JP2007116644A - General-purpose, highly efficient digital ssb radio equipment - Google Patents

General-purpose, highly efficient digital ssb radio equipment Download PDF

Info

Publication number
JP2007116644A
JP2007116644A JP2005330802A JP2005330802A JP2007116644A JP 2007116644 A JP2007116644 A JP 2007116644A JP 2005330802 A JP2005330802 A JP 2005330802A JP 2005330802 A JP2005330802 A JP 2005330802A JP 2007116644 A JP2007116644 A JP 2007116644A
Authority
JP
Japan
Prior art keywords
frequency
signal
amplitude
wave
reference signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005330802A
Other languages
Japanese (ja)
Inventor
Yoji Makishima
洋二 巻島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2005330802A priority Critical patent/JP2007116644A/en
Publication of JP2007116644A publication Critical patent/JP2007116644A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide radio equipment in which efficiency in transmission of data signals is improved in a medium frequency band or higher. <P>SOLUTION: A carrier wave is modulated by a modulation wave composed of a reference signal in sinusoidal wave formed synchronously with the carrier wave and the data signal, and transmitted by a band limited SSB. On the receiving side, a local oscillation frequency and a local carrier frequency are generated on the basis of the cycle of the reference signal, and conversion and synchronizing detection are performed without a frequency error. Besides, the data signal is accurately decoded based on the level of the reference signal. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

発明の詳細な説明Detailed Description of the Invention

本発明は、単側波帯(SSB)通信方式に用いるSSB無線機に関する。  The present invention relates to an SSB radio used for a single sideband (SSB) communication system.

変調信号により振幅変調し、無線通信を行う方式として、SSB無線通信方式が広く用いられている。  The SSB wireless communication method is widely used as a method for performing wireless communication by performing amplitude modulation with a modulation signal.

このSSB無線通信方式は、搬送波及び上下の側帯波の内、直接情報伝達に寄与していない搬送波と上下の側帯波の一方とを抑圧し、上又は下の側帯波の一方だけを伝送する方式である。この方式は電力の節約になるのみならず、周波数帯域が半分ですみ、通信チャネルを多く取れる。  This SSB wireless communication method suppresses one of the carrier wave and the upper and lower sidebands and one of the upper and lower sidebands, and transmits only one of the upper and lower sidebands. It is. This method not only saves power but also halves the frequency band, and can take many communication channels.

図5は、従来のSSB無線通信方式に用いる無線機の受信回路のブロック構成を示す図である。図5において、空中線101では送信側から送られてきた単側波帯信号を受信し、高周波増幅器103で増幅する。混合回路105では、高周波増幅器103からの単側波帯信号と第1局部発振回路106からの信号とを混合し、帯域ろ波回路107を通して第1中間周波数信号に変換する。帯域ろ波回路107の出力を中間周波増幅回路108に入力する。さらに、中間周波増幅回路108の出力を、混合回路109に入力し、第2局部発振回路110の出力と混合して、帯域ろ波回路111を通して第2中間周波数信号に変換する。帯域ろ波回路111の出力は、中間周波増幅回路112に入力され、その出力の大きさが所定値になるように平均値検波回路113及び利得制御回路114により自動的に利得が調整される。同期検波回路115では、自動利得調整された中間周波信号と局部搬送波発振回路116の出力と混合し、復調する。この同期検波回路115の出力信号を低周波ろ波器117でろ波し、さらに低周波増幅器118で増幅し、出力を得る。  FIG. 5 is a diagram showing a block configuration of a receiving circuit of a radio used in a conventional SSB radio communication system. In FIG. 5, the antenna 101 receives a single sideband signal sent from the transmission side and amplifies it by the high frequency amplifier 103. In the mixing circuit 105, the single sideband signal from the high frequency amplifier 103 and the signal from the first local oscillation circuit 106 are mixed and converted into a first intermediate frequency signal through the bandpass filter circuit 107. The output of the band filter circuit 107 is input to the intermediate frequency amplifier circuit 108. Further, the output of the intermediate frequency amplification circuit 108 is input to the mixing circuit 109, mixed with the output of the second local oscillation circuit 110, and converted into a second intermediate frequency signal through the band-pass filtering circuit 111. The output of the band filtering circuit 111 is input to the intermediate frequency amplifier circuit 112, and the gain is automatically adjusted by the average value detection circuit 113 and the gain control circuit 114 so that the magnitude of the output becomes a predetermined value. In the synchronous detection circuit 115, the intermediate frequency signal whose gain has been automatically adjusted and the output of the local carrier wave oscillation circuit 116 are mixed and demodulated. The output signal of the synchronous detection circuit 115 is filtered by the low frequency filter 117 and further amplified by the low frequency amplifier 118 to obtain an output.

発明が解決しようとする課題Problems to be solved by the invention

このSSB無線通信方式では、図5の中間周波増幅器112における平均値検波回路113及び利得調整回路114での自動利得調整に際して、レベル調整の基準となるべき搬送波信号がないため、自動利得調整の時定数を変調信号の周期より十分長く設定する必要がある。このため、無線通信経路の条件により自動利得調整の時定数より短い周期で受信信号レベルが変動した場合に、受信回路で振幅歪みを生じ、受信出力が変動してしまう。  In this SSB wireless communication system, there is no carrier signal to be used as a level adjustment reference in automatic gain adjustment in the average value detection circuit 113 and gain adjustment circuit 114 in the intermediate frequency amplifier 112 in FIG. It is necessary to set the constant sufficiently longer than the period of the modulation signal. For this reason, when the received signal level fluctuates in a cycle shorter than the time constant of automatic gain adjustment due to the condition of the radio communication path, amplitude distortion occurs in the receiving circuit, and the received output fluctuates.

また、変調信号の波形を完全に再現するためには、送信側と受信側との周波数を一致させる周波数を、第1局部発信器106から混合回路105に、第2局部発信器110から混合回路109に、及び局部搬送波発信器116から同期検波回路115に与える必要があり、多少の誤差が許容される場合でもその許容範囲内の周波数を与える必要がある。したがって、送信側の周波数と受信側の周波数を一致させるために、超高安定度の発信器を必要とする。  Further, in order to completely reproduce the waveform of the modulation signal, the frequency for matching the frequencies of the transmission side and the reception side is changed from the first local oscillator 106 to the mixing circuit 105, and from the second local oscillator 110 to the mixing circuit. 109, and from the local carrier oscillator 116 to the synchronous detection circuit 115, even if some errors are allowed, it is necessary to give a frequency within the allowable range. Therefore, in order to match the frequency on the transmission side with the frequency on the reception side, an ultra-high stability transmitter is required.

また、SSB無線通信方式では、無線通信経路の条件により受信出力レベルが変動するから、振幅値をデジタルデータの変調値として扱うことができず、効率の良いデータ転送が行えない。  In the SSB wireless communication system, the reception output level varies depending on the conditions of the wireless communication path, so that the amplitude value cannot be handled as a modulation value of digital data, and efficient data transfer cannot be performed.

