JPS5895865A - Gate turn off thyristor - Google Patents
Gate turn off thyristorInfo
- Publication number
- JPS5895865A JPS5895865A JP19284781A JP19284781A JPS5895865A JP S5895865 A JPS5895865 A JP S5895865A JP 19284781 A JP19284781 A JP 19284781A JP 19284781 A JP19284781 A JP 19284781A JP S5895865 A JPS5895865 A JP S5895865A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- emitter
- main surface
- electrode
- low resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000008188 pellet Substances 0.000 claims abstract description 25
- 239000004065 semiconductor Substances 0.000 claims abstract description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 4
- 239000011889 copper foil Substances 0.000 claims description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229920001296 polysiloxane Polymers 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000005453 pelletization Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/70—Bipolar devices
- H01L29/74—Thyristor-type devices, e.g. having four-zone regenerative action
- H01L29/744—Gate-turn-off devices
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Electrodes Of Semiconductors (AREA)
- Thyristors (AREA)
Abstract
Description
【発明の詳細な説明】
本発明はゲートターンオフサイリスタの素子構造に係り
、特に中小容量素子の電流しゃ断限界性能を向上するに
好適なノくターン配置並びに半導体ペレットの形状に関
する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an element structure of a gate turn-off thyristor, and more particularly to a notch arrangement and a shape of a semiconductor pellet suitable for improving the current cutoff limit performance of a small to medium capacitance element.
ゲートターンオフサイリスタ(以下GTOと略す)は負
のゲート信号によりターンオフ動作をさせるため、一般
に、カソード側のエミツタ層は細長い短冊状の形状をな
し、その周辺をゲート電極がとり囲んだ単位要素がGT
Oの電流容量に応じた数だけ複数個並置された構造にな
っている。この場合、単位要素の長さは必ずしも1個の
GTOの中で一定であるとは限らないが、動作の均一性
の点から一定の方が望ましい。さて従来の小中容量のG
TOの半導体ベレットの形状は縦、横の各辺の長さが略
に等しい云わゆる正方形形状が一般的である。それは、
(1)製造工程で常用される丸形シリコンウエノ・から
できるだけ沢山のベレットを採ること、(2)ベレット
の最も長い部分の寸法でも一定のゾ1倍ですむので、ベ
ース電極などへの半田接着に際して機械的応力が小さく
できること、(3)シリコンウエノ・からのペレタイズ
が丸形に比べて容易にできること、などの理由からであ
る。Since a gate turn-off thyristor (hereinafter abbreviated as GTO) is turned off by a negative gate signal, the emitter layer on the cathode side generally has an elongated rectangular shape, and the unit element surrounded by the gate electrode is called GT.
It has a structure in which a plurality of them are arranged in parallel in a number corresponding to the current capacity of O. In this case, the length of the unit element is not necessarily constant within one GTO, but it is desirable that it be constant from the viewpoint of uniformity of operation. Now, the conventional small and medium capacity G
The shape of a TO semiconductor pellet is generally a so-called square shape in which the lengths of the vertical and horizontal sides are approximately equal. it is,
(1) Taking as many pellets as possible from the round silicone Ueno, which is commonly used in the manufacturing process, (2) Since the longest part of the pellet only needs to be 1 times the same size, it is possible to solder it to the base electrode etc. This is because the mechanical stress can be reduced during the process, and (3) pelletizing from silicon wafers can be done more easily than with round shapes.
