JPS5895602A - Hydrocarbon fuel reformer - Google Patents

Hydrocarbon fuel reformer

Info

Publication number
JPS5895602A
JPS5895602A JP56194049A JP19404981A JPS5895602A JP S5895602 A JPS5895602 A JP S5895602A JP 56194049 A JP56194049 A JP 56194049A JP 19404981 A JP19404981 A JP 19404981A JP S5895602 A JPS5895602 A JP S5895602A
Authority
JP
Japan
Prior art keywords
gas
catalyst
inorganic
water
hydrocarbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56194049A
Other languages
Japanese (ja)
Inventor
Kenji Tabata
研二 田畑
Ikuo Matsumoto
松本 郁夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP56194049A priority Critical patent/JPS5895602A/en
Publication of JPS5895602A publication Critical patent/JPS5895602A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:An integrally formed body composed of multi-layer thin walls of heat- resistant inorganic substance is coated with a colloidal inorganic heat-resistant material and the product is used as support of a catalyst for a fuel reforming with high activity and a long life. CONSTITUTION:After the reactor tube 2 is previously heted up to the prescribed reaction temperature with the heater 11, a ydrocarbon gas is fed from pipe 6 and preheated by the heater 11. In the meantime, water or air is fed from pipe 8 to the path 7 in the reactor 11 and heated with the heater 11 where the water is converted into steam. Thus, while the preheated hydrocarbon gas and the preheated steam or air pass through inorganic heat-resistant fibers 9, they are thoroughly mixed and led to the reforming catalyst 10. The hydrocarbon and steam or air is converted over the catalyst 10 into an inorganic gas mainly consisting of hydrogen and carbon dioxide. The reformed gas is sent through pipe 12 into the cooler 13 where the excess water is condensed and they are separted in the gas-liquid separator 14 into water and the product gas. Then, the product gas is stored in a tank and used as required.

Description

【発明の詳細な説明】 本発明は炭化水素を水又は空気と混合してリフォーミン
グ触媒により水素及び炭酸ガスを主とした無機ガスに改
質する炭化水素燃料改質装置のリフォーミング触媒の担
体に関するものである。
Detailed Description of the Invention The present invention provides a support for a reforming catalyst for a hydrocarbon fuel reformer that mixes hydrocarbons with water or air and reformes them into inorganic gases mainly consisting of hydrogen and carbon dioxide using a reforming catalyst. It is related to.

従来のリフォーミング触媒の担体としては、アルミナ、
シリカ、コーディエライト、チタニア等の無機質耐熱性
材料をビーズ状、ペレット状に成型したものが用いられ
ていた。この担体の形状を断面がハニカム状又は格子状
の如き多層の薄壁からなる角形又は円筒形に成型した一
体成型体とすることによし、下記の効果が得られる。
Conventional reforming catalyst supports include alumina,
Inorganic heat-resistant materials such as silica, cordierite, and titania molded into beads or pellets were used. The following effects can be obtained by forming the carrier into a rectangular or cylindrical integrally molded body having a honeycomb-like or lattice-like cross-section and having multilayer thin walls.

■ 担体に担持された触媒と炭化水素が反応する空間速
度を大きくしても触媒の活性低下が少ない。
■ Even if the space velocity at which the catalyst supported on the carrier and the hydrocarbon react is increased, the activity of the catalyst will not decrease much.

■ 触媒層の圧力損失が小さいため、装置全体を小型化
することができる。
■ Since the pressure loss in the catalyst layer is small, the entire device can be made smaller.

■ 触媒体のえ換がしやすくな粂。■ Easy to replace the catalyst.

しかし炭化氷炭改質装置をより小型化するために、より
少ない触媒量でより多くの炭化水素ガスが処理できるよ
りも、活性度の高い触媒体の開発が望まれている。
However, in order to further downsize the charcoal reformer, it is desired to develop a highly active catalyst that can process more hydrocarbon gas with a smaller amount of catalyst.

