JPS5895204A - Detection for sample position - Google Patents

Detection for sample position

Info

Publication number
JPS5895204A
JPS5895204A JP56192888A JP19288881A JPS5895204A JP S5895204 A JPS5895204 A JP S5895204A JP 56192888 A JP56192888 A JP 56192888A JP 19288881 A JP19288881 A JP 19288881A JP S5895204 A JPS5895204 A JP S5895204A
Authority
JP
Japan
Prior art keywords
mark
electron beam
sample position
sample
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56192888A
Other languages
Japanese (ja)
Inventor
Tadao Konishi
小西 忠雄
Yoshihisa Namikawa
南川 佳久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56192888A priority Critical patent/JPS5895204A/en
Publication of JPS5895204A publication Critical patent/JPS5895204A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/304Controlling tubes by information coming from the objects or from the beam, e.g. correction signals
    • H01J37/3045Object or beam position registration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B15/00Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons

Abstract

PURPOSE:To detect a sample position with a high precision in a high speed independently of the shape of a mark, by scanning the mark on the surface of the sample circularly with an electron beam and detecting the sample position on a basis of the value of intervals of reflected electrons obtained by measurement. CONSTITUTION:A radiated electron beam of an electrooptical system 10 is deflected to a shape like a circle by a deflecting means 11 and is irradiated to a mark 1, which is formed with plural lines intersecting each other, on the surface of a smaple to scan the mark 1 circularly. The reflected beam generated by scanning is detected by a detector 15 and is amplified and becomes a detection signal 16. Deflecting signals 13 and 14 are inputted to differentiating circuits 21 and 22, and intervals of generation of the signal 16 is measured by discriminating signals 23 and 24. The deviation of center coordinates of the mark 1 is obtained on a basis of this measured value, and a prescribed value is added to or subtrated from center coordinates of the beam, and the actual center coordinates of the mark 1 and the sample position are calculated.

Description

【発明の詳細な説明】 本発明は、試料に付された位置検出用のマークを電子ビ
ーム等により走査することによって試料位置を検出する
試料位置検出方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a sample position detection method for detecting a sample position by scanning a position detection mark attached to a sample with an electron beam or the like.

従来、この種の検出方法として次のようなものがある。Conventionally, there are the following detection methods of this type.

すなわち、第1図に示すように、試料の表面に「口」字
状のマーク1を形成し、このマーク1を水平方向の電子
ビーム2および垂直方向の電子ビーム3によって順次走
査し、各方向の電子ビームがマーク1の端部を通過する
時に得られる反射ビームの検出信号4および5により、
マーク1の中心座標位置6および7を算出し、この中心
座標位置を試料位置とするようにしたものがある。
That is, as shown in FIG. 1, a mark 1 in the shape of a "mouth" is formed on the surface of a sample, and this mark 1 is sequentially scanned by a horizontal electron beam 2 and a vertical electron beam 3. By the detection signals 4 and 5 of the reflected beam obtained when the electron beam passes through the end of the mark 1,
There is a method in which center coordinate positions 6 and 7 of mark 1 are calculated and these center coordinate positions are set as the sample position.

ところが、この検出方法においては、検出位置座標の精
度を上げるために「口」字状のマーク1を小さくすると
、このマーク1の端部を検出するまでに多くの予備走査
ビーム8を必要とし、検出時間が長くかかるという欠点
がある。さらには、電子ビーム2および3を順次移動さ
せるだめの走査制御用波形9が第2図に示すように鋸歯
状波となるため、高速の走査が困難となり、また各走査
期間の間には休止期間tを必要として高速でマーク位置
を検出することができないという欠点を有している。
However, in this detection method, if the mouth-shaped mark 1 is made smaller in order to improve the accuracy of the detection position coordinates, many preliminary scanning beams 8 are required to detect the end of this mark 1. The disadvantage is that the detection time is long. Furthermore, since the scanning control waveform 9 for sequentially moving the electron beams 2 and 3 becomes a sawtooth wave as shown in FIG. 2, high-speed scanning becomes difficult, and there are pauses between each scanning period. This method has the disadvantage that the mark position cannot be detected at high speed because the period t is required.

本発明の目的は試料位置を高精度および高速で検出し得
るようにした試料位置検出方法を提供することにある。
An object of the present invention is to provide a sample position detection method that allows the sample position to be detected with high precision and high speed.

