JPS5895701A - Optical switch - Google Patents

Optical switch

Info

Publication number
JPS5895701A
JPS5895701A JP19372981A JP19372981A JPS5895701A JP S5895701 A JPS5895701 A JP S5895701A JP 19372981 A JP19372981 A JP 19372981A JP 19372981 A JP19372981 A JP 19372981A JP S5895701 A JPS5895701 A JP S5895701A
Authority
JP
Japan
Prior art keywords
optical fiber
optical
input
fiber
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19372981A
Other languages
Japanese (ja)
Inventor
Hiroshi Terui
博 照井
Masao Kawachi
河内 正夫
Katsunari Okamoto
勝就 岡本
Noriyoshi Shibata
典義 柴田
Akira Tomaru
暁 都丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP19372981A priority Critical patent/JPS5895701A/en
Publication of JPS5895701A publication Critical patent/JPS5895701A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/3502Optical coupling means having switching means involving direct waveguide displacement, e.g. cantilever type waveguide displacement involving waveguide bending, or displacing an interposed waveguide between stationary waveguides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/3536Optical coupling means having switching means involving evanescent coupling variation, e.g. by a moving element such as a membrane which changes the effective refractive index
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/354Switching arrangements, i.e. number of input/output ports and interconnection types
    • G02B6/35442D constellations, i.e. with switching elements and switched beams located in a plane
    • G02B6/3546NxM switch, i.e. a regular array of switches elements of matrix type constellation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/3564Mechanical details of the actuation mechanism associated with the moving element or mounting mechanism details
    • G02B6/3568Mechanical details of the actuation mechanism associated with the moving element or mounting mechanism details characterised by the actuating force
    • G02B6/3574Mechanical force, e.g. pressure variations

Abstract

PURPOSE:To make input/output side lens systems and a triangular prism unnecessary, to make a titled switch small-sized, to realize its mass production, and also to elevate its accuracy, by utilizing direct coupling of an input side optical fiber and an output side optical fiber. CONSTITUTION:An input side optical fiber 1 and an output side optical fiber are disposed to cross at an angle theta. A refractive index n2 of a core part of the optical fiber 2 is larger than a refractive index n1 of a core part of the input side optical fiber 1, and there is no clad or it is thin, therefore, the electric field distribution exudes to the outside of the fiber. The cross angle theta is smaller than cos<-1> (n1/n2), and when propagation constants beta1, beta2 of input 1' and switch light 2' satisfy theta=cos<-1> (beta1/beta2) by changing a distance of the optical fibers 1, 2, both fibers are coupled. Subsequently, the fiber 1 is fixed, the optical fibers are crossed through a spacer 6, and the distance between the fibers is changed by applying voltage to a laminated piezoelectric body 7.

Description

【発明の詳細な説明】 本発明は、光通信システムや光情報処理システムに用い
られる光スィッチに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical switch used in optical communication systems and optical information processing systems.

従来のこの種の装置は、第1図に示すように構成されて
いた。第7図はJXJ光スイッチの例な示す。入力側光
フアイバl中を伝搬して来た入力光I′は、入力側レン
ズ11によって空間中に平行光ビームとして出射される
。この平行光ビーム光路の上部または下部には、電磁石
等によって駆動される上下動可能なj角プリズム亭が設
置されている。非スイッチ時には、該平行光ビームは非
スイッチ光出力側レンズ系J′に入射し、ざら(非スイ
ッ、ヵ出カ゛側、t7アイ、、1へよ導ヵ、わ、非、イ
ッチ光3′となる。一方、スイッチ時には、所定の平行
光ビーム光路中にj′角プリズム4INF−移動させる
( 図中]実線で示されたj角プリズム)。このように
j角プリズムrrs動させると、該平行光ビームは該j
角プリスムダによって偏向されて出方側レンズ系lに入
射し、さらに出方側光ファイバコに導かれてスイッチ光
−′となる。
A conventional device of this type was constructed as shown in FIG. FIG. 7 shows an example of a JXJ optical switch. The input light I' propagating through the input optical fiber 1 is emitted into space by the input lens 11 as a parallel light beam. At the upper or lower part of this parallel light beam optical path, a J-angle prism shaft that is driven by an electromagnet or the like and is movable up and down is installed. In the non-switched state, the parallel light beam enters the non-switched light output side lens system J' and is guided to the non-switched output side, t7 eye, 1. On the other hand, when switching, the j'-angle prism 4INF- is moved into the predetermined parallel light beam optical path (the j-angle prism indicated by the solid line in the figure).When the j-angle prism rrs is moved in this way, the The parallel light beam is
The light is deflected by the angle prism and enters the exit side lens system l, and is further guided to the exit side optical fiber to become switch light -'.