そこで、本発明者等は、SSB無線通信方式における高電力効率及び狭周波数帯域伝送の利点を生かしつつ、受信回路の自動利得制御を無線通信経路の条件によらず即時且つ高精度に行うこと、及び、受信信号に基づいて送信側周波数に同期した周波数を作成することができるSSB無線通信方式及び無線機を、既に提案している(特願2001−157471、特願2001−384205)。本案においても、信号はデジタル信号に限定されているが、現在は、音声も容易にデジタル化が可能であるので、問題ない。  Therefore, the present inventors perform the automatic gain control of the receiving circuit immediately and highly accurately regardless of the conditions of the wireless communication path while taking advantage of the high power efficiency and narrow frequency band transmission in the SSB wireless communication system, In addition, an SSB wireless communication method and a wireless device that can generate a frequency synchronized with a transmission side frequency based on a received signal have already been proposed (Japanese Patent Application Nos. 2001-157471 and 2001-384205). Also in this proposal, the signal is limited to a digital signal, but at present, there is no problem because the voice can be easily digitized.

本発明は、提案済みのSSB無線通信方式及び無線機を改善し、データ信号の伝送効率をさらに向上し、また、受信側の回路を簡易化することができるSSB無線機を提供する事を目的とする。  It is an object of the present invention to provide an SSB radio capable of improving the proposed SSB radio communication system and radio, further improving the data signal transmission efficiency, and simplifying the circuit on the receiving side. And

課題を解決する為の手段Means to solve the problem

請求項1のSSB無線機は、送信側において所定の幅と所定の周期になるように形成された一定振幅で正弦波状の基準信号とこの基準信号と同じ幅で且つその基準信号の振幅を基準とした2値又は多値のデジタル値を表現する振幅を持つデータ信号とを変調入力として、搬送波を変調して単側波帯で送信し、
受信側において、前記基準信号に基づいて受信利得を自動調整し、受信信号の搬送波の振幅値において、ピーク値である前記基準信号の振幅値を基準として、前記各信号の切り替わる直前又は指定された適切な箇所の振幅値を測定し、前記デジタル値を検出する事を特徴とする。
The SSB wireless device according to claim 1 is a sine wave-like reference signal having a constant amplitude and a width equal to that of the reference signal, which is formed to have a predetermined width and a predetermined period on the transmission side, and the amplitude of the reference signal is a reference. Using a data signal having an amplitude representing a binary or multi-value digital value as a modulation input, the carrier wave is modulated and transmitted in a single sideband,
On the receiving side, the reception gain is automatically adjusted based on the reference signal, and the amplitude value of the carrier wave of the reception signal is set immediately before or after the switching of each signal with the amplitude value of the reference signal being a peak value as a reference. An amplitude value at an appropriate location is measured, and the digital value is detected.

請求項2の無線機は、局部搬送波及び局部発振波を共通の発振源から発生する周波数発生手段と、前記周波数発生手段の発生周波数に基づいて、所定の幅と所定の周期でかつ一定振幅の複数の正弦波からなる基準信号及びこの基準信号と幅と正弦波の数が同じでかつ前記基準信号の振幅を基準とした2値又は多値のデジタル値を表現する正弦波状のデータ信号からなる変調波を発生する変調波発生手段と、
前記局部搬送波を、前記変調波で振幅変調する変調手段と、
この変調手段の変調出力を上側或いは下側のいずれかの単側帯波のみを通過させる帯域通過フィルタ手段と、
この帯域通過フィルタ手段の出力を前記局部発振波によりシフトし送信搬送波信号とするための周波数変換手段を備え、
受信側において、前記単側帯波通信信号を、局部発振波周波数信号でシフトし、中間周波数信号に変換する周波数変換手段と
この周波数変換手段からの中間周波数信号を増幅する中間周波数増幅手段と、この中間周波数増幅手段の出力から、前記基準信号の周期の周波数成分を出力する周波数検出手段と、
前記周波数検出手段からの前記基準信号の周期の周波数成分に基づいて、前記局部発振波周波数信号を生成する周波数発生手段と
前記局部発振波周波数と同期している局部搬送波発振回路及びその出力に基づいて受信信号を復調する同期検波回路を備え、前記各信号の復調出力において、信号の切り替わる直前のサイクルの振幅値から、前記信号のデジタル値を検出する事を特徴とする。
According to a second aspect of the present invention, there is provided a frequency generator that generates a local carrier wave and a local oscillation wave from a common oscillation source, and having a predetermined width, a predetermined cycle, and a constant amplitude based on the frequency generated by the frequency generator. A reference signal composed of a plurality of sine waves, and a sine wave data signal that expresses a binary or multi-value digital value having the same width, the same number of sine waves as the reference signal, and the amplitude of the reference signal Modulated wave generating means for generating a modulated wave;
Modulation means for amplitude-modulating the local carrier wave with the modulated wave;
Bandpass filter means for passing only the upper or lower single sideband of the modulation output of this modulation means;
A frequency conversion means for shifting the output of the band pass filter means by the local oscillation wave to be a transmission carrier signal;
On the receiving side, the single sideband communication signal is shifted by a local oscillation frequency signal and converted to an intermediate frequency signal, an intermediate frequency amplification means for amplifying the intermediate frequency signal from the frequency conversion means, and A frequency detecting means for outputting a frequency component of the period of the reference signal from the output of the intermediate frequency amplifying means;
Based on the frequency generating means for generating the local oscillation frequency signal based on the frequency component of the period of the reference signal from the frequency detection means, the local carrier oscillation circuit synchronized with the local oscillation frequency, and the output thereof A synchronous detection circuit for demodulating the received signal, and detecting the digital value of the signal from the amplitude value of the cycle immediately before the signal is switched in the demodulated output of each signal.

本発明によれば、SSB無線通信方式における、高電力効率及び狭周波数帯域伝送の利点をさらに拡大し、周波数利用効率を大幅に改善できる。  According to the present invention, the advantages of high power efficiency and narrow frequency band transmission in the SSB wireless communication system can be further expanded, and the frequency utilization efficiency can be greatly improved.

また、変調周波数は音声周波数より十分高い単一の正弦波であり、基準信号の周期の周波数を高くして、その振幅が一定となるように制御すれば、フェージング及び雑音等による振幅歪みのような、無線通信経路の条件により受信信号レベルが変動した場合に生じる振幅歪みの影響を、無視できる程度に小さくする事ができる。  In addition, the modulation frequency is a single sine wave that is sufficiently higher than the audio frequency. If the frequency of the reference signal is increased and controlled so that the amplitude is constant, the amplitude distortion due to fading, noise, etc. In addition, it is possible to reduce the influence of the amplitude distortion that occurs when the received signal level fluctuates depending on the condition of the wireless communication path to a level that can be ignored.