本発明は従来の触媒体と比較してより活性度が高く、し
かも長寿命のリフォーミング触媒体をつくるための担体
を提供するものである。
The present invention provides a support for producing a reforming catalyst having higher activity and longer life than conventional catalysts.

本発明は触媒体の担体となる母材としてアルミナ、コー
ディエライト、チタニア、ムライト等の耐熱性無機質か
らなり、断面がハニカム状又は格子状の如き多層の薄壁
からなる角形又は円筒形等の一体成型体上に、母材と異
なるコロイド状のγ−アルミナ、チタニア、マグネンヤ
、ジルコニア等の無機質耐熱性材料を塗布などによりコ
ートしてリフォーミング触媒の担体を構成したことによ
り、この担体上に触媒を担持したとき担体と触媒の欠点
を互いに補い、より優れた触媒体を提出することができ
る。
The present invention uses a heat-resistant inorganic material such as alumina, cordierite, titania, or mullite as a base material to serve as a support for the catalyst, and the cross section is made of a rectangular or cylindrical shape with multilayer thin walls such as a honeycomb shape or a lattice shape. By coating the integrally molded body with an inorganic heat-resistant material such as colloidal γ-alumina, titania, magenya, zirconia, etc., which is different from the base material, by coating etc., a reforming catalyst carrier is formed. When a catalyst is supported, the deficiencies of the support and the catalyst can be mutually compensated for and a more excellent catalyst body can be provided.

以下本発明の一実施を図にもとづいて説明する。An embodiment of the present invention will be explained below based on the drawings.

白金属等の活性金属種の内、1種又は数種を1〜20重
量パーセント担持したものをリフォーミング触媒体とし
て用いた炭化水素燃料改質装置を示すものである。改質
装置の本体1は内側から反応管2.中管3.外管4の三
重管で構成され、外管4と中管3との間の通路ムロには
、天然ガス′、メタンガス、プロパンガスあるいは、予
めヒータ(図示せず)によって加熱されガス状となった
灯油、軽油等が供給される炭化水素ガス供給管6が接続
されている。更に中管3と反応管2との間の通路B7に
は水又は空気が供給される水、空気供給管8が接続され
ている。なお、この通路ムロ及び通路B7内には石英ウ
ール等の無機質耐熱性繊維9が充填されている。この反
応管2内には無機質耐熱性セラミックからなるリフォー
ミング触媒体10が設けられている。11は反応管2に
設けられ、リフォーミング触媒体10を加熱するヒータ
である。リフォーミング触媒体10の担体をなす母材と
して、耐熱性無機質のシリカ−アルミナ5べ−7 からなり、断面が格子状の一体成型体で、この母材の上
にチタニアを6重量パーセント塗布して担体を構成した
。この担体上に触媒としてニッケルを含浸法により担持
したものをリフォーミング触媒体10とした。
This shows a hydrocarbon fuel reforming device using as a reforming catalyst one or more of active metals such as platinum metals supported in an amount of 1 to 20% by weight. A main body 1 of the reformer is connected to a reaction tube 2 from the inside. Middle tube 3. It is composed of a triple tube with an outer tube 4, and the passage between the outer tube 4 and the middle tube 3 is filled with natural gas, methane gas, propane gas, or gas that has been heated in advance with a heater (not shown) and turned into a gas. A hydrocarbon gas supply pipe 6 to which kerosene, light oil, etc. is supplied is connected. Furthermore, a water/air supply pipe 8 through which water or air is supplied is connected to the passage B7 between the middle tube 3 and the reaction tube 2. Note that the passage unevenness and the inside of the passage B7 are filled with inorganic heat-resistant fibers 9 such as quartz wool. A reforming catalyst body 10 made of an inorganic heat-resistant ceramic is provided within the reaction tube 2 . A heater 11 is provided in the reaction tube 2 and heats the reforming catalyst body 10. The base material forming the carrier of the reforming catalyst body 10 is an integrally molded body made of heat-resistant inorganic silica-alumina 5-7 and has a lattice-like cross section. Titania is coated at 6% by weight on top of this base material. A carrier was constructed. A reforming catalyst body 10 was prepared by supporting nickel as a catalyst on this carrier by an impregnation method.