前記のような構成では、次のような問題点があった。The above configuration has the following problems.

第1には、光フアイバ中の伝搬光管空間中の平行光ビー
ムに変換するために、入出射端において精密なレンズ系
/# 、 alおよびJ’li−gPすることである。
The first is the use of precise lens systems /#, al and J'li-gP at the input and output ends to convert the propagation in the optical fiber into a parallel light beam in the light tube space.

第一には、精密な研磨行程、無反射膜付着工程尋、作製
において高度の熟練を娶する!角プリズム4If多数個
必要とする(とである。さらに第3には、j角プリズム
ダおよびその駆動機構は工作精度1得るため、ある程度
以上の大きさを要し、小形化が困難であることである。
Firstly, we have highly skilled experts in the precise polishing process, anti-reflection coating process, and manufacturing process! A large number of square prisms 4If are required (and thirdly, the J-angle prism and its drive mechanism require a certain size or more in order to obtain a machining accuracy of 1, making it difficult to miniaturize. be.

従って、前述の従来の光スィッチは量産に遺した構造で
ないので、高価格であり、かつ大型なものであった。
Therefore, the above-mentioned conventional optical switch does not have a structure suitable for mass production, and is therefore expensive and large.

本発明は前記問題点な#央マるため、個別部品点数P減
らして量産向きに、かつ小型な構造としたものであり、
その目的は安価な小型光スイッチ管大量に供給マること
にある。以下図面により本発明の詳細な説明する。
The present invention solves the above-mentioned problem by reducing the number of individual parts P, making it suitable for mass production and having a compact structure.
The purpose is to supply large quantities of inexpensive small optical switch tubes. The present invention will be explained in detail below with reference to the drawings.

#I!−図は本発明の光スィッチの基本構造および原理
管示す平面図であり、第3図はその側面図である。入力
何党ファイバlと出力側光ファイバーが11p12図に
示すように所定の交差角θで交差して設置すれている。
#I! 3 is a plan view showing the basic structure and principle tube of the optical switch of the present invention, and FIG. 3 is a side view thereof. As shown in Figures 11 and 12, the input multi-party fiber 1 and the output side optical fiber are installed so as to intersect at a predetermined crossing angle θ.

出力側光ファイバコのコア部の屈折率n2は、入力側光
ファイバlのコア部の屈折率n工よりも大きい。また両
党ファイバのクラ 。
The refractive index n2 of the core portion of the output optical fiber 1 is larger than the refractive index n2 of the core portion of the input optical fiber 1. Also the two-party fiber club.

ラド層は、十分薄いかまたは無いので、光フアイバ中の
伝搬光の電界分布には、111!J図に示Tように1フ
アイバ外へしみ出している。交差角θは、C□B−1(
nl/h2 )より小さい値に設定されている。
The Rad layer is sufficiently thin or absent that the electric field distribution of the light propagating in the optical fiber has a 111! As shown in Figure J, it seeps out to the outside of one fiber. The intersection angle θ is C□B-1(
nl/h2).

前記構成−において、入力側光フアイバl中を入l力光
l′が交差部性進入してきた場合な考える。出力側光フ
ァイバコーと入力側光ファイバlの距離が十分離れてお
り、入力光l′の電界分布12のしみ出しか出力側光フ
ァイバコにまで及んでいない場合には、入力光l′は交
差部をそのまま通り過ぎ、非ス・イツ千光3′となる。
In the above configuration, consider the case where the input light l' enters the input optical fiber l at an intersection. If the distance between the output optical fiber and the input optical fiber l is sufficiently far, and only the electric field distribution 12 of the input light l' extends to the output optical fiber, the input light l' will cross. It passes directly through the section and becomes Hi-Su Itsu Senko 3'.