第1図は可制御電流2OA級の従来のGTOを示す。−
辺が約4.0閣の正方形のシリコンベレット1の中に長
さ約2. Omm r幅約0.2 ttmの細長いエミ
ッタ短冊2が4個並置され、それらにオーミック接触す
るカソード電極3及びこれに噛合いの形4を具え、さら
にこれらの電極にアルミニウム線のワイヤボンディング
にてそれぞれカソードIJ−ド5.ゲートリード6が取
り付けられている。この例に見られる如く、対向せるカ
ソードリード5及びゲートリード6のワイヤポンプイン
グツくット面積(3,4の一部)を確保するため、エミ
ッタ短冊2の長さはベレット辺の約半分の長さに短かく
制限されている。これは、GTOペレットの外形を正方
形形としたためである。第2図は可制御電流60A級の
更に容量の大きなGTOペレットの例である。−辺の長
さが約6Bの正方形をなし、長さ約1.5鰭のエミッタ
短冊2が合計12個、2列に並べられている。この場合
、カソードリード5及びゲートリード6は各々2本ずつ
接続されている。電流容易が大きくなり、ベレットのサ
イズが増大したGTOでは、この例のようにエミッタ短
冊2の配列を2列あるいはそれ以上に並べる方法が一般
に採られている。FIG. 1 shows a conventional GTO with a controllable current of 2OA class. −
Inside a square silicone pellet 1 with sides of about 4.0 cm, there is a silicone pellet with a length of about 2.0 cm. Four elongated emitter strips 2 each having a width of about 0.2 ttm are arranged in parallel, and are provided with a cathode electrode 3 in ohmic contact with them and a meshing shape 4, and further connected to these electrodes by wire bonding with an aluminum wire. Cathode IJ-do respectively5. A gate lead 6 is attached. As seen in this example, the length of the emitter strip 2 is approximately half the length of the bullet side in order to secure the wire pumping area (part of 3 and 4) of the cathode lead 5 and gate lead 6 facing each other. It is limited to a short length. This is because the outer shape of the GTO pellet is square. FIG. 2 is an example of a GTO pellet having a larger capacity with a controllable current of 60 A class. - A total of 12 emitter strips 2 having a square shape with a side length of about 6B and a length of about 1.5 fins are arranged in two rows. In this case, two cathode leads 5 and two gate leads 6 are each connected. In GTOs in which the current flow rate is increased and the pellet size is increased, a method is generally adopted in which the emitter strips 2 are arranged in two or more rows as shown in this example.
この理由の1つはエミッタ短冊が長くなるとその上のオ
ミツク電極3の横抵抗により短冊内の動作の不均一が発
生するからである。One of the reasons for this is that when the emitter strip becomes longer, non-uniformity of operation within the strip occurs due to the lateral resistance of the omic electrode 3 above it.
ところで、かかる従来のGTOベレットでは次のような
電流しゃ断限界に係る欠点があることを発明者らは発見
した。すなわち、GTOが破壊することなく安全に電流
しゃ断できる限界耐量は、GTOK課せられた重要な性
能であるが、この限界値はエミッタ短冊の個数をいくら
増加しても相応して向上しないことを見出したのである
。第3図はGTOが安全にターンオフ動作できる電圧。By the way, the inventors have discovered that the conventional GTO pellet has the following drawback regarding the current cutoff limit. In other words, the limit withstand capacity that allows the GTO to safely cut off current without being destroyed is an important performance imposed on the GTOK, but we found that this limit value does not improve correspondingly no matter how much the number of emitter strips is increased. It was. Figure 3 shows the voltage at which the GTO can safely turn off.
電流限界(この限界内を安全動作領域と呼ぶことにする
)の測定結果で、エミッタ短冊の長さを一定としてその
本数を1.4.8本と変えたときの安全動作領域を示し
ている。各々の線の左側が安全領域であり、ターンオフ
時の電圧、電流ローカスがこの線の右側に出ると即座に
GTOが破壊を引き起こす境界を示している。図かられ
かるように電圧が低い領域ではエミッタ短冊の個数に応
じて限界電流も増大するが、電圧が高くなるとエミッタ
短冊の個数に関係なく低い電流でGTOが破壊をおこす
。これは電圧が高い場合、ターンオフ時には著しい電流
集中現象を呈するためと思われる。200v電源電圧で
使用される場合、この限界電圧は400v以上が望まし
く、かかる高電圧では従来例の如く、長手方向寸法の短
かいエミッタ短冊の並置数を増加しても安全にしゃ断で
きる電流の上限が増大しないという問題があった。The measurement result of the current limit (the area within this limit is called the safe operating area) shows the safe operating area when the length of the emitter strips is constant and the number of emitter strips is changed to 1, 4, 8. . The left side of each line is a safe area, and indicates the boundary where the GTO will immediately break down if the voltage and current locus at turn-off go to the right side of this line. As can be seen from the figure, in a region where the voltage is low, the limiting current increases according to the number of emitter strips, but as the voltage increases, the GTO will break down at a low current regardless of the number of emitter strips. This seems to be because when the voltage is high, a significant current concentration phenomenon occurs at turn-off. When used with a power supply voltage of 200V, this limit voltage is preferably 400V or more, and at such high voltages, the upper limit of the current that can be safely cut off even if the number of emitter strips with short longitudinal dimensions in parallel is increased, as in the conventional example. The problem was that it did not increase.
