JPS589438A - Communication system of constant electric power and single side band - Google Patents

Communication system of constant electric power and single side band

Info

Publication number
JPS589438A
JPS589438A JP10796081A JP10796081A JPS589438A JP S589438 A JPS589438 A JP S589438A JP 10796081 A JP10796081 A JP 10796081A JP 10796081 A JP10796081 A JP 10796081A JP S589438 A JPS589438 A JP S589438A
Authority
JP
Japan
Prior art keywords
signal
carrier
ssb
circuit
amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10796081A
Other languages
Japanese (ja)
Inventor
Minoru Suzuki
稔 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaesu Musen Co Ltd
Original Assignee
Yaesu Musen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaesu Musen Co Ltd filed Critical Yaesu Musen Co Ltd
Priority to JP10796081A priority Critical patent/JPS589438A/en
Publication of JPS589438A publication Critical patent/JPS589438A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/68Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission for wholly or partially suppressing the carrier or one side band

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Reduction Or Emphasis Of Bandwidth Of Signals (AREA)

Abstract

PURPOSE:To ensure the desired band width of SSB and to facilitate the handling of FM, by securing almost constant level for the total sum of the energy of a carrier and the energy of a side band. CONSTITUTION:In order to control the carrier quantity of reinsertion by an AF signal of a modulating/amplifying circuit, a modulated signal passed through an amplifier 2 from a microphone 1 and the output of a carrier oscillator 3 are applied to a balanced modulator to produce a DSB signal. This DSB signal is converted into an SSB signal through a filter 5, and a front edge part is formed for an SSB signal transmitter which supplies the SSB signal to an IF amplifier 6. On the other hand, a carrier is reinserted to an SSB.IF stage through a circuit 7 to be controlled. The circuit 7 is formed so that the intensity of modulated signal is adversely proportional to the carrier intensity by a control signal obtained by eliminating the audible frequency component of the output of a modulated signal amplifier 8 through a LPF9.

Description

【発明の詳細な説明】 この発明は特にVHF −UHF帯の移動通信用に適す
る、一種のSSB (Single 5ide Ban
d )電波を使用する通信方式を提供しようとするもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a type of SSB (Single 5ide Ban) particularly suitable for mobile communication in the VHF-UHF band.
d) It seeks to provide a communication method that uses radio waves.

現在HF帯の電話通信にはほとんどSSBが使用されて
いる。SSBの利点は電力効率が良く、占有帯幅が狭く
、選択性フエーデングの影響が少ないことであるが、反
面において受信機の同調がむつかしく、AGC’がファ
ストアタック・スローレリーズで保持時定数が大きいた
め、市街地の移動通信のように信号強度が急激に変化す
る使用には問題がある。
SSB is currently used for most HF band telephone communications. The advantages of SSB are that it is power efficient, has a narrow occupied bandwidth, and is less affected by selective fading, but on the other hand, it is difficult to tune the receiver, and the AGC' is fast attack/slow release and has a large holding time constant. Therefore, there is a problem in applications where the signal strength changes rapidly, such as in mobile communications in urban areas.

一方でVHF −UHF帯の移動通信用には、同調が容
易で急激な信号強度の変化にもリミ、り使用で対応でき
るFM波が多く使用されて来たが、利用の増加に伴って
通信チャンネル数を増加するために通信距離を犠牲にし
て周波数偏移量を減じているが、それでも所要の帯域幅
はl Q kHzが限界と見られている。この点ではS
SBは約3 kHzの帯域幅を必要とするに過ぎないか
ら極めて有利である。
On the other hand, for mobile communications in the VHF-UHF band, FM waves have been widely used because they are easy to tune and can cope with sudden changes in signal strength. In order to increase the number of channels, the amount of frequency shift is reduced at the expense of communication distance, but the required bandwidth is still considered to be at the limit of l Q kHz. In this respect S
SB is extremely advantageous because it only requires a bandwidth of about 3 kHz.