一方、出力側光ファイバコと入力側光ファイバーの距離
が小ざくなり、入力光l′の電界分布12のしみ出しが
出力側光ファイバjに及び、かつ入力光l′の伝搬定数
β、とスイッチ光コ′ノ伝搬定数βがe −cog−1
(βV12”) f−満たTと、入力何党ファイバーと
出力側光ファイハコとは結合する。そして入力光l′は
交差部で出力側光ファイバλ′へ移り、スイッチ光2′
となる。
On the other hand, the distance between the output optical fiber and the input optical fiber becomes smaller, and the electric field distribution 12 of the input light l' spills over to the output optical fiber j, and the propagation constant β of the input light l' and the switch light The propagation constant β is e −cog−1
(βV12'') f-satisfied T, the input multi-party fiber and the output side optical fiber box are coupled.Then, the input light l' moves to the output side optical fiber λ' at the intersection, and the switch light 2'
becomes.

このようにして入力側光ファイバーと出力@元ファイバ
コとの交差部での距離管変化せしめれば、光スイツチ作
用が実現される。変化せしめる距離は光の波長程度で十
分である。
By changing the distance at the intersection of the input optical fiber and the output fiber in this way, an optical switch effect can be realized. It is sufficient for the distance to be changed to be about the wavelength of light.

光スイッチ作用4得るためには、入力側光ファイバおよ
び出力側光ファイバの少なくともいずれか管動かT必要
がある。この動きおよび作製工程中における光ファイバ
の取り扱いに光ファイバの強度が耐え得ない場合には、
1M4図に水工ように、偏心コア光フアイバ管用いれば
よい。マなわち入力側光ファイバーと出力側光ファイバ
コのクラッド部の最も薄い部位を内力)い合わせて交差
ぎせる。
In order to obtain the optical switch function 4, it is necessary to connect at least one of the input optical fiber and the output optical fiber. If the strength of the optical fiber cannot withstand this movement and handling of the optical fiber during the fabrication process,
An eccentric core optical fiber tube can be used as shown in the waterworks in Figure 1M4. In other words, the thinnest parts of the cladding parts of the input optical fiber and the output optical fiber are brought together (internal force) and crossed.

光フアイバ同志の結合は電界分布のしみ出しの大1きい
薄いクラッドat用い、一方、機械的強度は厚いクラッ
ド部に負わせる。
The optical fibers are coupled to each other by using a thin cladding having a large leakage of the electric field distribution, while the mechanical strength is provided by the thick cladding.

光ファイバの駆動方法は、第5図に示すように1ればよ
い◎入力側光ファイバは基板S&:接着剤等で固定マる
か、または樹脂もしくはガラス中に埋め込んだ後、エツ
チングしてファイバ部な露出させる。この上部にスペー
サ4rt介して、出力側光ファイバコを所定の交差角に
交差させて設置Tる。ざら(その上部に、出力側光ファ
イバーG1:lip触させて積層圧電体71r装荷する
。、この積層圧電体7は、ファイバ間の距離管機調整す
るための調整ねじlに固定されており、この調整ねじl
は支具9で保持されている。このような構成において、
積層圧電体7に端子M ioによって電圧な印加または
しゃ断することにより、両党ファイバ間の距離な変化せ
しめることができ、光スイツチ作用が実現される。光ス
ィッチの効率、マなわち入力光7′とスイッチ光2′の
強度比は、調整ねじtの操作および積層圧電体7への印
加電圧によって変えることができ、所望のスイッチ効率
が得られる。なお前記では、入力側光7アイバ/f−基
板jの上に固定したが、これとは逆に出力側光ファイバ
コな固定し、入力側光ファイバ/f駆動する構造として
も得られる作用番ゴ同じである。
The method for driving the optical fiber is as shown in Figure 5. ◎The input optical fiber is fixed to the substrate S&: by fixing it with adhesive, or by embedding it in resin or glass and then etching it into the fiber. Partial exposure. Output side optical fibers are installed on top of this via a spacer 4rt so as to intersect at a predetermined crossing angle. A laminated piezoelectric material 71r is loaded by touching the output side optical fiber G1:lip on the top of the groove.This laminated piezoelectric material 7 is fixed to an adjustment screw l for adjusting the distance between the fibers, and this Adjustment screw l
is held by a support 9. In such a configuration,
By applying or cutting off a voltage to the laminated piezoelectric body 7 through the terminal Mio, the distance between the two party fibers can be changed, and an optical switch effect can be realized. The efficiency of the optical switch, ie, the intensity ratio of the input light 7' and the switch light 2', can be changed by operating the adjusting screw t and applying the voltage to the laminated piezoelectric body 7, so that a desired switch efficiency can be obtained. In the above, the input side optical fiber 7 is fixed on the board j, but on the contrary, the output side optical fiber 7 may be fixed on the board and the input side optical fiber/f may be driven. It's the same.

