JPS5894016A - Temperature controller - Google Patents

Temperature controller

Info

Publication number
JPS5894016A
JPS5894016A JP56191810A JP19181081A JPS5894016A JP S5894016 A JPS5894016 A JP S5894016A JP 56191810 A JP56191810 A JP 56191810A JP 19181081 A JP19181081 A JP 19181081A JP S5894016 A JPS5894016 A JP S5894016A
Authority
JP
Japan
Prior art keywords
temperature
com28
frequency
control
delivers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56191810A
Other languages
Japanese (ja)
Inventor
Shigefumi Morishita
森下 繁文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP56191810A priority Critical patent/JPS5894016A/en
Publication of JPS5894016A publication Critical patent/JPS5894016A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/20Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1902Control of temperature characterised by the use of electric means characterised by the use of a variable reference value
    • G05D23/1905Control of temperature characterised by the use of electric means characterised by the use of a variable reference value associated with tele control

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Temperature (AREA)

Abstract

PURPOSE:To attain a precise control of temperatures, by performing only the measurement and display of temperatures during the set waiting time and giving the temperature control with the last temperature information after the lapse of the waiting time so that an object to receive the temperature control reaches the target temperature. CONSTITUTION:A temperature sensor 11 consisting of a surface acoustic wave resonator 12 and an amplifier 13 delivers the oscillating frequency corresponding to the ambient temperature and radiates the frequency into a room after the amplification 14. A receiving part 16 receives the radiated electric wave and then amplifies 24 the signal which received a conversion of frequency to supply it to an AND circuit 25. The reference signal of a frequency that varies at 0.1 C is fed to the circuit 25. The output of the circuit 25 is fed to a counter 27 to be turned into the temperature information. This temperature information is fed to a computer COM28. The COM28 displays 29 the detected temperature and delivers the temperature control signal in response to the data read in from an input data 30. After reading in the target temperature T1, the waiting time t and the detected temperature T2, the COM28 keeps the display of the T2 until the time t which is set in consideration of the heat time constant of an object to receive the temperature control is obtained. The COM28 delivers the control signal proportional to T1-T2=DELTAT when t=0 is satisfied.

Description

【発明の詳細な説明】 発明の技術分野 本発明は、温度センサを用いて錫度!1lIIIlt行
なう温度制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention uses a temperature sensor to measure tin temperature. This invention relates to a temperature control device that performs 1lIIIlt.

発明の技術的背景 従来、この種の温度制御装置として、温度センサに温度
により発振周波数を変化する弾性表面波発振器あるいは
水晶発振器を使用し、これの発振周波数を受信部で受信
して温度を検知し、この検知出力により温度制御を行な
うようにしたものがある。この場合+Dff1度センサ
はワイヤレスのものであり、これによりセンサの設mt
m所が自由に適訳でき、特に回転機械等の温に検知に有
効である。
Technical Background of the Invention Conventionally, this type of temperature control device uses a surface acoustic wave oscillator or a crystal oscillator whose oscillation frequency changes depending on the temperature as a temperature sensor, and detects the temperature by receiving the oscillation frequency at a receiving section. However, there are some devices in which temperature control is performed based on this detection output. In this case, the +Dff1 degree sensor is wireless, which allows the sensor to be set mt
m locations can be translated freely and appropriately, and is particularly effective for detecting the temperature of rotating machinery.

そこで、シリコンウェハー等のポリシングマシ’l (
Polishing machine)の温度制御への
応用が考えられる。すなわちシリコンウエノ1−のポリ
シングはメカノケミカルボリジングであるため−直によ
り研磨速f、研磨条件が変化し、一定の条件のものが得
られないという問題があり温J[制御が必要であるが、
研磨が回転状m(60〜90RPM)で行われるため、
ボリシング中のウニ/1−の温If検出が困離であると
いう間層があった。
Therefore, polishing machines such as silicon wafers (
Applications to temperature control of polishing machines are conceivable. In other words, since the polishing of silicon wafer 1 is mechanochemical polishing, the polishing speed f and polishing conditions change depending on the process, and there is a problem that constant conditions cannot be obtained. ,
Since the polishing is carried out at a rotational speed of m (60-90 RPM),
There was a problem that it was difficult to detect the temperature If of sea urchin/1- during boiling.