反応管2の後部には改質の結果生成した水素及び炭酸ガ
スの無機ガスを送る送気管12が接続されている。この
送気管12の外周の一部に冷気管13が設けられ、更に
冷却の結果コンデンスした液と無機ガスとを分離する気
液分離器14が接続されている。分離された無機ガスは
ガス溜め(図示せず)に蓄えられる。
An air supply pipe 12 is connected to the rear part of the reaction tube 2 to send inorganic gases such as hydrogen and carbon dioxide produced as a result of reforming. A cold air pipe 13 is provided on a part of the outer periphery of the air pipe 12, and is further connected to a gas-liquid separator 14 that separates liquid condensed as a result of cooling from inorganic gas. The separated inorganic gas is stored in a gas reservoir (not shown).

本体1の前部は押え板16で覆われている。この押え板
16はボルト16により取り外し可能と々りており、劣
化したリフォーミング触媒体10を交換できるようにな
っている。
The front part of the main body 1 is covered with a press plate 16. This holding plate 16 is sharp and can be removed with bolts 16, so that a deteriorated reforming catalyst body 10 can be replaced.

次に炭化水素改質装置の作用について説明する。Next, the operation of the hydrocarbon reformer will be explained.

予め所定の反応温度(700〜900℃)にヒータ11
で反応管2を加熱した後、炭化水素ガスを炭化水素供給
管6より供給する。供給された炭化り′・−ノ 水素ガスはヒータ11で予熱される。−力水又は空気は
水、空気供給管8を通って本体1内の通路B7に供給さ
れた後、ヒータ11で予熱され、水は水蒸気となる。上
記のように予熱された炭化水素ガスと水蒸気又は空気は
石英ウール等の無機質耐熱性繊維9の中を通過する間に
十分混合され、リフォーミング触媒体1oに供給される
。炭化水素ガスと水又は空気はリフォーミング触媒体1
゜で水素、二酸化炭素を主とする無機ガスに改質される
。改質された無機ガスは送気管12を通り冷却管13で
余剰の水分がコンデンスされ、気液分離器14で水と生
成ガスとに分離される。分離された生成ガスはガス溜(
図示せず)に蓄えられ必要に応じて使用される。
The heater 11 is heated to a predetermined reaction temperature (700 to 900°C) in advance.
After heating the reaction tube 2, hydrocarbon gas is supplied from the hydrocarbon supply pipe 6. The supplied carbonized hydrogen gas is preheated by a heater 11. - After the power water or air is supplied to the passage B7 in the main body 1 through the water and air supply pipe 8, it is preheated by the heater 11, and the water turns into steam. The preheated hydrocarbon gas and water vapor or air are sufficiently mixed while passing through the inorganic heat-resistant fibers 9 such as quartz wool, and then supplied to the reforming catalyst body 1o. Hydrocarbon gas and water or air are reforming catalyst 1
At ℃, it is reformed into inorganic gases mainly consisting of hydrogen and carbon dioxide. The reformed inorganic gas passes through an air supply pipe 12, excess water is condensed in a cooling pipe 13, and is separated into water and generated gas in a gas-liquid separator 14. The separated product gas is stored in a gas reservoir (
(not shown) and used as needed.

次に本実施例のり7オ一ミング触媒体10を用いて炭化
水素ガスを改質した結果を表−1に示す。
Next, Table 1 shows the results of reforming hydrocarbon gas using the glue 7 oming catalyst 10 of this example.