本発明は交差する複数の直線により試料の表面に形成さ
れたマークを電子ビームにより円状に走査し、電子ビー
ムがマークの各直線を横切る時に発生する反射電子の発
生時間間隔を測定し、この測定値によりマークの中心位
置を算出し、この算出値に基づき試料位置を検出するよ
うにしたものである。
In the present invention, a mark formed on the surface of a sample by a plurality of intersecting straight lines is scanned in a circular manner by an electron beam, and the time interval of backscattered electrons generated when the electron beam crosses each straight line of the mark is measured. The center position of the mark is calculated from the measured value, and the sample position is detected based on this calculated value.

以下、図示する実施例に基づき本発明の詳細な説明する
Hereinafter, the present invention will be described in detail based on illustrated embodiments.

第3図は本発明の一実施例を示すブロック構成図である
。同図において、電子光学系10から発射された電子ビ
ームは、偏向コイルおよび静電偏光板などX、yの2方
向の偏向手段11によって円状に偏向され名。この円状
に偏向された電子ビームは、試料の表面上に互いに交差
する複数の直線によって形成されたマーク1に照射され
て該マーク1を円状に走査すふ。この場合、偏向回路1
2から偏向手段11に与える偏向信号は、X方向偏向信
号13としてAcos t、 X方向偏向信号14とし
てAs+inωtなどの正弦波形信号が用いられる。
FIG. 3 is a block diagram showing one embodiment of the present invention. In the figure, an electron beam emitted from an electron optical system 10 is circularly deflected by a deflection means 11 in two directions, X and Y, such as a deflection coil and an electrostatic polarizing plate. This circularly deflected electron beam is irradiated onto a mark 1 formed by a plurality of straight lines that intersect with each other on the surface of the sample, and scans the mark 1 in a circular manner. In this case, deflection circuit 1
As the deflection signals given to the deflection means 11 from the X-direction deflection signal 13, sinusoidal waveform signals such as Acos t and As+inωt are used as the X-direction deflection signal 14.

マーク1を電子ビームにより走査すると、電子ビームが
マーク1の各直線を横切るタイミングで反射ビームが発
生する。この反射ビームは検出器15によって検出され
た後増幅されて検出信号16となる。
When the mark 1 is scanned by an electron beam, a reflected beam is generated at the timing when the electron beam crosses each straight line of the mark 1. This reflected beam is detected by a detector 15 and then amplified to become a detection signal 16.

例えば、2つの直交1する直線で形成されたマーク1を
、第4図(a)に示すように(ΔX、Δy)を中心座標
とする円状の電子ビームによって走査した場合、電子ビ
ームが各直線を横切る位置17゜18.19.20で第
4図(d)に示すような検出信号16が発生する。
For example, when a mark 1 formed by two orthogonal straight lines is scanned by a circular electron beam with the center coordinates (ΔX, Δy) as shown in FIG. A detection signal 16 as shown in FIG. 4(d) is generated at a position 17°18.19.20 across the straight line.

そこで、偏向信号13および14を微分回路21および
22にそれぞれ入力し、微分回路21から電子ビームが
第4象限および第3象限にあることを示す識別信号24
(第4図(e))を発生させると共に、微分回路22か
ら電子ビームが第3象限および第2象限にあることを示
す識別信号23(第4図(f))を発生させるようにし
ておく。そして、これらの識別信号23および24によ
シ、反射ビームの検出信号16の発生間隔tI +  
’2 +t3+’4 を測定する。
Therefore, the deflection signals 13 and 14 are input to differentiating circuits 21 and 22, respectively, and the differentiating circuit 21 outputs an identification signal 24 indicating that the electron beam is in the fourth and third quadrants.
(FIG. 4(e)), and the differentiation circuit 22 generates an identification signal 23 (FIG. 4(f)) indicating that the electron beam is in the third and second quadrants. . Based on these identification signals 23 and 24, the generation interval tI + of the detection signal 16 of the reflected beam is
Measure '2 +t3+'4.