この発明はSSHの所要帯域幅とFMの扱い易さを併せ
持つ電波形式を得るのを目的とするものであって、すな
わち、基本的にはA3JやA3Aと同様の片サイドバン
ドの変調成分とキャリアとより成る振幅変調波で、サイ
ドバンドの保有するエネルギとキャリアの保有するエネ
ルギの総和が常にほぼ一定であるように構成することを
特徴とし、そのエネルギの総和が送信機の最大出力と一
致するのを理想とする。これを図解で示せば第1図(A
)はサイドバンドのエネルギの総和が送信機の最大出力
まだはこれを越える場合であって、キャリアは最大出力
よ、940 dB以上低い値であるのが望ましく、この
場合はA3Jと同じになる。(B)は無変調状態でサイ
ドバンドが0の場合であって、キャリアは最大出力まで
増加している。(C)は(A)と(+’3)の中間の変
調状態で、サイドバンドのエネルギの総和と最大出力の
差のキャリアが存在している。
The purpose of this invention is to obtain a radio wave format that combines the required bandwidth of SSH and the ease of handling of FM. In other words, it basically uses one sideband modulation component and carrier similar to A3J and A3A. An amplitude-modulated wave consisting of The ideal is This can be illustrated in Figure 1 (A
) is a case where the total sideband energy still exceeds the maximum output of the transmitter, and it is desirable that the carrier has a value lower than the maximum output by 940 dB, and in this case it will be the same as A3J. (B) is a case where the sideband is 0 in an unmodulated state, and the carrier has increased to the maximum output. (C) is a modulation state intermediate between (A) and (+'3), and a carrier exists that is the difference between the sum of sideband energy and the maximum output.

ただし、実際に音声で変調した場合のザイドバンドス被
りトラムは周波数変化と振幅変化の入り混った複雑な波
形の連続であり、これを・ぐワーレベルの変化で見ると
第2図のように周期の長い振幅変化の上に周期の短かい
振幅変化が重畳している形であるので、このサイドパン
トノRワーレベルと最大出力との差を忠実にキャリアレ
ベルで補うことは、キャリアはサイドバンドパワー波形
と反対の波形の振幅変調波であることになシ、キャリア
に伴うサイド・ぐンドが混在するという不都合を生ずる
。そこで実際にはキャリアには周期の短かい(周波数の
高い)変化が生じないように構成し、例えば周期01秒
以上の振幅変化とすればサイドバンドは10 Hz以下
であるから受信側に影響することは全く無く、シかも受
信機のAGC動作に対しめには例えばキャリア制御信号
回路に10 Hzカットオフ(実際には20〜30 H
zでも支障ない場合が多い)のLPFまたは積分回路を
入れるのも一法である。
However, when actually modulated by voice, the Zuidbandoss overlapping tram is a series of complex waveforms with a mixture of frequency changes and amplitude changes, and if you look at this in terms of changes in the sound level, you can see the periodicity as shown in Figure 2. Since short-cycle amplitude changes are superimposed on long amplitude changes of Since the waveform is an amplitude modulated wave having a waveform opposite to that of the waveform, a problem arises in that side waves accompanying the carrier are mixed. Therefore, in reality, the carrier is configured so that short-cycle (high-frequency) changes do not occur. For example, if the amplitude change has a cycle of 01 seconds or more, the sideband will be 10 Hz or less, which will affect the receiving side. This is not the case at all, and it may be necessary to add a 10 Hz cutoff (actually 20 to 30
One method is to insert an LPF or an integrating circuit (in many cases, even z does not cause any problem).

この形式の電波を使用して都合の良いことは、従来のS
SB受信機でその1ま受信が出来る、いわゆるコンノe
チブルなことである。この場合に無変調または浅い変調
状態では受信機のBFOと同じ周波数にキャリアがある
ので、SSB同調のゼロインが極めて明確にできる。ま
た受信機のAGC回路を若干改造することにより、キャ
リアを持つAM受信機と同等以上のAGC動作が期待で
き、またキャリアのレベルの高い期間にサンプリングし
てAFCを働かせることもできる。
The advantage of using this type of radio waves is that the conventional S
The so-called Konno-e, which can receive the first part with an SB receiver.
It's a trivial thing. In this case, in a non-modulated or shallowly modulated state, the carrier is at the same frequency as the BFO of the receiver, so the zero-in of SSB tuning can be made very clearly. Furthermore, by slightly modifying the AGC circuit of the receiver, it is possible to expect an AGC operation equivalent to or better than that of an AM receiver with a carrier, and it is also possible to perform AFC by sampling during a period when the carrier level is high.

反面に送信機が常に最大出力で動作するため、A3Jに
比らべて出力段の電力効率が悪く、当然発熱が多いとい
う欠点がある。しかし移動用に多く使われる出力10W
程度のFM機では電力効率や発熱は全く問題とされてな
いのであるから、FMに代ってはるかに狭帯域で運用で
きる本方式には十分に存在価値があるといわねばならな
い。
On the other hand, since the transmitter always operates at maximum output, the power efficiency of the output stage is lower than that of the A3J, and naturally it generates more heat. However, the output power is 10W, which is often used for transportation.
Since power efficiency and heat generation are not problems at all with FM machines of this size, it must be said that this system, which can operate in a much narrower band in place of FM, has sufficient value.