さて前記スイッチ管用いれば、第1図に示!ようなマト
リクススイッチが#I成し得る。第6図では一例として
3×3スイツチを示しである。基板jの上に、入力側光
7アイパlの平行列管固宇し、その上に出力側光ファイ
バコの平行列P、所定の交差角0で交差させ、スペーサ
6f介して固定マる。これによってできる7個の交差部
の上部に、第5図に示した出力側光ファイバ駆動部P装
荷する。支具tおよび基板jは筐体// &:固定Tる
。このようなマトリクススイッチを構成する場合、大き
さおよび作製の容易性の点から、交差角θは大きい方が
良い。前述したようk、交差角θはθ(cos  (1
/h2 )ii−満を丁必要がある。これ゛より入力優
先ファイバ/のコアの屈折率n工と、出力側光ファイバ
コのコアの屈折率n2の差は大′き、い方が良い。これ
P実現するには、入力側光フチ1イパlに石英系ファイ
バ(nニー1.ギ6)管、出力側光ファイバコにはムs
 −s −se−ae TAカルコケナイドガラスファ
イバ(n、>コ、ター)管用しするのか有効である。こ
の場合、炉前後の大きな交差角度が得られる。
Now, if we use the switch tube, it will be shown in Figure 1! A matrix switch like #I can be made. FIG. 6 shows a 3×3 switch as an example. A parallel array of input optical fibers 7 and I is mounted on a substrate j, and a parallel array of output optical fibers P is placed thereon, intersecting at a predetermined intersection angle of 0, and fixed via a spacer 6f. The output side optical fiber drive unit P shown in FIG. 5 is loaded on top of the seven intersections created by this. The support t and the board j are fixed to the housing. When configuring such a matrix switch, the larger the intersection angle θ is, the better, in terms of size and ease of manufacture. As mentioned above, k, the intersection angle θ is θ(cos (1
/h2) ii-It is necessary to complete. From this, the difference between the refractive index n of the core of the input priority fiber and the refractive index n2 of the output side optical fiber is large, and the better. To achieve this, a quartz fiber (n knee 1. gear 6) tube is placed on the input side optical edge 1, and a
-s -se-ae It is effective for use with TA chalcokenide glass fiber (n, > co, ter) tubes. In this case, a large crossing angle before and after the furnace is obtained.