炭化水素燃料として灯油を気化し、反応条件として反応
温度:8oO℃、H20/C:1−2、L、 H,B、
V: 1.S (液体炭化水素の処理量/触媒の容積)
、リフォーミング触媒体1oとしてシリヵーアルミすか
らなる母材を断面がeooセルの格子状に一体に成型し
てチタニアを5重量パーセント塗布して担体を構成し、
との担体に16重量パーセントのニッケルを含浸法によ
抄担持して850℃で2時間焼成し、soo’cで2時
間水素還元したものを触媒体ムとした。
Kerosene was vaporized as a hydrocarbon fuel, and the reaction conditions were reaction temperature: 8oO℃, H20/C: 1-2, L, H, B,
V: 1. S (Liquid hydrocarbon throughput/catalyst volume)
As the reforming catalyst body 1o, a base material made of silica aluminum is integrally molded into a lattice shape with a cross section of eOO cells, and 5% by weight of titania is applied to form a carrier.
A catalyst material was obtained by supporting 16 weight percent of nickel on a carrier by an impregnation method, calcining it at 850° C. for 2 hours, and reducing it with hydrogen in soo'c for 2 hours.

また上、記触媒体ムと比較するために、母材にチタニア
を塗布せずに担体に同様の方法でニッケルを担持したも
のを触媒体Bとした。
In addition, in order to compare with the above-mentioned catalyst body B, a catalyst body B was prepared in which nickel was supported on the carrier in the same manner without applying titania to the base material.

〈表−1〉 上記表−1から明らかなように本実施例のリフォーミン
グ触媒体ム1oを用いた場合は、触媒体Bと比較して触
媒活性がよいばかりでなく、特に顕著力効果として触媒
劣化の主因であるカーボン幅に伸すことができる。
<Table-1> As is clear from Table-1 above, when the reforming catalyst body M1o of this example was used, it not only had better catalytic activity compared to catalyst body B, but also had a particularly pronounced force effect. It can be extended to carbon width, which is the main cause of catalyst deterioration.

この実験の結果は次のように説明することができる。即
ち衆知のように大きな表面積(260〜s o o r
re/f)をもつシリカニアルミナからなる担体の母材
は、担持金属の粒子径を小さくすることによって触媒作
用を高めるのに有効であるが、その反面固体酸強度が強
いため、触媒反応中和体上にカーボン状物質が堆積しや
すい。
The results of this experiment can be explained as follows. In other words, as is well known, it has a large surface area (260~s o or
The base material of the support made of silica alumina with re/f) is effective in increasing the catalytic activity by reducing the particle size of the supported metal, but on the other hand, it has a strong solid acid strength, so it cannot be used during the catalytic reaction. Carbon-like substances tend to accumulate on the body.

さらにシリカ−アルミナ中の遊離したアルミナと触媒で
あるニッケルとがスピネル型構造物(NiA/204)
をつくりやすく活性度が低下するためである。
Furthermore, free alumina in the silica-alumina and nickel as a catalyst form a spinel-type structure (NiA/204).
This is because it is easier to create and the activity decreases.

そこで本実施例では、非常に弱い固体酸であるチタニア
を母材であるアルミナ−シリカ上に塗布して担体を構成
したことにより、担体の表面積(25o rn”/7)
をほとんど減すること逐く、しかも担体上にニッケル等
の触媒を担持させてもスi。
Therefore, in this example, the carrier was constructed by coating titania, which is a very weak solid acid, on the alumina-silica base material.
Moreover, even if a catalyst such as nickel is supported on the carrier,

ネル型構造物が生成することもなく、従って活性度が高
く長寿命のリフォーミング触媒体ム10を91・−ソ つくることができる。
There is no generation of flannel-type structures, and therefore, a reforming catalyst body 10 with high activity and long life can be produced.

また機械的強度があり表面積の小さい無機質耐熱性材料
を母材として一体成型体をつくり、表面積の大きなγ−
アルミナを塗布することにより、活性度の高い担体を構
成することができる。
In addition, an integrally molded body is made using an inorganic heat-resistant material with mechanical strength and a small surface area as a base material, and a γ-
By applying alumina, a highly active carrier can be constructed.