以下に本方式の信号を発生するための回路構成について
述べる。基本的にはA3AやA3Hの発生回路における
キャリア再そう入口路のそう入量を変調成分によって制
御することにより達成できるが、変調成分の制御信号検
出方法には少なくも次の3種類がある。第3図〜第5図
に本方式信号発生回路例のブロックダイヤグラムを示す
The circuit configuration for generating the signals of this method will be described below. Basically, this can be achieved by controlling the amount of carrier re-input in the A3A or A3H generation circuit using a modulation component, but there are at least the following three methods of detecting a control signal for a modulation component. FIGS. 3 to 5 show block diagrams of examples of signal generating circuits of this system.

第3図は変調増幅回路のAF倍信号よシ再そう入のキャ
リア量を制御するもので、マイクロホン1よシ増幅器2
を通った変調信号と、キャリア発振器3の出力を平衡変
調器に加えてDSB信号を作り、フィルタ5を通してS
SB信号とし、IF増幅6に供給するSSB送信機の前
段部の構成であシ、別にキャリアを被制御回路7を通し
てSSB・IF段に再そう入するが、その量は変調信号
増幅器8の出力をLPF (または積分回路)9を通し
て可聴周波数成分を除去した制御信号によシ、変調信号
強度とキャリア強度が反比例的関係になるように(5) 被制御回路7を構成するものである。
Figure 3 shows how to control the amount of carriers re-input from the AF multiplied signal in the modulation amplifier circuit.
The modulated signal passed through the carrier oscillator 3 and the output of the carrier oscillator 3 are added to a balanced modulator to create a DSB signal, which is then passed through a filter 5 to the S
This is the configuration of the front stage of the SSB transmitter that converts the carrier into an SB signal and supplies it to the IF amplifier 6. Separately, the carrier is re-entered into the SSB/IF stage through the controlled circuit 7, but the amount is equal to the output of the modulation signal amplifier 8. (5) The controlled circuit 7 is constructed so that the modulation signal strength and the carrier strength are inversely proportional to each other by a control signal from which the audible frequency component has been removed through the LPF (or integrating circuit) 9.

第4図は前例での変調信号の代りに、5SB−IF4信
号をエンベローノ検出回路10に加え、その出力をLP
F (または積分回路)9を通して可聴周波成分を除去
した制御信号によりキャリアのそう入量を制御するもの
であって、5SB−IF倍信号平衡変調器4の出力側か
ら取シ出しているが、これでキャリアの除去が不十分な
場合には第5図のようにSSBフィルタ5の後から取り
出すとよい。
Figure 4 shows that instead of the modulation signal in the previous example, a 5SB-IF4 signal is applied to the envelope detection circuit 10, and its output is output to the LP.
The amount of carrier input is controlled by a control signal from which the audio frequency component has been removed through the F (or integrating circuit) 9, and is taken out from the output side of the 5SB-IF multiplied signal balance modulator 4. If carrier removal is insufficient, it is preferable to take out the carrier after the SSB filter 5 as shown in FIG.

次に受信側における動作について考えると、送信波の出
力レベルが常にほぼ一定なのであるから、AGC回路に
おいて変調成分によるリップルを除去するだめのAGC
回路の時定数は極めて小さくすることができるので、急
激な信号強度の変動に対するAGCの追従性が良くなる
。ただし、サイドバンドと共にキャリアも受信する必要
があるので、IFフィルタの帯域幅は若干広くする必要
がある。
Next, considering the operation on the receiving side, since the output level of the transmitted wave is always almost constant, the AGC circuit is used to remove ripples due to modulation components.
Since the time constant of the circuit can be made extremely small, the ability of the AGC to follow sudden changes in signal strength is improved. However, since it is necessary to receive the carrier as well as the sideband, the bandwidth of the IF filter needs to be made slightly wider.

または受信用IFは従来のままとし、AGCIF増幅器
を別に設けてもよい。
Alternatively, the receiving IF may be left as is, and an AGCIF amplifier may be provided separately.

キャリアをサンプリングしてAFCを働かせ、(6) SSHのゼロインを容易にする利点については前にも述
べたが、その他にギヤリア量が変調信号と反比例関係に
あるのを利用して、送信側で変調信号を圧縮して変調し
、受信側ではギヤリアの変化量に含まれる圧縮率情報を
取り出1〜て、これと逆の伸張を行うことにより、理想
的なコン・ξンダ方式が適用できる可能性がある。
The advantage of sampling the carrier and using AFC to facilitate zero-in of SSH (6) was mentioned earlier, but in addition, the transmission side can take advantage of the fact that the gear amount is inversely proportional to the modulation signal. The ideal converter method can be applied by compressing and modulating the modulated signal, extracting the compression rate information included in the amount of gear change on the receiving side, and performing the opposite expansion. there is a possibility.