以上説明したように、本発明の光スィッチ8ま、 ・高
精度i−@L、かつ形状も大きい入出力側レンズ系t’
 、 J’ 、 i’lsヨび!角プリズム参などを介
さず、入力側晃ファイバlと出力側光ファイバλとの直
・・・接的結合管利用したものであるから、従来の光ス
ィッチと比較して、作製工程数が少なく、容易に “作
製し得るものであり、量産に適してしする。さら紀、石
英系光ファイバとカルフゲナイドガラス系光ファイバを
組み合わせれば、交差角度な大きくとることができ、ま
t積層圧電体を用し%n11、ファイバ駆動部が小型に
なり、従来の光スィッチと比較して極めて小型な光スィ
ッチな実現し得るO従って本発明の光スィッチは、安価
で、力)つtJ\型な光スィッチとして、光通信、光情
報処理などの、分針において、有力な光部品となり得る
ものである。
As explained above, the optical switch 8 of the present invention has the following features: - Input/output lens system t' with high precision i-@L and large shape
, J', i'ls Yobi! Since it uses a direct coupling tube between the input side optical fiber l and the output side optical fiber λ without using a square prism etc., the number of manufacturing steps is reduced compared to conventional optical switches. It is easy to fabricate and is suitable for mass production.By combining silica-based optical fiber and calfgenide glass-based optical fiber, a large intersection angle can be obtained, and lamination. By using a piezoelectric material, the fiber driving part can be made smaller, making it possible to realize an extremely compact optical switch compared to conventional optical switches.Therefore, the optical switch of the present invention is inexpensive and has low power. As a type of optical switch, it can be a powerful optical component in minute hands for optical communication, optical information processing, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光スィッチの構成図、第一図は本発明の
光スィッチの基本構造の平面図、第3図は本発明の光ス
ィッチの基本構造の側面図、第事図は本発明の光スィッ
チにおける偏心コア光フアイバ管用いた場合の基本構造
図、第3図は本発明の光スィッチのファイバ駆動部の構
成図、I[lはマトリクススイッチの斜視図である。 l・・・入力側光ファイバ、l′・・・入力光 11・
・・入力側レンズ系、コ・・・出力側光ファイ/< 、
λ′・・・スイッチ光、コト俸・出力側レンズ系、3・
・・非スイッチ光出力側光ファイA%J’・・・非スイ
ッチ光、3′・・・非スイッチ光出力側レンズ系、ダ・
・・j角プリズム、!・・・基板、6・・・スペーサ、
7・・・積層圧1体、t・・・調整ねじ、9・・・支具
、IO・・・端子線、/l・・・筐体、12・・・入力
光の電界分布。 第1図 第3図 第5図 第6図
Fig. 1 is a block diagram of a conventional optical switch, Fig. 1 is a plan view of the basic structure of the optical switch of the present invention, Fig. 3 is a side view of the basic structure of the optical switch of the present invention, and Fig. 3 is a plan view of the basic structure of the optical switch of the present invention. FIG. 3 is a diagram of the basic structure of an optical switch using an eccentric core optical fiber tube, FIG. 3 is a configuration diagram of a fiber drive section of the optical switch of the present invention, and I[l is a perspective view of a matrix switch. l...Input side optical fiber, l'...Input light 11.
...Input side lens system, Co...Output side optical fiber/< ,
λ′...Switch light, output side lens system, 3.
・・Non-switched light output side optical fiber A%J'...Non-switched light, 3′...Non-switched light output side lens system, da・
...J-angle prism! ...Substrate, 6...Spacer,
7... Lamination pressure 1 unit, t... Adjustment screw, 9... Support, IO... terminal wire, /l... Housing, 12... Electric field distribution of input light. Figure 1 Figure 3 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】 1−  Wr嘗の厚みなもつクラッド部を有する第1の
光ファイバと、所定の厚みPもつクラッド部管有し、か
つコア部の屈折率か第1の光ファイバのコア部の屈折率
より大きい第2の光ファイバが、入力側光ファイバのコ
アの屈折率tnよ、出力側の光ファイバのフ了の屈折率
t n、 、第1の光ファイバと第一の光ファイ 、。 sノ交差角t e トt、、# (oos−1(”1/
  )2 なるような所定の交差角0で第7の光ファイバと交差し
て配置され、交差部における第1の光ファイバと第2の
光ファイバの距11F変化させるm*v備えたことを特
徴とする光スィッチ。 2、特許請求の範囲第1項記載の光スィッチにおいて、
第1の光ファイバが所望の数どけ互いに平行に配tされ
、第1の光ファイバ列ト平行な平面上に第2の光フアイ
バ列が第1の・・光フアイバ列(所定の交差角θで交差
して、所望の数だけ互いに平行に配I12れていること
【特徴とTる光スィッチ。 & 特許請求の範髄第1項記載の光スィッチにおいて、
゛第1の光7アイパおよび第一の光ファイバのいずれか
、または両方に偏心コア光フアイバ管用いることを特徴
とする光スィッチ。 。 本 特許請求の範囲IN/項記載の光スィッチ(おいて
、第1の光ファイバに石英系光ファイバ1、第一の光フ
ァイバにカルコゲナイドガラス7、了イパP用いるとと
管特徴とする光スィッチ。 器 特許請求の範囲第1項記載の光スィッチにおいて、
第1の光ファイバと第2の光7アイパとの間の距離な変
化させる機構として、第一の光ファイバである出力側光
ファイバの上部に、この出力側光ファイバに接触させて
釉整ねじに固定されており、前記積層圧電体に。 端子線によって電圧を印加またはしゃ断Tること(より
、第7の光ファイバと第一の光フフイバのfWJの距離
f変化させる機*f備えたこと管特徴とTる光スィッチ
[Claims] 1- A first optical fiber having a cladding portion with a thickness of Wr.; a cladding tube having a predetermined thickness P; The second optical fiber has a refractive index greater than the refractive index of the core of the input optical fiber, tn, and the refractive index of the output optical fiber, tn, , the first optical fiber and the first light. Phi,. intersection angle te t,,# (oos-1("1/
)2 is arranged to intersect with the seventh optical fiber at a predetermined intersection angle of 0 such that the distance between the first optical fiber and the second optical fiber at the intersection is changed by 11F, m*v. light switch. 2. In the optical switch according to claim 1,
A desired number of first optical fibers are arranged in parallel with each other, and a second optical fiber row is arranged on a plane parallel to the first optical fiber row (at a predetermined crossing angle θ). A desired number of light switches are arranged parallel to each other, intersecting with each other.
``An optical switch characterized in that an eccentric core optical fiber tube is used for either or both of the first optical seven-eyeper and the first optical fiber. . This optical switch according to claims IN/(in which a quartz-based optical fiber 1 is used as a first optical fiber, a chalcogenide glass 7 is used as a first optical fiber, and a tube characterized in that a pipe is used) .In the optical switch according to claim 1,
As a mechanism for changing the distance between the first optical fiber and the second optical fiber, a glaze adjusting screw is attached to the top of the output side optical fiber, which is the first optical fiber, in contact with this output side optical fiber. and fixed to the laminated piezoelectric body. An optical switch with a tube characteristic that includes a device for applying or cutting off a voltage by means of a terminal wire (thereby changing the distance f of fWJ between the seventh optical fiber and the first optical fiber).
JP19372981A 1981-12-03 1981-12-03 Optical switch Pending JPS5895701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19372981A JPS5895701A (en) 1981-12-03 1981-12-03 Optical switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19372981A JPS5895701A (en) 1981-12-03 1981-12-03 Optical switch