以上の説明から明らかなように本発明の炭化水素燃料改
質装置は、触媒体の担体をなす母材をアルミナ、コーデ
ィエライト、チタニア、ムライト等の耐熱性無機質から
なり断面がハニカム状又は格子状の如き多層の薄壁から
なる角形又は円筒形の一体成型体とし、この母材の上に
母材と異なるコロイド状の無機質耐熱材をコートして担
体を構成したことにより、この担体上に触媒を担持させ
た場合に担体と触媒とのそれぞれの欠点を補い、活性度
の高い長寿命のリフォーミング触媒体をつくることがで
きる。
As is clear from the above description, in the hydrocarbon fuel reformer of the present invention, the base material forming the carrier of the catalyst is made of a heat-resistant inorganic material such as alumina, cordierite, titania, mullite, etc., and the cross section is honeycomb-shaped or lattice-shaped. By forming a rectangular or cylindrical integrally molded body consisting of multi-layered thin walls such as the shape of the base material, and constructing a carrier by coating the base material with a colloidal inorganic heat-resistant material different from the base material, When a catalyst is supported, the respective drawbacks of the carrier and the catalyst can be compensated for, and a reforming catalyst body with high activity and long life can be produced.

またこのようなリフォーミング触媒体を炭化水素燃料改
質装置に用いることにより触媒作用が優れているので、
よりコンパクトな炭化水素燃料改質装置をつくることが
可能となる。
In addition, when such a reforming catalyst body is used in a hydrocarbon fuel reformer, it has excellent catalytic action.
It becomes possible to create a more compact hydrocarbon fuel reformer.

101し101

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例を示す炭化水素燃料改質装置の側
断面図である。 1・・・・・・本体、1o・・・・・・リフォーミング
触媒体。
The figure is a side sectional view of a hydrocarbon fuel reformer showing one embodiment of the present invention. 1...Main body, 1o...Reforming catalyst body.

Claims (3)

【特許請求の範囲】[Claims] (1)炭化水素を水又は空気と混合しリフォーミング触
媒を通過させ水素及び炭酸ガスを主とした無機ガスに改
質する構成とし、リフォーミング触媒の担体をなす母材
として、アルミナ、コーディエライト、チタニア、ムラ
イト等の耐熱性無機質からなり、断面がハニカム状又は
格子状の如き多層の薄壁からなる角形又は円筒形等の一
体成型体上に、母材と異方るコロイド状のγ−アルミナ
、チタニア、マグネシャ、ジルコニア等の無機質耐熱材
料をコートして担体とした炭化水素燃料改質装置。
(1) A structure in which hydrocarbons are mixed with water or air and passed through a reforming catalyst to be reformed into inorganic gases mainly consisting of hydrogen and carbon dioxide. A colloidal γ anisotropic with respect to the base material is formed on a rectangular or cylindrical integrally molded body made of heat-resistant inorganic materials such as light, titania, and mullite, and has a multilayer thin wall with a honeycomb-like or lattice-like cross section. - Hydrocarbon fuel reformer using a carrier coated with an inorganic heat-resistant material such as alumina, titania, magnesia, or zirconia.
(2)前記母材にコートする無機質耐熱材料としてコロ
イド状のγ−アルミナの中にカリウム、カルシウム、マ
グネシュウム等のアルカリ金属及びアルカリ土類金属を
混合した特許請求の範囲第1項記載の炭化水素燃料改質
装置。 2べ ン
(2) The hydrocarbon according to claim 1, wherein alkali metals and alkaline earth metals such as potassium, calcium, and magnesium are mixed in colloidal γ-alumina as an inorganic heat-resistant material coated on the base material. Fuel reformer. 2 ben
(3)担体にニッケル、コバルト、鉄、白金等の触媒を
1種又は数種担持した特許請求の範囲第1項記載の炭化
水素燃料改質装置。
(3) The hydrocarbon fuel reforming device according to claim 1, wherein one or more types of catalysts such as nickel, cobalt, iron, and platinum are supported on the carrier.
JP56194049A 1981-12-02 1981-12-02 Hydrocarbon fuel reformer Pending JPS5895602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56194049A JPS5895602A (en) 1981-12-02 1981-12-02 Hydrocarbon fuel reformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56194049A JPS5895602A (en) 1981-12-02 1981-12-02 Hydrocarbon fuel reformer

