を製造
するに当り、該金属含有溶液に苛性ソーダ、又は炭酸ソ
ーダの溶液、或は両者混合溶液を加えて、ニッケル或は
銅の水酸化物、又は炭酸塩の微細な沈殿或はコロイド粒
子を祈出させて後、還元することを特徴とする微細ニッ
ケル粉及び銅粉の製造方法。
When producing the metal fine powder from a nickel or copper sulfate solution, a solution of caustic soda or soda carbonate, or a mixed solution of both is added to the metal-containing solution to form a hydroxide of nickel or copper. A method for producing fine nickel powder and copper powder, characterized by reducing the fine precipitates or colloidal particles of carbonate or carbonate.
JP19613681A 1981-12-04 1981-12-04 Production of fine metallic powder by wet reduction Pending JPS5896802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19613681A JPS5896802A (en) 1981-12-04 1981-12-04 Production of fine metallic powder by wet reduction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19613681A JPS5896802A (en) 1981-12-04 1981-12-04 Production of fine metallic powder by wet reduction

Publications (1)

Publication Number Publication Date
JPS5896802A true JPS5896802A (en) 1983-06-09

Family

ID=16352830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19613681A Pending JPS5896802A (en) 1981-12-04 1981-12-04 Production of fine metallic powder by wet reduction

Country Status (1)

Country Link
JP (1) JPS5896802A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6086203A (en) * 1983-10-15 1985-05-15 Fukuda Kinzoku Hakufun Kogyo Kk Preparation of fine copper powder
JPS6299406A (en) * 1985-10-28 1987-05-08 Mitsui Mining & Smelting Co Ltd Production of copper powder
JPH04195293A (en) * 1990-11-24 1992-07-15 Fuji Electric Co Ltd Raw material output device for cup type automatic vending machine
US5741347A (en) * 1995-02-24 1998-04-21 Murata Manufacturing Co., Ltd. Method for producing copper powder
EP0908258A2 (en) * 1997-09-11 1999-04-14 MITSUI MINING & SMELTING CO., LTD. Method for preparing nickel fine powder
JP2013053365A (en) * 2011-08-09 2013-03-21 Osaka Gas Co Ltd Method for manufacturing metallic particle utilizing solvothermal reaction
US9371343B2 (en) 2009-12-18 2016-06-21 Invista North America S.A. R.L. Nickel metal compositions and nickel complexes derived from basic nickel carbonates
JP2017222531A (en) * 2016-06-14 2017-12-21 住友金属鉱山株式会社 Nickel hydroxide particles, method for producing the same, and method for producing nickel oxide fine powder using the same
JP2018024550A (en) * 2016-08-10 2018-02-15 住友金属鉱山株式会社 Nickel oxide fine powder and production method of the same
JP2020121923A (en) * 2020-04-24 2020-08-13 住友金属鉱山株式会社 Nickel hydroxide particle
JP2020186171A (en) * 2020-07-28 2020-11-19 住友金属鉱山株式会社 Nickel hydroxide particle

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6086203A (en) * 1983-10-15 1985-05-15 Fukuda Kinzoku Hakufun Kogyo Kk Preparation of fine copper powder
JPS6299406A (en) * 1985-10-28 1987-05-08 Mitsui Mining & Smelting Co Ltd Production of copper powder
JPH0557324B2 (en) * 1985-10-28 1993-08-23 Mitsui Mining & Smelting Co
JPH04195293A (en) * 1990-11-24 1992-07-15 Fuji Electric Co Ltd Raw material output device for cup type automatic vending machine
US5741347A (en) * 1995-02-24 1998-04-21 Murata Manufacturing Co., Ltd. Method for producing copper powder
EP0908258A3 (en) * 1997-09-11 2000-02-23 MITSUI MINING & SMELTING CO., LTD. Method for preparing nickel fine powder
EP0908258A2 (en) * 1997-09-11 1999-04-14 MITSUI MINING & SMELTING CO., LTD. Method for preparing nickel fine powder
US6120576A (en) * 1997-09-11 2000-09-19 Mitsui Mining And Smelting Co., Ltd. Method for preparing nickel fine powder
US9371343B2 (en) 2009-12-18 2016-06-21 Invista North America S.A. R.L. Nickel metal compositions and nickel complexes derived from basic nickel carbonates
JP2013053365A (en) * 2011-08-09 2013-03-21 Osaka Gas Co Ltd Method for manufacturing metallic particle utilizing solvothermal reaction
JP2017222531A (en) * 2016-06-14 2017-12-21 住友金属鉱山株式会社 Nickel hydroxide particles, method for producing the same, and method for producing nickel oxide fine powder using the same
JP2018024550A (en) * 2016-08-10 2018-02-15 住友金属鉱山株式会社 Nickel oxide fine powder and production method of the same
JP2020121923A (en) * 2020-04-24 2020-08-13 住友金属鉱山株式会社 Nickel hydroxide particle
JP2020186171A (en) * 2020-07-28 2020-11-19 住友金属鉱山株式会社 Nickel hydroxide particle

Similar Documents

Publication Publication Date Title
JPS5896802A (en) Production of fine metallic powder by wet reduction
WO2016202271A1 (en) Method of recovering rare earth, aluminum and silicon from rare earth-containing aluminum-silicon scraps
BR112014021852B1 (en) PROCESS FOR RECOVERY OF COBALT, RUTENUM AND ALUMINUM METALS FROM CO-RU / AL²O³ CATALYST WASTE IN FISCHER-TROPSCH SYNTHESIS
US3201223A (en) Method of preparation of silver powder having a protective gum coating
CN106029270A (en) Method for producing nickel powder
US3334995A (en) Process of precipitating silver
DE2222173C3 (en) Process for the production of metals or metal alloys
US3273997A (en) Wet process for the separation, isolation, and recovery of certain metallic and non-metallic constituents of waste slag from reverberatory refining of copper pyritic type ores
JPS63125605A (en) Production of fine metal powder
US1955326A (en) Process for the manufacture of chromates and dichromates
NO161130B (en) PROCEDURE FOR THE PREPARATION OF A DOUBLE COBOLT POWDER WITH A ROUGH, RELATIVE UNIFORM PARTICLE SIZE.
CN113215404B (en) Method for preparing spherical cobaltosic oxide from cobalt-ammonia complex solution
JP2621915B2 (en) Method for producing ultrafine copper powder
US3717481A (en) Gold metallizing compositions
US2912305A (en) Non-ferrous scrap treatment
JPH10183208A (en) Production of silver powder
US3288597A (en) Process for the recovery of certain metallic and non-metallic constituents of waste slag from reverberatory refining of copper pyritic type ores
US1262062A (en) Method of utilizing aluminum skimmings and analogous material.
JPH07177B2 (en) Method for producing catalyst for methanol steam reforming
US1067698A (en) Method of electrolytically recovering nickel.
US3806591A (en) Preparation of group viii metal compounds
JPS59174522A (en) Manufacture of fine dispersion of metal oxide and/or metal hydroxide in aluminum hydroxide
US2201508A (en) Manufacture of zirconium compounds
JPH0249364B2 (en)
US1232334A (en) Process of separating thorium from soda solutions containing thorium oxalate.