本発明の目的は、安全にターンオフ動作のできる電流し
ゃ断限界を高くシ、その安全動作領域の拡大を図ったG
TOを提供することにある。The purpose of the present invention is to increase the current cutoff limit for safe turn-off operation, and to expand the safe operation area.
The goal is to provide TO.
かかる目的を奏する本発明GTOの特徴とするところは
、半導体ベレットの主表面を一方の対辺が他方の対辺よ
り長い方形形状とし、エミッタ短冊の長手方向と主表面
の長手方向とを一致させた点にある。好ましい実婢例の
特徴は、エミッタ短冊は主表面の長手方向と直角方向に
複数個並置し、長手方向には並置せず許される範囲で長
くした点にある。The GTO of the present invention that achieves this purpose is characterized in that the main surface of the semiconductor pellet has a rectangular shape in which one opposite side is longer than the other opposite side, and the longitudinal direction of the emitter strip is made to coincide with the longitudinal direction of the main surface. It is in. A preferred feature of the practical example is that a plurality of emitter strips are arranged in parallel in a direction perpendicular to the longitudinal direction of the main surface, and are not arranged in parallel in the longitudinal direction, but are made as long as possible.
本発明の目的を更に確実に奏させるためには、カソード
電極をエミッタ短冊と略同形状を有し各エミッタ短冊に
接着する第1の導電部材と第1の導電部材相互を電気的
に接続する第2の導電部材とから構成し、ゲート電極を
エミッタ短冊の周縁に沿ってエミッタ短冊に隣接する層
に接着する第1の導電部材とその上に接着した第2の導
電部材とから構成するのが望ましい。In order to achieve the object of the present invention more reliably, the cathode electrode has approximately the same shape as the emitter strip, and the first conductive member bonded to each emitter strip is electrically connected to the first conductive member. The gate electrode is made up of a first conductive member bonded to a layer adjacent to the emitter strip along the periphery of the emitter strip, and a second conductive member bonded thereon. is desirable.
本発明の他の目的及び特徴は以下の実施例の説明から明
らかとなろう。Other objects and features of the invention will become apparent from the following description of the embodiments.
第3図は可制御電流20A級のGTOに本発明を適用し
た場合の実施例である。シリコンよりなるGTOベレッ
ト21は一方の対辺が約6. Otm 。FIG. 3 shows an embodiment in which the present invention is applied to a GTO with a controllable current of 20 A class. The GTO pellet 21 made of silicon has one opposite side approximately 6. Otm.
他方の対辺が約2.0の長方形形状をなしている。It has a rectangular shape with the other opposite side being about 2.0.
ペレット21は互いに反対側に位置する一対の主表面2
11,212の間にPK 、 nB 、 Pal、 n
Eの4層構造を有し、一方の主表面211にはnE ・
層−PB層が、他方の主表面212にはPB層がそれぞ
れ露出している。n、層は主表面の長手方向にその長手
方向を一致させて並置した複数個の細長い短冊領域21
3(エミッタ短冊と称す)から成っている。図ではこの
エミッタ短冊213は幅約0.3 m 、長さ約4.0
簡の寸法で2個並置されている。2個のエミッタ短冊2
13にはカソード電極22が低抵抗接触し、エミッタ短
冊213を囲むPB層の表面にはゲート電極23が低抵
抗接触し、反対のpg層表面にはアノード電極24が低
抵抗接触している。これらカソード電極22.ゲート電
極23には、例えばアルミニウム線のカソードリード2
5.ゲートリード26が取り付けられている。かかるG
TOベレット21はアノード電極24を介して、図示し
ないパッケージペースに半田付けされ組立てられる。2
7はペレット21の周縁に設けた環状溝214に被着し
たガラスである。The pellet 21 has a pair of main surfaces 2 located on opposite sides of each other.
PK, nB, Pal, n between 11,212
It has a four-layer structure of nE and one main surface 211 has nE.