以上に述べたように、との発明においてはAaJ方式に
くらべ送信機出力段の電力効率が劣るが、FM方式より
もはるかに所要帯域幅が狭くて済み、A3Jよりも同調
の容易な通信方式として、特にVHF帯の移動用小電力
無線機の通信チャンネルの不足解消に極めて有効である
As mentioned above, in the invention of , the power efficiency of the transmitter output stage is inferior to that of the AaJ method, but the required bandwidth is much narrower than the FM method, and the communication method is easier to tune than the A3J method. As such, it is extremely effective in resolving the shortage of communication channels for mobile low-power radio equipment, especially in the VHF band.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の電波形式のエネルギ構成の説明図。第
2図は音声波形のモデル図。第3図は本発明の電波形式
を発生する送信機の構成例。第4図・第5図は本発明の
電波形式を発生する送信機の他の構成例を示す。 1・・マイクロホン、2.8・・・マイクロホン増幅器
、3・・・キャリア発振器、4・・・平衡変調器、5・
・フィルタ、6・・・IF増幅器、7・・・キャリア被
制御回路、9・・・LPF (または積分回路)、10
・・・エンベロープ検出回路。 b話岨a友 八を洲*優狭氏ムA・L 菫i +z 蓼31λ b      リ ZIA 時  頭 −〉
FIG. 1 is an explanatory diagram of the energy configuration of the radio wave format of the present invention. Figure 2 is a model diagram of the audio waveform. FIG. 3 shows an example of the configuration of a transmitter that generates the radio wave format of the present invention. FIGS. 4 and 5 show other configuration examples of a transmitter that generates the radio wave format of the present invention. 1...Microphone, 2.8...Microphone amplifier, 3...Carrier oscillator, 4...Balanced modulator, 5...
・Filter, 6... IF amplifier, 7... Carrier controlled circuit, 9... LPF (or integrating circuit), 10
...Envelope detection circuit. b Story A friend Yasu * Yusa Ujimu A・L Sumire i +z 蓼31λ b ri ZIA time head −〉

Claims (1)

【特許請求の範囲】[Claims] キャリアと片サイドバンドとより成り、キャリアの保有
するエネルギとサイドバンドの保有するエネルギの総和
が常にほぼ一定であるように構成することを特徴とする
無線送信方式。
A wireless transmission system consisting of a carrier and one sideband, characterized in that it is configured such that the sum of the energy held by the carrier and the energy held by the sideband is always approximately constant.
JP10796081A 1981-07-10 1981-07-10 Communication system of constant electric power and single side band Pending JPS589438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10796081A JPS589438A (en) 1981-07-10 1981-07-10 Communication system of constant electric power and single side band

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10796081A JPS589438A (en) 1981-07-10 1981-07-10 Communication system of constant electric power and single side band

Publications (1)

Publication Number Publication Date
JPS589438A true JPS589438A (en) 1983-01-19

Family

ID=14472420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10796081A Pending JPS589438A (en) 1981-07-10 1981-07-10 Communication system of constant electric power and single side band

Country Status (1)

Country Link
JP (1) JPS589438A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55156429A (en) * 1979-05-23 1980-12-05 Nec Corp Radio communicating system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55156429A (en) * 1979-05-23 1980-12-05 Nec Corp Radio communicating system

Similar Documents

Publication Publication Date Title
US6078628A (en) Non-linear constant envelope modulator and transmit architecture
JPH08163189A (en) Transmission circuit
US4310920A (en) Single sideband AM-FM stereo modulation system
US6850750B2 (en) Radio set and frequency converting method therefor
US3409832A (en) Transmitting arrangements for the transmission of amplitude modulated oscillations
US3310742A (en) Frequency diversity transmitting system
JPS5853805B2 (en) Pilot signal removal device
JPS589438A (en) Communication system of constant electric power and single side band
JPS6354883A (en) Modulator
JPH02119442A (en) Signal transmission method and device by using compression elongation technique
US7016659B1 (en) Amplitude modulation with time- and spectrum-shared sidebands
JP4031470B2 (en) Transmitting apparatus, receiving apparatus, signal transmission apparatus and signal transmission method
EP0720315A1 (en) Method for narrow band frequency modulation or phase modulation; transmitter and receiver for carrying out the method
JPH06334626A (en) Spread spectrum communication system
CN206164513U (en) Broadcast communication transmitter
JPH0646098A (en) Control tone transmission system ion fm radio system
JPS6077556A (en) Method for eliminating interference wave
JP2001168746A (en) Receiver and transmitter
JPS5927633A (en) Radio communication system
JPS59117831A (en) Burst tone type radio communication system
JP2007116644A (en) General-purpose, highly efficient digital ssb radio equipment
JPS5995762A (en) Fm transmission and receiving system
JP2001007731A (en) Spread spectrum transmitter and receiver thereof
JPS59226519A (en) Burst controlling system
JPS61220528A (en) Radio equipment with simultaneous transmission and reception