また、受信した基準信号及びデータ信号の搬送波の振幅値が、少なくとも前記基準信号及びデータ信号の切り替わる直前においては、送信側変調信号の振幅値と比例するように送信側及び受信側の帯域通過フィルタの帯域幅を調整する事により、復調をしないで搬送波の振幅値からデータ信号のデジタル値を検出できるようになり、複雑な同期検波回路を削除でき、回路をより簡易化することができる。  Further, the band-pass filters on the transmission side and the reception side are set so that the amplitude value of the carrier wave of the received reference signal and data signal is proportional to the amplitude value of the transmission side modulation signal at least immediately before the reference signal and the data signal are switched. By adjusting the bandwidth, it becomes possible to detect the digital value of the data signal from the amplitude value of the carrier wave without demodulation, and the complicated synchronous detection circuit can be eliminated, and the circuit can be further simplified.

また、デジタル値の検出を、送信側変調信号の振幅値に最も近い前記基準信号及びデータ信号の切り替わる直前において測定する事により、より多くのデータを伝送することが出来、周波数利用効率をさらに改善できる。  In addition, by detecting the digital value immediately before switching between the reference signal and the data signal that are closest to the amplitude value of the modulation signal on the transmission side, more data can be transmitted and the frequency utilization efficiency is further improved. it can.

また、受信した基準信号の周期に同期を取って局部発振周波数及び局部搬送波周波数を調整できるから、超高安定度の発振器を必要としないで、同期がほぼ完全に取れる。したがって、復調効率が改善され、雑音などの影響が小さくなる。  Further, since the local oscillation frequency and the local carrier frequency can be adjusted in synchronization with the period of the received reference signal, the synchronization can be almost completely achieved without requiring an ultra-high stability oscillator. Therefore, the demodulation efficiency is improved and the influence of noise and the like is reduced.

以上のことから、VHF帯、UHF帯等の中波帯以上の全ての周波数帯に本発明のSSB無線機を摘用することにより、中波帯以上の周波数帯の周波数利用効率を大幅に改善できる。  From the above, by using the SSB radio of the present invention for all frequency bands above the medium wave band such as VHF band and UHF band, the frequency utilization efficiency of the frequency band above the medium wave band is greatly improved. it can.

以下、図面を参照して、本発明の実施の形態について詳細に説明する。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の実施の形態にかかるSSB無線通信方式の送信側無線機の全体構成を示す図であり、図2はその無線機各部の波形を示す図である。  FIG. 1 is a diagram showing an overall configuration of a transmitting side radio of the SSB radio communication system according to an embodiment of the present invention, and FIG. 2 is a diagram showing waveforms of respective parts of the radio.

この実施の形態においては、多値のデジタル信号を伝送するものにおいて、変調周波数を単一周波数の正弦波(この実施例では19.2kHz)とし、周波数の安定度を必要とする場合には、局部搬送波に同期させる。この変調波の1サイクル又は複数サイクル(この実施例では4サイクル)の振幅値に信号を乗せ、その信号の一つに最大で一定振幅、一定間隔の基準信号を設け、データ信号をその間に複数個(この実施例では3個)を挿入して、変調波を形成する。この変調波で局部搬送波を振幅変調し、一方の単側帯波(この実施例では上側)を送信する。  In this embodiment, in the case of transmitting a multi-value digital signal, when the modulation frequency is a single frequency sine wave (19.2 kHz in this embodiment) and frequency stability is required, Synchronize with local carrier. A signal is put on the amplitude value of one cycle or a plurality of cycles (4 cycles in this embodiment) of this modulated wave, a reference signal having a constant amplitude and a constant interval is provided in one of the signals, and a plurality of data signals are provided therebetween. (Three in this embodiment) are inserted to form a modulated wave. The local carrier wave is amplitude-modulated with this modulated wave, and one single sideband wave (upper side in this embodiment) is transmitted.

図1において、シンセサイザ回路11は、本発明のSSB無線通信方式の送信側動作に必要な各種の周波数信号をそれぞれ同期して発生する。ただし、データの検出を搬送波で行う場合は、同期させなくとも良い。  In FIG. 1, a synthesizer circuit 11 synchronizesly generates various frequency signals necessary for the transmission side operation of the SSB wireless communication system of the present invention. However, when data detection is performed using a carrier wave, it is not necessary to synchronize.

帯域通過ろ波回路12には、シンセサイザ回路11からの一定振幅でデューティ比50%の19.2kHzの矩形波が帯域ろ波回路12に入力されて、正弦波の変調周波数信号が出力され、抵抗減衰回路13に入力される。抵抗減衰回路13は、m値(この実施例では8値)のデータ信号Dに対応するため、m個の抵抗減衰器から構成されている。  The band-pass filtering circuit 12 is supplied with a 19.2 kHz rectangular wave having a constant amplitude and a duty ratio of 50% from the synthesizer circuit 11 and outputs a sine modulation frequency signal to the band-pass filtering circuit 12. Input to the attenuation circuit 13. Since the resistance attenuating circuit 13 corresponds to the data signal D having m values (eight values in this embodiment), the resistance attenuating circuit 13 includes m resistance attenuators.

抵抗減衰回路13からの各出力は、切替回路14に入力される。一方、制御回路15では、デジタルデータに応じた切替信号を、1/f秒毎(この実施例の4.8kHzの場合は約0.21ms毎)に変調波nf(この実施例では19.2kHz)のゼロクロスに同期させて切替回路14に入力する。切替回路14では、基準信号Kにおいては減衰ゼロとし、データ信号Dにおいては、切換信号に指定された抵抗減衰器の出力を選択する。また、この抵抗減衰回路13及び切替回路14は、可変減衰回路に置き換えても良い。Each output from the resistance attenuation circuit 13 is input to the switching circuit 14. On the other hand, the control circuit 15 sends a switching signal corresponding to the digital data every 1 / f seconds (about 0.21 ms in the case of 4.8 kHz in this embodiment) of the modulation wave nf 1 (in this embodiment 19. 2 kHz) and is input to the switching circuit 14 in synchronization with the zero cross. In the switching circuit 14, the reference signal K is set to zero attenuation, and the data signal D selects the output of the resistance attenuator designated by the switching signal. The resistance attenuation circuit 13 and the switching circuit 14 may be replaced with a variable attenuation circuit.

この実施の形態では、最大の振幅値で一定値の基準信号Kと、基準信号Kの間に挿入されたデータ信号Dの振幅がフェージング等により変化することに対応するため、データ信号3個毎に基準信号Kを挿入することとしている。もちろん、データ信号1個毎に基準信号Kを挿入してもよく、また逆に変調周波数やフェージングの条件によっては、基準信号Kの間に4個以上のデータ信号Dを入れることもできる。  In this embodiment, since the maximum amplitude value and the reference signal K having a constant value and the amplitude of the data signal D inserted between the reference signals K change due to fading or the like, every three data signals The reference signal K is inserted into the. Of course, the reference signal K may be inserted for each data signal, and conversely, four or more data signals D may be inserted between the reference signals K depending on the modulation frequency and fading conditions.