The PB layer is exposed on the other main surface 212, respectively. n, the layer is a plurality of elongated strip regions 21 arranged side by side with their longitudinal directions matching the longitudinal direction of the main surface.
It consists of 3 (referred to as emitter strips). In the figure, this emitter strip 213 has a width of about 0.3 m and a length of about 4.0 m.
Two pieces are arranged side by side with simple dimensions. 2 emitter strips 2
13, a cathode electrode 22 is in low resistance contact, a gate electrode 23 is in low resistance contact with the surface of the PB layer surrounding the emitter strip 213, and an anode electrode 24 is in low resistance contact with the opposite surface of the PG layer. These cathode electrodes 22. The gate electrode 23 has a cathode lead 2 made of, for example, an aluminum wire.
5. A gate lead 26 is attached. Such G
The TO pellet 21 is assembled by soldering to a package paste (not shown) via the anode electrode 24. 2
7 is glass attached to an annular groove 214 provided on the periphery of the pellet 21.
第5図は第4図の実施例のターンオフ時の安全動作領域
を(実線)第1図に示す従来例(点線)と比較して示し
たものである。図から明らかなごとく、アノード電圧4
00Vでの破壊しない限界の最大しゃ断電流は約10O
Aと従来例の3OAにくらべて飛躍的に増大した。この
ように連続の可制御電流、nE層の実効面積がほぼひと
しいGTOペレットでありながら、高電圧の電流しや断
性能が著しく改善された。この改善によってGTOに異
常の電流が流れた場合の保護回路の例えば限流用インダ
クタンス、スナバ回路のCR,などを大幅に小形、低価
格でき、装置の小形化低価格化に貢献すると共に、信頼
性の向上を図ることができる。さて、かかるしゃ断耐量
の向上の直接的な原因は、エミッタ短冊の長さを長くし
たことにある。他の実験によれば、エミッタ短冊の長さ
をさらに長くした場合にも一層の改善が図られることが
確認された。この理由は、ターンオフ時のアノード電流
は多数のエミッタ短冊が並置された場合でも、最終的に
は一個の短冊に集中し、そこが限界値を超えて破壊する
ものと考えられる。したがって、エミッタ短冊−個当り
の電流しゃ断耐量を高くすればよい。すなわち、ターン
オフ時には並置されたエミッタ短冊間では電流集中を緩
和する働らきの相互作用は全く期待できないが、同一の
エミッタ短冊内ではこの相互作用が期待できるというこ
とである。発明者らの実験によれば、このエミッタ短冊
−個当りの耐量はエミッタの幅を一定とすれば、エミッ
タの長さが長いほど向上することがわかった。FIG. 5 shows the safe operation area at turn-off of the embodiment shown in FIG. 4 (solid line) in comparison with the conventional example shown in FIG. 1 (dotted line). As is clear from the figure, the anode voltage 4
The maximum breaking current without destruction at 00V is approximately 10O
This was a dramatic increase compared to A and 3OA of the conventional example. In this way, although the GTO pellet has a continuous controllable current and the effective area of the nE layer is almost the same, the high voltage current flow and breaking performance is significantly improved. With this improvement, protection circuits such as the current-limiting inductance and CR of the snubber circuit, which are used when an abnormal current flows through the GTO, can be made significantly smaller and cheaper, contributing to the smaller size and lower cost of the device, as well as improving reliability. It is possible to improve the Now, the direct cause of this improvement in the cutoff resistance is that the length of the emitter strip is increased. According to other experiments, it has been confirmed that further improvement can be achieved when the length of the emitter strip is further increased. The reason for this is thought to be that even when a large number of emitter strips are arranged side by side, the anode current during turn-off ultimately concentrates on one strip, which exceeds a limit value and is destroyed. Therefore, it is only necessary to increase the current interruption resistance per emitter strip. In other words, at turn-off, no interaction to alleviate current concentration can be expected between emitter strips arranged in parallel, but this interaction can be expected within the same emitter strip. According to experiments conducted by the inventors, it has been found that the withstand capacity per strip of emitter increases as the length of the emitter becomes longer, provided that the width of the emitter is constant.