すると、第5図に示すように、交点20と電子ビームの
y軸の中心座標ΔXとの偏角αと、交点17と電子ビー
ムのy軸の中心座標Δyとの偏向Bとはそれぞれ次式に
示すようなものとなる。
Then, as shown in FIG. 5, the deflection α between the intersection 20 and the center coordinate ΔX of the y-axis of the electron beam, and the deflection B between the intersection 17 and the center coordinate Δy of the y-axis of the electron beam are expressed by the following equations, respectively. It will look like the one shown below.

従って、電子ビームの中心座標ΔX、Δyは電子ビーム
の半径をγとすると次式によって求めることができる。
Therefore, the center coordinates ΔX and Δy of the electron beam can be determined by the following equation, where γ is the radius of the electron beam.

ΔX=γsinα すなわち、マーク1の中心座標(x、y)に対する電子
ビームの中心座標の偏差を求めることができる。従って
、このようにして求めた電子ビームの中心座標(ΔX、
Δy)に対して所定値を加算または減算することにより
、マーク1の実際の中心座標(x、y)を求めることが
できる。
ΔX=γsinα That is, the deviation of the center coordinates of the electron beam with respect to the center coordinates (x, y) of the mark 1 can be determined. Therefore, the center coordinates of the electron beam (ΔX,
By adding or subtracting a predetermined value from Δy), the actual center coordinates (x, y) of the mark 1 can be determined.

ところで、上記第(3)式および第(4)式の演算は第
6図に示すような演算回路により求めることができる。
Incidentally, the calculations of equations (3) and (4) above can be obtained by an arithmetic circuit as shown in FIG.

すなわち、第1の加算器25によって時間間隔t、〜t
4の和(t、−1−t2+’t、+t、 )を求め、こ
の和の値を除算器28および29に対して除数値として
入力する。一方、第2の加算器26によりr(tz+t
s)  (tl+t4)Jを求め、この演算値を除算器
28に対して被除数値として入力する。また、第3の加
算器27によシr <t、−1−t2)−(t3+t4
)」を求め、この演算値を除算器29に対して被除数値
として入力する。そして、除算器28において の演算を行ってこの演算値を正弦関数発生器30へ入力
する。これによシ、正弦関数発生器30から電子ビーム
の中心座標Δ−yを示す演算値を得ることができる。
That is, the first adder 25 calculates the time interval t, ~t
4 (t, -1-t2+'t, +t, ) is calculated, and the value of this sum is inputted to the dividers 28 and 29 as a divisor value. On the other hand, the second adder 26 calculates r(tz+t
s) Find (tl+t4)J and input this calculated value to the divider 28 as the dividend value. Also, the third adder 27 inputs r<t, -1-t2)-(t3+t4
)" and inputs this calculated value to the divider 29 as the dividend value. Then, a calculation is performed in the divider 28 and the calculated value is input to the sine function generator 30. Thereby, a calculated value indicating the center coordinate Δ-y of the electron beam can be obtained from the sine function generator 30.

一方、除算器29において め演算を行ってこの演算値を正弦関数発生器31へ入力
する。これにより、正弦関数発生器30から電子ビーム
の中心座標ΔXを示す演算値を得ることができる。
On the other hand, the divider 29 performs a calculation and the calculated value is input to the sine function generator 31. Thereby, a calculated value indicating the center coordinate ΔX of the electron beam can be obtained from the sine function generator 30.

このように本発明においては電子ビーンによって試料の
表面に形成されたマークを円状に走査し、この走査によ
って得られた反射電子の発生間隔の測定値に基づき試料
位置を検出するものであるとめ、マークの形状の大小に
関係なく試料位置を高精度で検出できる。また、電子ビ
ームの走査制御には正弦波を用いているため、高速の走
査が可能となり、試料位置を高速で検出することができ
る。
In this way, in the present invention, marks formed on the surface of a sample are scanned in a circular manner by an electron bean, and the sample position is detected based on the measured value of the generation interval of reflected electrons obtained by this scanning. , the sample position can be detected with high accuracy regardless of the size of the mark shape. Furthermore, since a sine wave is used to control the scanning of the electron beam, high-speed scanning is possible, and the sample position can be detected at high speed.