Publications (1)

Publication Number Publication Date
JPS5895701A true JPS5895701A (en) 1983-06-07

Family

ID=16312829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19372981A Pending JPS5895701A (en) 1981-12-03 1981-12-03 Optical switch

Country Status (1)

Country Link
JP (1) JPS5895701A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2613844A1 (en) * 1987-01-23 1988-10-14 Jaeger Device designed to interrupt or to attenuate a light signal which is propagating in an optical guide
EP0320251A2 (en) * 1987-12-10 1989-06-14 Oxley Developments Company Limited Fibre optic switching system
JPH01503571A (en) * 1987-04-02 1989-11-30 ブリテツシユ・テレコミユニケイシヨンズ・パブリツク・リミテツド・カンパニー light switch
WO2008110364A1 (en) * 2007-03-15 2008-09-18 Hochschule Niederrhein Optical switching device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2613844A1 (en) * 1987-01-23 1988-10-14 Jaeger Device designed to interrupt or to attenuate a light signal which is propagating in an optical guide
JPH01503571A (en) * 1987-04-02 1989-11-30 ブリテツシユ・テレコミユニケイシヨンズ・パブリツク・リミテツド・カンパニー light switch
EP0320251A2 (en) * 1987-12-10 1989-06-14 Oxley Developments Company Limited Fibre optic switching system
WO2008110364A1 (en) * 2007-03-15 2008-09-18 Hochschule Niederrhein Optical switching device

Similar Documents

Publication Publication Date Title
JP3039347B2 (en) Optical component with switching function and waveguide filter used for the same
JP3522117B2 (en) Self-guided optical circuit
US6275626B1 (en) 1xN reflector switch
JPH0688915A (en) Planar lightguide and manufacture thereof
US6483961B1 (en) Dual refraction index collimator for an optical switch
JPH04275519A (en) Optical matrix switch
US6885789B2 (en) Optical switch fabricated by a thin film process
JPS62275230A (en) Optical gate matrix switch
JPS5895701A (en) Optical switch
JP2002055288A5 (en)
US6229934B1 (en) High-speed low-loss fiber-optic switches
JPH11326707A (en) Laser photocoupler and control method for laser photocoupling
JPH10300956A (en) Optical branching waveguide and optical waveguide circuit
CN113238313A (en) Array optical waveguide, preparation method thereof, imaging system and augmented reality equipment
JPH03215812A (en) Matrix optical switch
JPS6010220A (en) Optical switch
JP2000321454A (en) Multi-mode interference optical coupler and manufacture thereof
WO2006028210A1 (en) Optical switch
JP2000147286A (en) Optical waveguide and its manufacture
JPH01288802A (en) Light guide and its production
WO2022044101A1 (en) Optical waveguide component and method for manufacturing same
WO2023218607A1 (en) Optical circuit chip
JP3062345B2 (en) Multilayer optical waveguide interlayer coupling device
JP2000121854A (en) Optical part, optical branching device, optical demultiplexer and optical multiplexer
JPH08163031A (en) Waveguide type optical switch and waveguide type matrix optical switch