JPS5896277A - Method of circulating fuel of accelerator melted salt breeder reactor - Google Patents

Method of circulating fuel of accelerator melted salt breeder reactor

Info

Publication number
JPS5896277A
JPS5896277A JP56194443A JP19444381A JPS5896277A JP S5896277 A JPS5896277 A JP S5896277A JP 56194443 A JP56194443 A JP 56194443A JP 19444381 A JP19444381 A JP 19444381A JP S5896277 A JPS5896277 A JP S5896277A
Authority
JP
Japan
Prior art keywords
salt
fuel
reactor
breeder reactor
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56194443A
Other languages
Japanese (ja)
Inventor
古川和男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute filed Critical Japan Atomic Energy Research Institute
Priority to JP56194443A priority Critical patent/JPS5896277A/en
Priority to FR8208785A priority patent/FR2519792A1/en
Priority to DE3218852A priority patent/DE3218852A1/en
Priority to GB8214599A priority patent/GB2098788A/en
Publication of JPS5896277A publication Critical patent/JPS5896277A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は加速器溶融塩増殖炉の燃料循環方法に関する。[Detailed description of the invention] The present invention relates to a fuel circulation method for an accelerator molten salt breeder reactor.

詳しくは高利得式加速器溶融塩増殖炉(h、g、AM8
Bと略称する)と溶融塩発電炉(MSORと略称する)
との組合せ系における燃料塩の循環方法に関する。
For details, please refer to the high-gain accelerator molten salt breeder reactor (h, g, AM8
(abbreviated as B) and molten salt power reactor (abbreviated as MSOR)
This invention relates to a method for circulating fuel salt in a combination system.

本願発明者は先にh、g、AM8Bを発明し発明の名称
、溶融塩核化学反応方法および装置〃として特許出願(
特願昭56−74897)し、その明細書中にh、g、
AMOBから汲み出されたターゲツト溶融塩がMSOR
の燃料塩に投入できることを開示した。
The inventor of this application previously invented h, g, and AM8B and filed a patent application with the title of the invention as molten salt nuclear chemical reaction method and apparatus (
(Japanese Patent Application No. 56-74897), and in the specification h, g,
The target molten salt pumped from AMOB is MSOR
The company disclosed that it can be put into fuel salt.

本発明の目的はh、g、AMSRで生産された核分裂性
物質2m3Uvi−MSORに供給するための最も合理
化された核燃料循環方法を提供することである。
The purpose of the present invention is to provide the most streamlined nuclear fuel circulation method for supplying 2m3 Uvi-MSOR of fissile material produced in h, g, AMSR.

本願発明者は、この目的を達成するため鋭意研究の結果
、h、g、AMsBとMSORとの組合せ系において、
0.2〜1mol%の””UF4を含む該AMSBから
のターゲツト塩を該MSORの燃料塩に添加してH3U
p4を補給するVCあたり、該MSORから汲み出され
た燃料塩を再処理して取り出された233Up4を該タ
ーゲツト塩に添加して該ターゲツト塩の133UIF、
濃度を高めることから成るh、g、AMSBの燃料塩の
循環方法を発明するに至つた。
As a result of intensive research to achieve this objective, the inventor of the present application has found that in a combination system of h, g, AMsB and MSOR,
Target salt from the AMSB containing 0.2-1 mol% UF4 was added to the fuel salt of the MSOR to generate H3U.
For each VC that replenishes p4, 233Up4 extracted by reprocessing the fuel salt pumped from the MSOR is added to the target salt to increase the 133UIF of the target salt.
We have now devised a method for recycling h, g, and AMSB fuel salts, which consists of increasing their concentration.

而して、AMSBから汲み出されたターゲツト塩はM8
0Rに輸送される前に酸化物除去操作、濾過による固形
懸濁物の除去などを含む精製操作を行うことが必要であ
る。
Therefore, the target salt pumped from AMSB is M8
It is necessary to carry out purification operations including oxide removal operations, removal of solid suspensions by filtration, etc. before being transported to the OR.

MSORから取り出された燃料塩はAMSBの所在する
地域センター(監視された管理区域)内の再処理施設に
持ち込み、まづH!UF4のみを取り出す。
The fuel salt extracted from the MSOR is brought to the reprocessing facility within the regional center (monitored management area) where AMSB is located, and the fuel salt is transported to the reprocessing facility within the AMSB's regional center (monitored control area). Take out only UF4.

それにはF2ガスによるフツ化処理で233UF、揮発
法などを利用し取り出された2m3Up、をUF、に還
元しつつ補給用ターゲツト塩に添加する。また、MSC
!Hの燃料塩組成を等しくするため’LiF、BeF*
の添加が適宜性はれる。
To do this, 233 UF is removed through fluorination treatment with F2 gas, and 2 m3 Up is extracted using a volatilization method, etc., which is reduced to UF and added to the target salt for replenishment. Also, MSC
! In order to equalize the fuel salt composition of H'LiF, BeF*
It is advisable to add .