Publications (1)

Publication Number Publication Date
JPS5895602A true JPS5895602A (en) 1983-06-07

Family

ID=16318088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56194049A Pending JPS5895602A (en) 1981-12-02 1981-12-02 Hydrocarbon fuel reformer

Country Status (1)

Country Link
JP (1) JPS5895602A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02160603A (en) * 1988-12-15 1990-06-20 Kawasaki Heavy Ind Ltd Reforming of fuel for fuel cell
JP2009106931A (en) * 2007-09-27 2009-05-21 Sued-Chemie Ag New catalyst design and production process for steam reforming catalyst

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5457505A (en) * 1977-10-15 1979-05-09 Sakai Chemical Industry Co Honeycomb structure
JPS5467588A (en) * 1977-11-09 1979-05-31 Bridgestone Corp Catalyst carrier

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5457505A (en) * 1977-10-15 1979-05-09 Sakai Chemical Industry Co Honeycomb structure
JPS5467588A (en) * 1977-11-09 1979-05-31 Bridgestone Corp Catalyst carrier

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02160603A (en) * 1988-12-15 1990-06-20 Kawasaki Heavy Ind Ltd Reforming of fuel for fuel cell
JP2009106931A (en) * 2007-09-27 2009-05-21 Sued-Chemie Ag New catalyst design and production process for steam reforming catalyst

Similar Documents

Publication Publication Date Title
US11305250B2 (en) Catalytically heated fuel processor with replaceable structured supports bearing catalyst for fuel cell
AU2004217989B2 (en) Pressure swing reforming for fuel cell systems
US6482375B1 (en) Method for carrying out a chemical reaction
US20070219279A1 (en) Method for enhancing catalyst selectivity
JPH03165831A (en) Method of performing chemical reaction and reactor used for said reaction
CN1187259C (en) Synthesis gas production by steam reforming using catalyzed hardware
US7247258B2 (en) Compact partial oxidation reactor assemblage with fast start-up capability
KR20010106274A (en) A process for the autothermal catalytic steam reforming of hydrocarbons
US7799314B2 (en) Hydrogen production and use in an internal combustion engine system
RU2292237C1 (en) Catalyst, method for preparation thereof, and synthetic gas production process
JPS5849602A (en) Steam reformer
JPS5895602A (en) Hydrocarbon fuel reformer
JP2002220202A (en) Method of manufacturing hydrogen
KR101751589B1 (en) Heat Exchanger-Type Reactor Having Plates Coated with Different Catalysts
US20080257713A1 (en) Catalytic reactors with active boundary layer control
RU2248932C1 (en) Catalyst (options), method for preparation thereof (options) and synthesis gas generation method (option)
JPS58181704A (en) Apparatus for reforming hydrocarbon fuel
US20080286177A1 (en) Reactor with differentially distributed catalytic activity
JPH0431243Y2 (en)
JPS5879089A (en) Reforming apparatus of hydrocarbon fuel
JPS58223603A (en) Reformer of hydrocarbon fuel
JPS5879088A (en) Reforming apparatus of hydrocarbon fuel
JPS5815005A (en) Gas reformer
JPS58202050A (en) Catalyst body for reforming hydrocarbon
WO2001064337A1 (en) Method of preparation of catalyst for use in removing co in hydrogen containing gas