切替回路14の出力は、切替時に発生する雑音及び高周波成分等を除去するための低域通過ろ波回路16を介して、図2の(a)のように1/f(この実施例では4.8kHz)秒毎に振幅値が変動する変調信号として、変調回路17に与えられる。変調周波数は、19.2kHzである。この変調信号(a)には、3つおきの周期ごとに一定振幅の基準信号Kが入っていることから、4.8kHz/4=1.2kHzの周波数成分があり、さらに、信号は4.8kHzの1サイクル毎に変化するから、少なくとも、これを半サイクルとする2.4kHzの周波数成分が含まれている必要がある。The output of the switching circuit 14 is 1 / f 1 (in this embodiment, as shown in FIG. 2A) via a low-pass filtering circuit 16 for removing noise and high-frequency components generated at the time of switching. 4.8 kHz) A modulation signal whose amplitude value fluctuates every second is applied to the modulation circuit 17. The modulation frequency is 19.2 kHz. Since this modulated signal (a) includes a reference signal K having a constant amplitude every third period, there is a frequency component of 4.8 kHz / 4 = 1.2 kHz. Since it changes every cycle of 8 kHz, it is necessary to include at least a frequency component of 2.4 kHz that makes this a half cycle.

変調回路17では、局部搬送波f(この実施例では476.2kHz)を前記変調信号[図2(a)]で変調して、図2(b)のように振幅変調された被変調波を発生する。この被変調波(b)は、通常の振幅変調波であるから、局部搬送波、下側帯波及び上側帯波を含んでいる。図2(c)はその上側帯波のみを表わしている。図2(c)の点線で示す波形は、帯域制限する前の波形である。The modulation circuit 17 modulates the local carrier wave f 2 (476.2 kHz in this embodiment) with the modulation signal [FIG. 2 (a)], and converts the modulated wave amplitude-modulated as shown in FIG. 2 (b). appear. Since this modulated wave (b) is a normal amplitude-modulated wave, it includes a local carrier wave, a lower side band wave, and an upper side band wave. FIG. 2C shows only the upper sideband. A waveform indicated by a dotted line in FIG. 2C is a waveform before band limitation.

この被変調波(b)が、中心周波数f+nf(この実施例のn=4の場合は495.6kHz)、帯域幅4.8kHzの帯域通過ろ波回路18によりフィルタリングされて、上側帯波のみが通過して、図2(c)に示されるような単側帯波信号として出力される。
従来方式における帯域通過ろ波回路18は、フィルタ特性が非常に急峻で大型の水晶フィルタとなっているが、本方式の場合、局部搬送波と側帯波の周波数を大きく離すことができるため、フィルタ特性は急峻である事が必要でなくIC化も可能と考えられる。
This modulated wave (b) is filtered by the band-pass filtering circuit 18 having a center frequency f 2 + nf 1 (495.6 kHz in the case of n = 4 in this embodiment) and a bandwidth of 4.8 kHz. Only the wave passes and is output as a single sideband signal as shown in FIG.
The band-pass filtering circuit 18 in the conventional method is a large crystal filter having a very steep filter characteristic. In the case of this method, the frequency of the local carrier wave and the sideband wave can be greatly separated. It is not necessary to be steep and it is considered possible to make it an IC.

ここでは、帯域通過ろ波回路18の通過帯域を、信号の変化分の幅として最小の2.4k×2=4.8kHzを取っているが、前記ろ波回路18が大型になっても通過帯域幅を狭くする事を優先する場合は、さらにその1/2である2.4kHzとしても良い。  Here, the pass band of the band-pass filtering circuit 18 is set to a minimum of 2.4 k × 2 = 4.8 kHz as a signal change width, but the band-pass filtering circuit 18 passes even if the filtering circuit 18 becomes large. In the case where priority is given to narrowing the bandwidth, it may be set to 2.4 kHz which is a half of that.

この単側帯波信号(d)は、送信混合回路19で第2局部発振周波数fと混合されてシフトアップされ、高周波増幅回路20で増幅され、帯域通過ろ波回路21でろ波される。さらに、送信混合回路22で第1局部発振周波数fと混合され、高周波増幅回路23で増幅され、帯域通過ろ波回路24でろ波され、送信電力増幅回路25で増幅され、空中戦同調回路26を経て、空中線27から、f+f+F+nfの周波数で送信される。This single sideband signal (d) is mixed with the second local oscillation frequency f 3 by the transmission mixing circuit 19, shifted up, amplified by the high frequency amplifier circuit 20, and filtered by the band pass filter circuit 21. Further, it is mixed with the first local oscillation frequency f 4 by the transmission mixing circuit 22, amplified by the high frequency amplification circuit 23, filtered by the band pass filtering circuit 24, amplified by the transmission power amplification circuit 25, and the air battle tuning circuit 26 Then, it is transmitted from the antenna 27 at a frequency of f 4 + f 3 + F 2 + nf 1 .

局部搬送波をVcosωt、変調波をVcosptとすると、振幅変調波V(t)は、下式となる。
V(t)=Vcosωt+1/2・kV/V・cos(ω+p)t+1/2・kV/V・cos(ω−p)t
但し、kは比例乗数
When the local carrier wave is V 0 cos ω c t and the modulated wave is V M costt, the amplitude modulated wave V (t) is expressed by the following equation.
V (t) = V 0 cos ω c t + 1/2 · kV M / V 0 · cos (ω c + p) t + 1/2 · kV M / V 0 · cos (ω c −p) t
Where k is a proportional multiplier

ここで、フィルタによって上側帯波V(t)を取り出すと、V(t)=1/2・kV/V・cos(ω+p)tとなる。このように上側帯波V(t)は、単一の周波数であり、その振幅は変調波(Vcospt)の振幅Vに比例する。Here, when the upper side band V U (t) is extracted by the filter, V U (t) = ½ · kV M / V 0 · cos (ω c + p) t. Thus, the upper side band V U (t) has a single frequency, and its amplitude is proportional to the amplitude V M of the modulated wave (V M cost).

本発明では、変調波の周波数を一定としているから、側帯波の使用する帯域は、側帯波の両側又は片側にデータ信号を乗せるのに必要な帯域(この実施例では、4.8kHz又は2.4kHz)があれば良い。従って、局部搬送波と側帯波との間隔に制限はなくなり、局部搬送波を削除する為には局部搬送波と上側帯波との間隔は大きく離れている事が望ましい。In the present invention, since the frequency of the modulated wave is constant, the band used by the sideband is a band necessary for placing the data signal on both sides or one side of the sideband (in this embodiment, 4.8 kHz or 2. 4 kHz) is sufficient. Accordingly, there is no restriction on the interval between the local carrier and the sideband, and it is desirable that the interval between the local carrier and the upper sideband be greatly separated in order to delete the local carrier.

このように設定すると、局部搬送波及び下側帯波などの不要発射の電力は、従来のSSB方式と比較して大幅に減少させることができる。また、使用する帯域幅も最小限にできるため、周波数利用効率は最も高くすることができると考えられる。  With this setting, the power of unnecessary emission such as local carrier waves and lower sidebands can be greatly reduced as compared with the conventional SSB system. Further, since the bandwidth to be used can be minimized, it is considered that the frequency utilization efficiency can be maximized.