再処理されてクリーンになつたThF4含有塩はThF
4及び少量のBeF2などを添加してターゲツト塩とほ
ぼ同組成の稀釈用塩に調整してAMSBに随時に添加す
る。
ThF4-containing salt that has been reprocessed and becomes clean is ThF
4 and a small amount of BeF2, etc. to prepare a diluent salt having approximately the same composition as the target salt, and add it to AMSB as needed.

次に実施例によつて本発明を具体的に説明する。Next, the present invention will be specifically explained with reference to Examples.

実施例 IGeV、300mA陽子加速器を有しターゲツト塩と
して’LiFBeFz−ThF4(!”IUFi、(6
4−1817,50−5mo1%)を用いたh、g、A
MSBは年間約1,13tonの233U燃料を生産す
ることかできる。したがつて、100万KWeのMSO
R(転換率0.9)の17基分に必要な核分裂性物質を
供給できる。
Example IGeV with 300 mA proton accelerator and 'LiFBeFz-ThF4(!'IUFi, (6
h, g, A using 4-1817, 50-5 mo1%)
MSB can produce approximately 1.13 tons of 233U fuel per year. Therefore, an MSO of 1 million KWe
It is possible to supply the fissile material necessary for 17 units of R (conversion rate 0.9).

以下、MSOR1基を対象として燃料サイクルを説明す
る。
Hereinafter, the fuel cycle will be explained for one MSOR unit.

MSORから取り出された650kgの塩は’LiF−
BeF’5−ThF4」”Uf’4(71,75161
20,25mol%)の組成であり、地域センターの再
処理施設で約7.8−の!1mUp4がフツ化物揮発法
で分離される。
650 kg of salt removed from MSOR is 'LiF-
BeF'5-ThF4""Uf'4(71,75161
20.25 mol %), and the reprocessing facility at the regional center has a composition of approximately 7.8-! 1 mUp4 is isolated by fluoride volatilization method.

これをAMSBから取り出されたターゲツト塩560k
gに添加すると’LiFBeF2ThF4”3UF4(
63,817,917,40,86mo1%)となる。
This is target salt 560k extracted from AMSB.
When added to 'LiFBeF2ThF4''3UF4 (
63,817,917,40,86mo1%).

これは・M80Rから取り出された量を差引くと約8k
fの233Uを添加したことを意味する。
This is approximately 8k after subtracting the amount taken out from M80R.
This means that 233U of f was added.

このような操作を年間約1o回行うこととする。It is assumed that such operations are performed approximately 10 times a year.

なお、M5ORに添加する際、組成を調整するため’L
iF約75に4とBeF2約18kgを同時に添加する
In addition, when adding to M5OR, 'L' is added to adjust the composition.
4 and approximately 18 kg of BeF2 are added to iF approximately 75 at the same time.

本発明は、最小限の操作で最も経済的な燃料サイクルを
構成でき、また燃料塩がフツ化物であるため化学的に安
全であり、揮発性廃棄物もAMSBまたはM80Rで処
理されており、また最小限の物量輸送で済むなどの効果
を有する。
The present invention allows the most economical fuel cycle to be constructed with a minimum of operations, is chemically safe because the fuel salt is a fluoride, volatile wastes are also treated with AMSB or M80R, and This has the advantage of requiring only a minimum amount of material to be transported.

さらにまた、本発明の方法においては、監視された地区
センター以外には、核分裂性物質は放射性物質をかなり
多量に含んだ溶融塩を凝固させた物質として輸送される
ので、高いr放射能を有し簡単に核分裂性物質を分離す
ることはできない。
Furthermore, in the method of the present invention, the fissile material is transported to areas other than the monitored district center as a solidified material of molten salt containing a considerable amount of radioactive material, and therefore has a high r-radioactivity. However, fissile material cannot be easily separated.

しかも232U、234U(235U)、236Uを含
有して233Uと複雑な同位元素構成を有し、臨界量は
大きく容易に爆発物とすることができない効果を有する
In addition, it contains 232U, 234U (235U), and 236U, and has a complex isotope composition with 233U, and has a large critical mass that makes it difficult to make it into an explosive.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の燃料循環方法の1具体例プロセスを示す。 図において、IFlIGeV300mA陽子加速器。 2はh.g.AMSB 3はタンク 4は再処理施設 5はMSCR 6はタンク The figure shows one example process of the fuel circulation method of the present invention. In the figure, IFlIGeV 300mA proton accelerator. 2 is h. g. AMSB 3 is a tank 4 is a reprocessing facility 5 is MSCR 6 is a tank

Claims (1)