第6図は本発明をさらに電流容量の大きなGTOに適用
した他の実施例で、第2図に示したと同じ程度の可制御
電流のGTOである。この場合は長さ約4.0咽のエミ
ッタ短冊213が4個並置され、ペレットは一方の対辺
が約6.0咽他方の対辺が約4.0咽の長方形形状をし
ている。このGTOのクランプ電圧400Vでの最大し
ゃ断可能電流は約10OAである。FIG. 6 shows another embodiment in which the present invention is applied to a GTO with a larger current capacity, and is a GTO with a controllable current similar to that shown in FIG. In this case, four emitter strips 213 each having a length of approximately 4.0 mm are juxtaposed, and the pellet has a rectangular shape with one opposite side being approximately 6.0 mm long and the other opposite side being approximately 4.0 mm long. The maximum current that can be cut off by this GTO at a clamp voltage of 400V is about 10OA.
第7図は本発明のさらに改良された他の実施例テする。FIG. 7 shows another further improved embodiment of the present invention.
シリコンペレット21の中に、長さ約5、8 mm r
幅約0.3叫のエミッタ短冊213が4個並置されてそ
の表面にクロム、ニッケル、銀からなる厚さ約4μmの
オーミック電極層221が低抵抗接触され、このエミッ
タ短冊213に並行して幅約0.2 mm 、長さが約
5.8 mのゲート電極層231がエミッタ短冊213
を狭む形で設けられている。これらのオーミック電極層
221及び231の上にさらに、銅電極リード222及
び232が半田付けされる。これら電極リード222゜
232は厚さ約30〜50μmの銅箔をペレット上のエ
ミッタ短冊表面の電極層221及びゲート電極層231
の形に従って各々くし形状に成形し、半田を介して、こ
れらに接続したものである。この場合、各エミッタ短冊
上に設けられた電極層221は電極リード222によっ
て相互に電気的に接続され外部に引き出される。Inside the silicon pellet 21, about 5.8 mm long
Four emitter strips 213 with a width of about 0.3 mm are arranged in parallel, and an ohmic electrode layer 221 with a thickness of about 4 μm made of chromium, nickel, and silver is connected to the surface with low resistance. A gate electrode layer 231 with a thickness of about 0.2 mm and a length of about 5.8 m forms an emitter strip 213.
It is set up in a narrow shape. Copper electrode leads 222 and 232 are further soldered onto these ohmic electrode layers 221 and 231. These electrode leads 222 and 232 are connected to the electrode layer 221 and the gate electrode layer 231 on the surface of the emitter strip on the pellet using copper foil with a thickness of about 30 to 50 μm.
They are each formed into a comb shape according to the shape of , and connected to them via solder. In this case, the electrode layers 221 provided on each emitter strip are electrically connected to each other by electrode leads 222 and drawn out to the outside.
かかる構成の実施例では、エミッタ短冊上の電極層並び
にゲート電極層に沿う横方向の電極抵抗は、各々の上に
給酸される厚さ数10μmの銅箔によって著しく低減さ
れており、横方向の電極層内の電位降下による動作の不
均一は著しく改善される。これによって、エミッタ短冊
の長さは本実施例の5.8簡にとどまらずさらに7.8
rrrmと一層長くすることも可能であり、電流のし
ゃ断限界は一層改善できる。この改良された実施例はさ
らに、第4図及び第6図の実施例に示す、アルミニウム
線のワイヤボンディングに必要となるボンデインクハツ
トの占める面積を省略できるのでベレットサイスは約7
5%に縮少できるという経済上の利点がある。この実施
例では、クラップ電圧400Vでの電流しゃ断限界は約
25OAと大幅に向上した。In an embodiment of such a configuration, the lateral electrode resistance along the electrode layer on the emitter strip as well as the gate electrode layer is significantly reduced by a copper foil several tens of micrometers thick that is oxidized on top of each; The non-uniformity of operation due to the potential drop within the electrode layer is significantly improved. As a result, the length of the emitter strip is not only 5.8 in this embodiment, but also 7.8 in length.
It is also possible to make the length longer than rrrm, and the current cutoff limit can be further improved. This improved embodiment also eliminates the area occupied by the bonding ink hat required for wire bonding aluminum wires, as shown in the embodiments of FIGS. 4 and 6, so that the bullet size is approximately 7.
There is an economic advantage in that it can be reduced to 5%. In this example, the current cutoff limit at a clap voltage of 400V was significantly improved to about 25OA.