また、円状の走査であるため、従来のような予備走査が
不要となり、高速の位置検出をさらに促進することがで
きるなどの効果がある。
Further, since the scanning is circular, there is no need for preliminary scanning as in the conventional method, and there is an effect that high-speed position detection can be further promoted.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の試料位置検出方法の一例を示す図、第2
図は電子ビームの走査制御用の波形図、第3図は本発明
の一実施例を示すブロック構成図、第4図はその動作を
説明するためのタイムチャート、第5図はマークの中心
位置を求める方法の説明図、第6図はその演算回路の一
例を示す図である。 1・・・マーク、10・・・電子光学系、11・・・偏
光手段、12・・・偏向回路、15・・・検出器、21
.22・・・微第10 第20
Figure 1 shows an example of a conventional sample position detection method;
The figure is a waveform diagram for scanning control of the electron beam, Figure 3 is a block diagram showing an embodiment of the present invention, Figure 4 is a time chart for explaining its operation, and Figure 5 is the center position of the mark. FIG. 6, which is an explanatory diagram of the method for determining , is a diagram showing an example of the arithmetic circuit. DESCRIPTION OF SYMBOLS 1... Mark, 10... Electron optical system, 11... Polarization means, 12... Deflection circuit, 15... Detector, 21
.. 22...Minute 10th 20th

Claims (1)

【特許請求の範囲】[Claims] 1、交差する。−複数の直線で試料の表面に形成された
試料位置検出用のマークを電子ビームにより円状に走査
する走査手段と、電子ビームが各直線を横切る時に発生
する反射電子を検出する検出手段と、反射電子の検出信
号間隔を測定する測定手段と、この測定手段の測定出力
によりマークの中心位置および試料位置を算出する算出
手段とを備えてなる試料位置検出方法。
1. Cross. - a scanning means for circularly scanning marks for sample position detection formed on the surface of the sample by a plurality of straight lines with an electron beam; a detection means for detecting reflected electrons generated when the electron beam crosses each straight line; A method for detecting a sample position, comprising: a measuring means for measuring a detection signal interval of reflected electrons; and a calculating means for calculating a mark center position and a sample position based on the measurement output of the measuring means.
JP56192888A 1981-12-02 1981-12-02 Detection for sample position Pending JPS5895204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56192888A JPS5895204A (en) 1981-12-02 1981-12-02 Detection for sample position

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56192888A JPS5895204A (en) 1981-12-02 1981-12-02 Detection for sample position

Publications (1)

Publication Number Publication Date
JPS5895204A true JPS5895204A (en) 1983-06-06

Family

ID=16298639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56192888A Pending JPS5895204A (en) 1981-12-02 1981-12-02 Detection for sample position

Country Status (1)

Country Link
JP (1) JPS5895204A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5529767A (en) * 1978-08-24 1980-03-03 Agency Of Ind Science & Technol Measuring method for displacement of target mark

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5529767A (en) * 1978-08-24 1980-03-03 Agency Of Ind Science & Technol Measuring method for displacement of target mark

Similar Documents

Publication Publication Date Title
JPH02291908A (en) Inspection of tandem-layout shaft
JPH0555802B2 (en)
KR100483666B1 (en) A System for Measuring Flying Position and Velocity of Globe-Shaped Object Using the Light Fan Screen
EP0316624A2 (en) Improved imaging and inspection apparatus and method
JP3265724B2 (en) Charged particle beam equipment
JPH02278103A (en) Method and device for three-dimensionally inspecting printed circuit substrate
US5831735A (en) Non-contact optical measurement probe
JPS626112A (en) Surface shape measuring method
JPS5895204A (en) Detection for sample position
JPS59184804A (en) Optical distance sensor
JP3269925B2 (en) Edge position detection method for members
KR980011955A (en) Position detection method by the reflected scattered light of the laser beam irradiated to the position detection object
JPH0282515A (en) Electron beam lithography
JPS6347334B2 (en)
JPS63215907A (en) Section measuring apparatus
JPH04105010A (en) Method and device for shape and dimension measurement
JPS63108208A (en) Measuring method for shape of body of the like
JPS642201B2 (en)
JP2755885B2 (en) Method for detecting the position of a light beam incident on a CCD
JPH0554605B2 (en)
JPS631910A (en) Dimension measuring apparatus
JPH01244303A (en) Three-dimensional shape measuring device of non-contact method
JPH0674742A (en) Electron beam dimension measuring apparatus
JPH03291842A (en) Sample image display device
JPS5826325Y2 (en) position detection device