【特許請求の範囲】 l、高利得式加速器溶融塩増殖炉と溶融塩発電炉との組
合せ系において、0.7〜1mol%の2330F、を
含む該増殖炉からのターゲツト塩を該発電炉の燃料塩に
添加して233UF4を補給するにあたり、該発電炉か
ら汲み出された燃料塩を再処理して取り出さ扛た233
UF4を、該ターゲツト塩に添加して該ターゲツト塩の
233UF4濃度を高めることから成る加速器溶融塩増
殖炉の燃料循環方法。 2、溶融塩の組成は’LiFBeF2ThF4−233
UF4である第1項の燃料循環方法。 3、該増殖炉からのターゲツト塩は不純物除去の操作が
加えられる第1項の方法。 4、該発電炉から汲み出された燃料塩は再処理施設にお
いてフツ化ガス処理を行つて233UF4を233UF
・として取り出しこれを還元なして233UF4とする
第1項の方法。 5、再処理施設でクリーンになつたThF4含有塩はT
hF4及び少量のBeF2を添加してターゲツト塩とほ
ぼ同組成の稀釈用塩に調整して該増殖炉に適時に添加さ
れる第1項の方法。
[Claims] l. In a combination system of a high-gain accelerator molten salt breeder reactor and a molten salt power reactor, target salt from the breeder reactor containing 0.7 to 1 mol% 2330F is used in the power reactor. When adding 233UF4 to the fuel salt, the fuel salt pumped out from the power reactor was reprocessed and extracted.
A method of fuel circulation in an accelerator molten salt breeder reactor comprising adding UF4 to the target salt to increase the 233UF4 concentration of the target salt. 2. The composition of the molten salt is 'LiFBeF2ThF4-233
The fuel circulation method of item 1 which is UF4. 3. The method of item 1, wherein the target salt from the breeder reactor is subjected to an operation for removing impurities. 4. The fuel salt pumped out from the power reactor is treated with fluoride gas at a reprocessing facility to convert 233UF4 to 233UF.
・The method of item 1, which is extracted as 233UF4 without reduction. 5. The ThF4-containing salt cleaned at the reprocessing facility is T
1. The method of item 1, wherein hF4 and a small amount of BeF2 are added to prepare a diluent salt having approximately the same composition as the target salt, and the diluent salt is added to the breeder reactor in a timely manner.
JP56194443A 1981-05-20 1981-12-04 Method of circulating fuel of accelerator melted salt breeder reactor Pending JPS5896277A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP56194443A JPS5896277A (en) 1981-12-04 1981-12-04 Method of circulating fuel of accelerator melted salt breeder reactor
FR8208785A FR2519792A1 (en) 1981-05-20 1982-05-19 PROCESS AND APPARATUS FOR NUCLEAR CHEMICAL REACTION WITH MELT SALT
DE3218852A DE3218852A1 (en) 1981-05-20 1982-05-19 NUCLEAR MELTING MELT REACTION METHOD AND DEVICE FOR CARRYING OUT THIS METHOD
GB8214599A GB2098788A (en) 1981-05-20 1982-05-19 Process and apparatus for molten-salt nuclear chemical reaction process for circulating a fuel salt in a combination system of the apparatus with a molten- salt converter reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56194443A JPS5896277A (en) 1981-12-04 1981-12-04 Method of circulating fuel of accelerator melted salt breeder reactor

Publications (1)

Publication Number Publication Date
JPS5896277A true JPS5896277A (en) 1983-06-08

Family

ID=16324661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56194443A Pending JPS5896277A (en) 1981-05-20 1981-12-04 Method of circulating fuel of accelerator melted salt breeder reactor

Country Status (1)

Country Link
JP (1) JPS5896277A (en)

Similar Documents

Publication Publication Date Title
Laidler et al. Development of pyroprocessing technology
CA1337740C (en) Process to separate transuranic elements from nuclear waste
JP2726375B2 (en) Method for separating and recovering Pu and Np from nitric acid solution containing Pu and Np
US7172741B2 (en) Method for reprocessing spent nuclear fuel
Galashev Recovery of actinides and fission products from spent nuclear fuel via electrolytic reduction: Thematic overview
US5141723A (en) Uranium chloride extraction of transuranium elements from LWR fuel
US4331618A (en) Treatment of fuel pellets
JP3735392B2 (en) Reprocessing of spent fuel
JP2997178B2 (en) Separation method of exothermic elements from high-level radioactive liquid waste
JPH0943389A (en) Actinides recycle system
JPS5896277A (en) Method of circulating fuel of accelerator melted salt breeder reactor
US6767444B1 (en) Method for processing spent (TRU, Zr)N fuel
US5336450A (en) Process to remove rare earth from IFR electrolyte
Pierce et al. Progress in the pyrochemical processing of spent nuclear fuels
US3278387A (en) Fuel recycle system in a molten salt reactor
US3853979A (en) Method for removing rare earths from spent molten metallic fluoride salt mixtures
Uhlíř et al. Development of pyroprocessing technology for thorium-fuelled molten salt reactor
Tanaka et al. Design study on advanced reprocessing systems for FR fuel cycle
Ackerman et al. New high-level waste management technology for IFR pyroprocessing wastes
Ackerman et al. Waste removal in pyrochemical fuel processing for the Integral Fast Reactor
Uhlir et al. Development of fluoride reprocessing technologies devoted to molten-salt reactor systems
Ackerman et al. Process to remove rare earth from IFR electrolyte
Simpson et al. Non-aqueous Processing
JPH0694888A (en) Reprocessing method for spent nitrided fuel
Amano et al. FLUOREX reprocessing technology with uranium removal from spent fuel by fluorination-volatilization reaction of uranium