以上説明したように本発明に、よれば、GToの安全動
作領域の拡大が図られ、素子の電流しゃ断時の破壊限界
を決める電流、電圧が増大するという性能向上の効果が
ある。・また、この性能向上は、GTOをインバータな
どの実回路に使用する際、アーム短絡などの異常時に対
するGTOの保護回路を簡単化できる。すなわち、GT
oに流れる電流を制限する役目の限流用インダクタンス
を小形・低価格化でき、また異常検出、指令回路を簡単
化できる。さらに、クランプ電圧400Vで25OA以
上の電流を安全にしゃ断できるので、従来、GTOの保
護のため必要とした、0.1〜0.2μFのスナバコン
デンサ、有極性ダイオードなどのスナバ回路を省略でき
るなど、GTo応用装置の小形、簡略、低価格化など経
済的効果は勘大である。As explained above, according to the present invention, the safe operation area of the GTo is expanded, and the current and voltage that determine the destruction limit when the element current is cut off are increased, which is an effect of improving performance.・This improved performance also simplifies the GTO protection circuit for abnormalities such as arm short circuits when the GTO is used in actual circuits such as inverters. That is, G.T.
The current-limiting inductance, which serves to limit the current flowing through o, can be made smaller and cheaper, and the abnormality detection and command circuits can be simplified. Furthermore, since a current of 25 OA or more can be safely cut off with a clamp voltage of 400 V, the snubber circuit such as a 0.1 to 0.2 μF snubber capacitor or polarized diode that was conventionally required to protect the GTO can be omitted. , the economic effects of GTo application equipment such as smaller size, simplicity, and lower cost are enormous.
又、本発明のGTOベレットは必ず長方形形状となるの
で、ペレットの方向9位置検知が容易となり、自動マウ
ント、選別などが簡単になる等という副次的効果もある
。Furthermore, since the GTO pellet of the present invention always has a rectangular shape, it becomes easy to detect nine positions of the pellet in each direction, and there are also side effects such as easy automatic mounting, sorting, etc.
第1図及び第2図は従来のGTOの従来例を示す平面図
並びに断面図、第3図は従来例のGTOの安全動作領域
を示す特性図、第4図は本発明の一実施例を示す平面図
及び断面図、第5図は第4図に示すGTOの安全動作領
域を示す特性図、第6図及び第7図は本発明の他の実施
例を示す概略図である。
21・・・ペレット、211・・・エミッタ短冊、22
・・・カノード電極、23・・・ゲート電極、24・・
・アノー第 1 図
((L〕
(b)
(C1,)
→アノー ド°電IE ひAに (V)第 4
図
(bン1 and 2 are a plan view and a sectional view showing a conventional example of a conventional GTO, FIG. 3 is a characteristic diagram showing a safe operating area of a conventional GTO, and FIG. 4 is an example of an embodiment of the present invention. FIG. 5 is a characteristic diagram showing the safe operation area of the GTO shown in FIG. 4, and FIGS. 6 and 7 are schematic diagrams showing other embodiments of the present invention. 21... Pellet, 211... Emitter strip, 22
...Cathode electrode, 23...Gate electrode, 24...