図3は、本発明の実施に形態に係る、第1のSSB無線通信方式、図4は、第2のSSB無線通信方式の無線機の受信側の全体構成を示す図である。  FIG. 3 is a diagram showing an overall configuration on the receiving side of the first SSB wireless communication system according to the embodiment of the present invention, and FIG. 4 is a diagram showing the overall configuration of the receiver side of the second SSB wireless communication system.

受信側の無線機においては、図1等で説明した送信波を受信し、中間周波数に変換した後、自動利得制御及び同期検波を行い、振幅値を保証した上でデータ信号を複号する。同時に、SSB方式に不可欠な、局部発振周波数及び局部搬送波周波数を再生する。  The receiving-side radio receives the transmission wave described in FIG. 1 and the like, converts it to an intermediate frequency, performs automatic gain control and synchronous detection, and decrypts the data signal while guaranteeing the amplitude value. At the same time, the local oscillation frequency and the local carrier frequency, which are indispensable for the SSB system, are reproduced.

まず、SSB方式では、送信波に含まれていない搬送波に、周波数及び位相がほとんど一致している局部発振周波数及び局部搬送波周波数を受信側で再生する必要がある。従来、VHF帯やUHF帯でSSB方式が使用されていない理由に、この再生が困難であることがある。本発明では、その対策として次のような方策が採用されている。  First, in the SSB system, it is necessary to regenerate the local oscillation frequency and the local carrier frequency whose frequency and phase almost coincide with the carrier wave not included in the transmission wave on the receiving side. Conventionally, this reproduction may be difficult because the SSB method is not used in the VHF band or the UHF band. In the present invention, the following measures are adopted as countermeasures.

1. SSB方式において、側帯波の振幅値は変調波の振幅値に比例する。本発明においては、信号の振幅を1/f秒毎に切り替えている。この変化分を正確に伝送するには、広い帯域幅を必要とするが、本案ではその基本波成分のみを伝送している。しかし、図2(c)のように、信号の切り替わる直前(↑の点)においては、周波数帯域幅を制限する前の振幅値とほぼ同じ値となっている。従って、請求項1のように信号の切り替わる直前の側帯波の振幅を測定する事により、同期検波を必要とせず、デジタルデータを複号する事ができる。これにより、同期検波に必要な、送信側の搬送波に周波数及び位相がほとんど一致している局部発振周波数及び局部搬送波周波数を必要としないことになる。1. In the SSB system, the amplitude value of the sideband wave is proportional to the amplitude value of the modulated wave. In the present invention, the amplitude of the signal is switched every 1 / f 1 second. In order to transmit this change accurately, a wide bandwidth is required, but in this proposal, only the fundamental wave component is transmitted. However, as shown in FIG. 2C, immediately before the signal is switched (point ↑), the amplitude value is almost the same as that before the frequency bandwidth is limited. Therefore, by measuring the amplitude of the sideband immediately before signal switching as in claim 1, digital data can be decoded without requiring synchronous detection. This eliminates the need for a local oscillation frequency and a local carrier frequency, which are necessary for synchronous detection, and whose frequency and phase are almost the same as those of the transmission-side carrier.

2. 請求項2のように、送信側で、基準信号Kの周期の周波数(この実施の形態ではf/4=1.2kHz)を、局部搬送波周波数f及び局部発振周波数(f、f)に同期させれば、受信側において、周波数変換されてもその周期は変化しないから、受信波(具体的には中間周波数信号)のピーク(基準信号K)の周期周波数を検出して、これに受信用の局部発振周波数及び局部搬送波周波数を同期させれば、送信されてくる周波数が例え変動した場合であっても常に同期させることができる。2. As in claim 2, on the transmission side, the frequency of the cycle of the reference signal K (in this embodiment, f 1 /4=1.2 kHz), the local carrier frequency f 2 and the local oscillation frequency (f 3 , f 4 ), The period does not change even if the frequency is converted on the receiving side. Therefore, the period frequency of the peak (reference signal K) of the received wave (specifically, the intermediate frequency signal) is detected and this is detected. If the local oscillation frequency for reception and the local carrier frequency are synchronized with each other, it is possible to always synchronize even if the transmitted frequency fluctuates.

つぎに、受信されるSSB波は、伝送経路のフェージングなどにより、振幅値が低下したり、変動したりする。その振幅値の検出・補償は次のように行われる。  Next, the amplitude value of the received SSB wave decreases or fluctuates due to fading of the transmission path. The detection and compensation of the amplitude value is performed as follows.

振幅最大の基準信号Kを、振幅値を乗せたデータ信号を挟んで、一定間隔毎に挿入しているから、まず、中間周波数信号において、その振幅のピーク(基準信号Kの切り替わる直前の振幅)が一定になるように制御して、さらに同期検波手段の復調出力(基準信号K)をピーク検波し、基準信号Kの振幅が一定になるように制御する。また、基準信号Kの間隔(k/f)は、フェージングの通常想定される最小時定数(約10ms)より十分に小さくできるから、基準信号Kを一定とする制御は容易である。さらに、信号に含まれる最も低い周波数は、基準信号の間隔を1サイクル分とする周波数(f/k)となるから、帯域ろ波回路52により、前記周波数(f/k)より低い周波数及び変調周波数(nf)より高い周波数を取り除くことが可能である。これにより、フェージング及び雑音等の影響を非常に小さくできるから、基準信号Kの振幅をほぼ完全に一定にでき、この一定制御された基準信号Kに基づいてデータ信号Dを正確に複号できる。Since the reference signal K having the maximum amplitude is inserted at regular intervals with the data signal carrying the amplitude value, first, the peak of the amplitude (the amplitude immediately before the reference signal K is switched) in the intermediate frequency signal. Is controlled so that the demodulation output (reference signal K) of the synchronous detection means is peak-detected and the amplitude of the reference signal K is controlled to be constant. Further, since the interval (k / f 1 ) of the reference signal K can be made sufficiently smaller than the normally assumed minimum time constant (about 10 ms) of fading, it is easy to control the reference signal K to be constant. Further, the lowest frequency contained in the signal, because the frequency (f 1 / k) for the spacing of the reference signal and one cycle, the band-pass filter circuit 52, the frequency (f 1 / k) from the lower frequency And frequencies higher than the modulation frequency (nf 1 ) can be removed. As a result, the influence of fading, noise, and the like can be made extremely small, so that the amplitude of the reference signal K can be made almost completely constant, and the data signal D can be accurately decoded based on this constant controlled reference signal K.

さて、図2、図3、及び図4を参照して、アンテナ31で送信側の無線機から送信された、SSB被変調波(上側帯波周波数f4+f3+f2+nf1)の受信動作を説明する。  Now, the reception operation of the SSB modulated wave (upper band frequency f4 + f3 + f2 + nf1) transmitted from the transmitting-side radio device by the antenna 31 will be described with reference to FIGS.

この受信信号は、帯域通過ろ波回路32、高周波増幅回路33及び帯域通過ろ波回路34を経て、混合回路35に入力される。混合回路35では、この入力された信号と、シンセサイザ回路39からの第1局部発振周波数fとをミキシングし、帯域通過ろ波回路36を介して、第1中間周波数信号(周波数=f3+f2+nf)を得る。This received signal is input to the mixing circuit 35 via the band-pass filtering circuit 32, the high-frequency amplifier circuit 33, and the band-pass filtering circuit 34. In the mixing circuit 35, the input signal and the first local oscillation frequency f 4 from the synthesizer circuit 39 are mixed, and the first intermediate frequency signal (frequency = f 3 + f 2 + nf 1 ) is passed through the band-pass filtering circuit 36. Get.

第1中間周波数信号(周波数=f+f+nf)は中間周波数増幅回路37で増幅される。さらに、混合回路38でシンセサイザ回路39からの第2局部発振周波数f3とミキシングされ、帯域通過ろ波回路41でろ波されて、第2中間周波数信号(周波数=f+nf)となる。The first intermediate frequency signal (frequency = f 3 + f 2 + nf 1 ) is amplified by the intermediate frequency amplifier circuit 37. Further, the signal is mixed with the second local oscillation frequency f3 from the synthesizer circuit 39 by the mixing circuit 38, and is filtered by the band-pass filtering circuit 41 to become a second intermediate frequency signal (frequency = f 2 + nf 1 ).

帯域通過ろ波回路41の出力が、中間周波増幅回路42に入力される。その出力は、ピーク検波回路43に入力され、ピーク検波されてその出力が利得制御回路44に入力される。その入力により、利得制御回路44は、中間周波増幅回路42の出力が一定値となるように制御する。  The output of the band pass filter circuit 41 is input to the intermediate frequency amplifier circuit 42. The output is input to the peak detection circuit 43, the peak is detected, and the output is input to the gain control circuit 44. With this input, the gain control circuit 44 controls the output of the intermediate frequency amplifier circuit 42 to be a constant value.

図3において、振幅測定回路46は、ピーク検出回路45からの信号により、中間周波増幅回路42の出力(図2のc)の基準信号Kの振幅値を測定し、次に1/f秒後(図2のcの↑の点)にデータ信号Dを測定する。そして、1/f秒後毎にデータ信号Dをk−1個測定する。In FIG. 3, the amplitude measurement circuit 46 measures the amplitude value of the reference signal K of the output (c in FIG. 2) of the intermediate frequency amplification circuit 42 based on the signal from the peak detection circuit 45, and then 1 / f 1 second. The data signal D is measured later (point ↑ in FIG. 2c). Then, k−1 data signals D are measured every 1 / f after 1 second.

振幅測定回路45からの入力により、復号回路46は、その測定値からデジタルデータを出力する。場合によっては基準信号K間のデータ信号全ての測定値(この実施例では3個)を1グループとして、デジタルデータに変換しても良い。  In response to an input from the amplitude measurement circuit 45, the decoding circuit 46 outputs digital data from the measured value. In some cases, the measured values of all the data signals between the reference signals K (three in this embodiment) may be converted into digital data as one group.

図4において、中間周波増幅回路42の出力は、同期検波回路51、ピーク検波回路43及びピーク検出回路58に入力される。  In FIG. 4, the output of the intermediate frequency amplification circuit 42 is input to the synchronous detection circuit 51, the peak detection circuit 43, and the peak detection circuit 58.

ピーク検出回路58では、中間周波増幅回路42の出力(図2のc)のピークを検出する。このピークは、基準信号Kの切り替わる直前にて発生するから、それを同期信号としてシンセサイザ回路40に供給する。シンセサイザ回路40では、入力された同期信号(k/f秒毎に入力される)の信号に基づいて第1局部発振周波数f、第2局部発振周波数f及び局部搬送波周波数fを発生する。周波数fは,送信側の第1局部発振周波数f等に同期して形成されているから、受信側で周波数fに基づいて形成された第1局部発振周波数等は、送信側のそれと基本的に一致する。したがって、周波数変換は、送信側と受信側とも同様に行われる。The peak detection circuit 58 detects the peak of the output (c in FIG. 2) of the intermediate frequency amplification circuit 42. Since this peak occurs immediately before the switching of the reference signal K, it is supplied to the synthesizer circuit 40 as a synchronization signal. The synthesizer circuit 40 generates a first local oscillation frequency f 4 , a second local oscillation frequency f 3, and a local carrier frequency f 2 based on the signal of the inputted synchronization signal (k / f inputted every 1 second). To do. Since the frequency f 1 is formed in synchronization with the first local oscillation frequency f 4 on the transmission side, the first local oscillation frequency formed on the reception side based on the frequency f 1 is the same as that on the transmission side. Basically match. Therefore, frequency conversion is performed in the same way on both the transmission side and the reception side.

シンセサイザ回路40では、入力された周波数fの信号に基づいて局部搬送波周波数が形成されているから、局部搬送波周波数は受信した上側帯波周波数成分に同期している。したがって、例え受信した上側帯波周波数成分に少しの周波数変化があったとしても、局部搬送波周波数はその周波数変化に対応して変化するから、発振器が超高安定でなくとも、送信側局部搬送波周波数(f)と受信側局部搬送波周波数は同一となる。The synthesizer circuit 40, since the local carrier frequency based on the input frequency f 1 of the signal are formed, the local carrier frequency is synchronized with the sideband frequency components upon reception. Therefore, even if there is a slight frequency change in the received upper sideband frequency component, the local carrier frequency changes in response to the frequency change. (F 2 ) and the receiving side local carrier frequency are the same.

同期検波回路51に中間周波増幅回路42の出力及びシンセサイザ回路40の出力(受信側局部搬送波)が入力され、同期検波回路51から復調出力[図2の(d)]が出力される。その復調出力において、各サイクルの信号の切り替わる直前(↓の点)の振幅値は、その該当する送信側の振幅値にほぼ等しくなっている。  The output of the intermediate frequency amplifier circuit 42 and the output of the synthesizer circuit 40 (reception side local carrier wave) are input to the synchronous detection circuit 51, and the demodulated output [(d) of FIG. 2] is output from the synchronous detection circuit 51. In the demodulated output, the amplitude value immediately before the switching of the signal in each cycle (the point indicated by ↓) is substantially equal to the corresponding amplitude value on the transmission side.

同期検波回路51の出力(復調出力)は、帯域ろ波回路52を経て低周波増幅回路53に入力される。低周波増幅回路53の出力は、ピーク検波回路54に入力される。ピーク検波回路54では、基準信号Kのピーク値を検波する。このピーク検波回路54の出力が利得制御回路55に入力され、目標基準値と比較され、その差分に基いて低周波増幅回路53が自動利得制御される。このことにより、低周波増幅回路53の出力の基準信号Kは、ほぼ一定値に制御される事になる。  The output (demodulation output) of the synchronous detection circuit 51 is input to the low frequency amplification circuit 53 through the band filtering circuit 52. The output of the low frequency amplifier circuit 53 is input to the peak detection circuit 54. The peak detection circuit 54 detects the peak value of the reference signal K. The output of the peak detection circuit 54 is input to the gain control circuit 55, compared with the target reference value, and the low frequency amplification circuit 53 is automatically gain controlled based on the difference. As a result, the reference signal K output from the low frequency amplifier circuit 53 is controlled to a substantially constant value.