・Anode Figure 1 ((L) (b) (C1,) → Anode °Electric IE HiA (V) 4th
Figure (b)
Claims (1)
方の対辺が他方の対辺より長い方形形状をなし、一対の
主表面間にPNPの連続した4層を有し、一方の主表面
には外側のN層とそれに隣接する中間のP層とが露出し
、他方の主表面には少なくとも外側のP層が露出し、外
側のN層は長手方向を一方の主表面の長手方向と一致さ
せて並設した複数個の短冊状領域から成っている半導体
ペレットと、 一方の主表面において、外側のN層に低抵抗接触したカ
ソード電極と、 一方の主表面において、外側のN層の周縁に沿って中間
のP層に低抵抗接触したゲート電極と、他方の主表面に
おいて、少なくとも外側のP層に低抵抗接触したアノー
ド電極と、 を具備することを特徴とするゲートターンオフサイリス
タ。 2、特許請求の範囲第1項において、上記カソード電極
は上記カソード層の上記短冊状領域と略同形状を有し上
記短冊状領域に接着した複数個の第1の導電部材と、第
1の導電部材相互を電気的に接続する第2の導電部材と
から成り、上記ゲート電極は中間のP層に接着した第1
の導電部材とその上に接着した第2の導電部材とから成
ることを特徴とするゲートターンオフサイリスタ。 3、特許請求の範囲第2項において、上記カソード電極
の上記第1の導電部材及び上記ゲート電極の上記第1の
導電部材を銅箔としたことを特徴とするゲートターンオ
フサイリスタ。[Claims] 1. A pair of main surfaces located on opposite sides each have a rectangular shape with one opposite side longer than the other opposite side, and have four consecutive layers of PNP between the pair of main surfaces, An outer N layer and an intermediate P layer adjacent thereto are exposed on one main surface, at least an outer P layer is exposed on the other main surface, and the outer N layer extends longitudinally toward one main surface. A semiconductor pellet consisting of a plurality of strip-shaped regions arranged in parallel along the longitudinal direction; a cathode electrode in low resistance contact with the outer N layer on one main surface; A gate comprising: a gate electrode in low resistance contact with the intermediate P layer along the periphery of the N layer; and an anode electrode in low resistance contact with at least the outer P layer on the other main surface. turn-off thyristor. 2. In claim 1, the cathode electrode has substantially the same shape as the strip-shaped region of the cathode layer, and includes a plurality of first conductive members adhered to the strip-shaped region; a second conductive member that electrically connects the conductive members to each other;
A gate turn-off thyristor comprising a conductive member and a second conductive member bonded thereon. 3. The gate turn-off thyristor according to claim 2, wherein the first conductive member of the cathode electrode and the first conductive member of the gate electrode are made of copper foil.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19284781A JPS5895865A (en) | 1981-12-02 | 1981-12-02 | Gate turn off thyristor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19284781A JPS5895865A (en) | 1981-12-02 | 1981-12-02 | Gate turn off thyristor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5895865A true JPS5895865A (en) | 1983-06-07 |
Family
ID=16297957
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19284781A Pending JPS5895865A (en) | 1981-12-02 | 1981-12-02 | Gate turn off thyristor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5895865A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62293738A (en) * | 1986-06-13 | 1987-12-21 | Internatl Rectifier Corp Japan Ltd | Semiconductor device |
JPS6327061U (en) * | 1986-08-05 | 1988-02-22 |
-
1981
- 1981-12-02 JP JP19284781A patent/JPS5895865A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62293738A (en) * | 1986-06-13 | 1987-12-21 | Internatl Rectifier Corp Japan Ltd | Semiconductor device |
JPS6327061U (en) * | 1986-08-05 | 1988-02-22 | ||
JPH0526770Y2 (en) * | 1986-08-05 | 1993-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0588094B1 (en) | Semiconductor device with reduced internal inductance | |
JPS6043668B2 (en) | semiconductor equipment | |
US3622845A (en) | Scr with amplified emitter gate | |
EP0064231B1 (en) | Compression-type semiconductor device | |
JP2987088B2 (en) | MOS technology power device chips and package assemblies | |
JP2007201247A (en) | High withstand voltage semiconductor device | |
US4561008A (en) | Ballasted, gate controlled semiconductor device | |
JPS61198701A (en) | Overvoltage controller | |
CN210403712U (en) | Power module | |
JP4706551B2 (en) | Power semiconductor element and power module | |
JP2000058820A (en) | Power semiconductor element and power module | |
JPS5895865A (en) | Gate turn off thyristor | |
JP3612226B2 (en) | Semiconductor device and semiconductor module | |
US4652902A (en) | Power semiconductor device | |
JPS6364907B2 (en) | ||
JP2001103731A (en) | Protective circuit for power facilities | |
US4357621A (en) | Reverse conducting thyristor with specific resistor structures between main cathode and amplifying, reverse conducting portions | |
JP7080392B2 (en) | Pressure welding type semiconductor device | |
JPS61295651A (en) | Semiconductor input-protecting device | |
JPH07230733A (en) | Semiconductor arrestor | |
JP3387622B2 (en) | Semiconductor device protection circuit | |
JPH07202097A (en) | Semiconductor device and lead frame | |
JPS583385B2 (en) | Kaden Atsuhogososhi | |
JPH0328519Y2 (en) | ||
JPS61225875A (en) | Surge absorbing semiconductor device |