低周波増幅回路53の出力はまた、復号回路56に入力される。復号回路56では、データ信号Dの切り替わる直前のサイクル(図2のdの↓の点)の振幅値と基準信号Kの切り替わる直前のサイクル(図2のdの↓の点)の振幅値との差を測定して、データ信号Dのデジタルデータを出力する。  The output of the low frequency amplifier circuit 53 is also input to the decoding circuit 56. In the decoding circuit 56, the amplitude value of the cycle immediately before the switching of the data signal D (point of ↓ in FIG. 2) and the amplitude value of the cycle immediately before the switching of the reference signal K (point of ↓ of FIG. 2) are made. The difference is measured and the digital data of the data signal D is output.

前記振幅値は、前の信号の振幅値によって多少変化するので、その分誤差に余裕を持たせるか、基準信号Kとその次に来る基準信号Dの間にある全てのデータ信号Dを一つのセットとしてパターン化し、それらの各データ信号Dの振幅値を測定する事によって、いずれのパターンであるかを判定し、そのパターンからデジタルデータに変換しても良い。  Since the amplitude value slightly changes depending on the amplitude value of the previous signal, there is a margin for the error, or all the data signals D between the reference signal K and the next reference signal D are stored as one. By patterning as a set and measuring the amplitude value of each data signal D, it is possible to determine which pattern it is and convert the pattern into digital data.

なお、本発明の通信方式をスペクトラム拡散通信方式に(DS方式)に使用することが可能である。この場合、本方式は、周波数利用効率が非常に高く、伝送電力も小さくできるので、DS方式のチャネル数への制限を少なくできる。  The communication system of the present invention can be used for the spread spectrum communication system (DS system). In this case, the present system has very high frequency utilization efficiency and can reduce the transmission power, so that the restriction on the number of channels in the DS system can be reduced.

発明の効果The invention's effect

本発明では、SSB無線通信方式における、高電力効率及び狭周波数帯域伝達の利点をさらに拡大し、周波数利用効率を大幅に改善できる。  In the present invention, the advantages of high power efficiency and narrow frequency band transmission in the SSB wireless communication system can be further expanded, and the frequency utilization efficiency can be greatly improved.

また、中間周波増幅回路40及び低周波増幅回路53における基準信号を一定とする制御及び復調後の帯域ろ波回路52により、フェージングの影響を小さくすることができる。  In addition, the influence of fading can be reduced by the control and the demodulated band-pass filter circuit 52 for making the reference signal constant in the intermediate frequency amplifier circuit 40 and the low frequency amplifier circuit 53.

また、受信した基準信号の間隔に同期を取って局部発振周波数及び局部搬送波周波数を調整するから、発振回路が超高安定度でなくとも、同期検波回路において、受信入力と局部搬送波周波数との同期がほぼ完全に取れる。したがって、復調効率が改善され、雑音等の影響が小さくなる。  In addition, since the local oscillation frequency and the local carrier frequency are adjusted in synchronization with the interval of the received reference signal, the synchronous detection circuit can synchronize the reception input with the local carrier frequency even if the oscillation circuit is not extremely high in stability. Is almost completely removed. Therefore, the demodulation efficiency is improved and the influence of noise and the like is reduced.

以上のことから、中波帯以上の全ての周波数帯に本発明のSSB無線機を適用することが可能であり、中波帯以上の全ての周波数帯において周波数利用効率を大幅に改善できる。短波帯においては、狭帯域で高速のデータを伝送できるだけでなく、フェージングの影響を少なくできるので、特にその効果は大きい。  From the above, it is possible to apply the SSB radio of the present invention to all frequency bands above the medium wave band, and the frequency utilization efficiency can be greatly improved in all frequency bands above the medium wave band. In the short wave band, not only can high-speed data be transmitted in a narrow band, but also the effect of fading can be reduced, so that the effect is particularly great.

本発明の実施の形態に係るSSB無線通信方式の送信側の無線機の全体構成を示す図。  The figure which shows the whole structure of the radio | wireless machine of the transmission side of the SSB radio | wireless communication system which concerns on embodiment of this invention. 無線機各部の波形を示す図。  The figure which shows the waveform of each part of a radio | wireless machine. 本発明の実施の形態に係る、第1のSSB無線通信方式の受信側の無線機の全体構成を示す図。  The figure which shows the whole structure of the radio | wireless machine of the receiving side of the 1st SSB radio | wireless communication system based on embodiment of this invention. 本発明の実施の形態に係る、第2のSSB無線通信方式の受信側の無線機の全体構成を示す図。  The figure which shows the whole structure of the radio | wireless machine of the receiving side of the 2nd SSB radio | wireless communication system based on embodiment of this invention. 従来のSSB無線通信方式を用いる無線機の受信回路のブロック構成を示す図。  The figure which shows the block configuration of the receiving circuit of the radio | wireless machine using the conventional SSB radio | wireless communication system.

符号の説明Explanation of symbols

11 シンセサイザ回路
12、18、20、24 帯域通過ろ波回路
13 抵抗減衰器
14 切替回路
15 制御回路
16 低域通過ろ波回路
17 振幅変調回路
19,22 送信混合回路
21,23 高周波増幅回路
25 送信電力増幅回路
26 空中線同調回路
27 空中線
31 空中線
32、34、36、41,52 帯域通過ろ波回路
33 高周波増幅回路
35,38 混合回路
37,42 中間周波増幅回路
39、40 シンセサイザ回路
43 ピーク検波回路
44、55 利得制御回路
45 振幅測定回路
46、57 復号回路
51 同期検波回路
53 低周波増幅回路
56 振幅測定回路
58 ピーク検出回路
59 同期信号発生回路
11 Synthesizer circuits 12, 18, 20, 24 Band-pass filter circuit 13 Resistance attenuator 14 Switching circuit 15 Control circuit 16 Low-pass filter circuit 17 Amplitude modulation circuits 19, 22 Transmission mixing circuits 21, 23 High-frequency amplifier circuit 25 Transmission Power amplifier circuit 26 Antenna tuning circuit 27 Antenna 31 Antennas 32, 34, 36, 41, 52 Band-pass filtering circuit 33 High frequency amplifier circuits 35, 38 Mixing circuits 37, 42 Intermediate frequency amplifier circuits 39, 40 Synthesizer circuit 43 Peak detection circuit 44, 55 Gain control circuit 45 Amplitude measurement circuit 46, 57 Decoding circuit 51 Synchronous detection circuit 53 Low frequency amplifier circuit 56 Amplitude measurement circuit 58 Peak detection circuit 59 Synchronization signal generation circuit

Claims (2)

送信側において、所定の幅と所定の周期になるように形成された一定振幅で正弦波状の基準信号と、この基準信号と同じ幅でかつその基準信号の振幅を基準とした2値又は多値のデジタル値を表現する振幅を持つ正弦波状のデータ信号とを変調入力として、搬送波を振幅変調して単側波帯で送信し、
受信側において、前記基準信号に基づいて受信利得を自動調整し、受信信号の搬送波の振幅値において、ピーク値である前記基準信号の振幅値を基準として、前記各信号の切り替わる直前又は指定された適切な箇所の振幅値を測定し、デジタル値を検出する事を特徴とする高効率デジタルSSB無線機
On the transmitting side, a sine wave-shaped reference signal having a constant amplitude and a predetermined width and a predetermined period, and a binary or multi-value having the same width as the reference signal and the amplitude of the reference signal as a reference A sine wave data signal with an amplitude representing the digital value of the signal as a modulation input, the carrier wave is amplitude-modulated and transmitted in a single sideband,
On the receiving side, the reception gain is automatically adjusted based on the reference signal, and the amplitude value of the carrier wave of the reception signal is set immediately before or after the switching of each signal with the amplitude value of the reference signal being a peak value as a reference. High-efficiency digital SSB radio characterized by measuring the amplitude value at an appropriate location and detecting the digital value
局部搬送波及び局部発振波を共通の発振源から発生する周波数発生手段と、前記周波数発生手段の発生周波数に基づいて、所定の幅と所定の周期でかつ一定振幅の複数の正弦波からなる基準信号及びこの基準信号と幅と正弦波の数が同じでかつ前記基準信号の振幅を基準とした2値又は多値のデジタル値を表現する正弦波状のデータ信号からなる変調波を発生する変調波発生手段と、
前記局部搬送波を、前記変調波で振幅変調する変調手段と、
この変調手段の変調出力を上側或いは下側のいずれかの単側帯波のみを通過させる帯域通過フィルタ手段と、
この帯域通過フィルタ手段の出力を前記局部発振波によりシフトし送信搬送波信号とするための周波数変換手段を備え、
受信側において、前記単側帯波通信信号を、局部発振波周波数信号でシフトし、中間周波数信号に変換する周波数変換手段と
この周波数変換手段からの中間周波数信号を増幅する中間周波数増幅手段と、この中間周波数増幅手段の出力から、前記基準信号の周期の周波数成分を出力する周波数検出手段と、
前記周波数検出手段からの前記基準信号の周期の周波数成分に基づいて、前記局部発振波周波数信号を生成する周波数発生手段と
前記局部発振波周波数と同期している局部搬送波発振回路及びその出力に基づいて受信信号を復調する同期検波回路を備え、前記各信号の復調出力において、信号の切り替わる直前の振幅値から、前記信号のデジタル値を検出する事を特徴とする高効率デジタルSSB無線機
A frequency generation means for generating a local carrier wave and a local oscillation wave from a common oscillation source, and a reference signal composed of a plurality of sine waves having a predetermined width, a predetermined period, and a constant amplitude based on the generated frequency of the frequency generation means And a modulation wave generation for generating a modulation wave composed of a sine wave data signal having the same width and the same number of sine waves as the reference signal and expressing a binary or multivalued digital value based on the amplitude of the reference signal. Means,
Modulation means for amplitude-modulating the local carrier wave with the modulated wave;
Bandpass filter means for passing only the upper or lower single sideband of the modulation output of this modulation means;
A frequency conversion means for shifting the output of the band pass filter means by the local oscillation wave to be a transmission carrier signal;
On the receiving side, the single sideband communication signal is shifted by a local oscillation frequency signal and converted to an intermediate frequency signal, an intermediate frequency amplification means for amplifying the intermediate frequency signal from the frequency conversion means, and A frequency detecting means for outputting a frequency component of the period of the reference signal from the output of the intermediate frequency amplifying means;
Based on the frequency generating means for generating the local oscillation frequency signal based on the frequency component of the period of the reference signal from the frequency detection means, the local carrier oscillation circuit synchronized with the local oscillation frequency, and the output thereof A high-efficiency digital SSB radio comprising a synchronous detection circuit for demodulating the received signal, and detecting the digital value of the signal from the amplitude value immediately before the signal is switched in the demodulated output of each signal
JP2005330802A 2005-10-18 2005-10-18 General-purpose, highly efficient digital ssb radio equipment Pending JP2007116644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005330802A JP2007116644A (en) 2005-10-18 2005-10-18 General-purpose, highly efficient digital ssb radio equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005330802A JP2007116644A (en) 2005-10-18 2005-10-18 General-purpose, highly efficient digital ssb radio equipment

Publications (1)

Publication Number Publication Date
JP2007116644A true JP2007116644A (en) 2007-05-10

Family

ID=38098396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005330802A Pending JP2007116644A (en) 2005-10-18 2005-10-18 General-purpose, highly efficient digital ssb radio equipment

Country Status (1)

Country Link
JP (1) JP2007116644A (en)

Similar Documents

Publication Publication Date Title
USRE38603E1 (en) Data transmitter and receiver of a spread spectrum communication system using a pilot channel
JP3493414B2 (en) Method for wireless information transmission
KR100186753B1 (en) Radio transmit and receive system
US6341140B1 (en) Code synchronization apparatus of multi-carrier direct sequence spread spectrum communication system
JP4918710B2 (en) SSB wireless communication system and radio
US7418027B2 (en) Method and apparatus for ultra wideband communications system employing a spread spectrum technique transmitting a baseband signal over a wide frequency band
JPH05291995A (en) Method for compensating interference for radio repeater station
US7224748B2 (en) Method for reducing out-of-band and spurious emissions of AM transmitters in digital operation
JP2007116644A (en) General-purpose, highly efficient digital ssb radio equipment
JP3197581B2 (en) Spread spectrum receiver, spread spectrum transmitter, and spread spectrum communication system
JP4126043B2 (en) Phase demodulator and mobile phone device
JPH10126311A (en) Method and device for communication, and storage medium
JP2009278602A (en) Digital communication system and wireless unit
JPH06334626A (en) Spread spectrum communication system
JPH0580053U (en) Spread spectrum communication system receiver
JP2804233B2 (en) Multiplexing method in spread spectrum communication.
JP2010283796A (en) Digital communication system and wireless unit
JP3518739B2 (en) Orthogonal frequency division multiplex signal receiving apparatus and orthogonal frequency division multiplex signal receiving method
JP2715125B2 (en) Spread spectrum communication equipment
JPH11355242A (en) Multicarrier modulator and demodulator
JP3518754B2 (en) Orthogonal frequency division multiplex signal receiving apparatus and orthogonal frequency division multiplex signal receiving method
JP2003188744A (en) Cfm-ssb radio equipment
JP2013168912A (en) Digital communication method and radio device
JPH0646098A (en) Control tone transmission system ion fm radio system
JPH09247046A (en) Receiver for spread spectrum communication