しかるに弾性表面波発振器あるいは水晶発振6゜を使用
した一度センサは前述のようにワイヤレンであるため、
プレートが1916しても問題はなく、従ってポリシン
グマシンへ応用することは有効である。
However, since the sensor using a surface acoustic wave oscillator or a 6° crystal oscillator is a wireless sensor as mentioned above,
There is no problem even if the plate is 1916, so it is effective to apply it to a polishing machine.

背景技術の問題点 ところが、ボリシングマシンへの応用には次のような問
題がある。すなわちシリコンウェハーは、2枚の金属プ
レートにはさまれた状態でポリシングされているため、
シリコンウェハーの温度制御は、プレートの温度を検知
し、この温度が一定となるよう制御することにより間接
的に行われる。
Problems with the Background Art However, there are the following problems when applied to a borising machine. In other words, since the silicon wafer is polished while being sandwiched between two metal plates,
The temperature of the silicon wafer is indirectly controlled by detecting the temperature of the plate and controlling the temperature to be constant.

ところが、このプレートは大きな体積をもつ所1金属の
樵であるため、熱時定数が大きく、従って精密な温度制
御を行うことが1蟲であった。
However, since this plate is made of metal and has a large volume, it has a large thermal time constant, making it difficult to precisely control the temperature.

発明の目的 本発明は上記の点に鑑みてなされたもので、被温度側m
物体の熱時定数を考慮し、精密な温度制御ができる温度
制御装置を提供することを目的とするものである。
Purpose of the Invention The present invention has been made in view of the above points.
The object of the present invention is to provide a temperature control device that takes into account the thermal time constant of an object and can perform precise temperature control.

発明の概要 本発明は温′度センサに弾性表向波発振器を使用し、゛
ワイヤレスでll1度情報を受信し、温度制御を行なう
温度制御装置について、設定した待機時間温度測定及び
表示のみ行ない、待機時間経過後、最後の温度情報で被
温度制御物体が目標温度になるように温度制御し、その
後は1置に変化が現われるまで温度測定及び表示のみを
行ない、変化風われれば最初の待機時間にもどり、以後
これをくりかえすことにより被制御物体の熱時定数を考
慮し精密な11度制御ができるようにしたものである。
Summary of the Invention The present invention uses a surface acoustic wave oscillator as a temperature sensor, and uses a temperature control device that wirelessly receives temperature information and performs temperature control only for a set standby time to measure and display the temperature. After the standby time has elapsed, the temperature of the object to be controlled is controlled to the target temperature using the last temperature information, and thereafter only the temperature is measured and displayed until a change appears, and if there is a change, the first standby time is reached. By repeating this process, precise 11 degree control can be achieved taking into account the thermal time constant of the object to be controlled.

発明の実施例 以下、本発明の実施例を図面を参照して説明するO 第1図は本発明の一実施例を示すものである。Examples of the invention Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows an embodiment of the present invention.

図に8いてff1度センサ11はLiNb0.基板から
なる弾性表面波共振子12と増巾器13とで構成した弾
性表面波発振器よりなるもので、S囲温度に応じた発振
周波数出力(’ ?5.235 MHz at 25℃
、温度係数−89PPm/ ”O)を発生し、この出力
を増巾!14を介してアンテナ15より空中に放射する
ようにしているO 一方、上記アンテナbからの電波を受信する受信M16
は次のようになっている。つまり上記センサ11の発振
出力を受信するアンテナ17にRF増幅尋18を接続し
、アンテナ17の受信信号を増幅するようにする。この
増@器18の出方端に1合量19をII続する。この混
合#a19は局部発振器器を一置しており、上記増巾器
18の出力を安定な局S発振出力(85,92MHz 
)によりビートダウンしIF出方を得るようにしている
。このIF出カをIF増幅器21にて増幅し、この増−
器21の出力端に混合器ρを1i!続する。この混合4
!I22は局部発振器器を接続して怠り、上記増幅1s
21の出力を安定で且つ、0℃におけるIPに相当する
局部発振器器(IO,522M)(z )によりビート
ダウンし、この信号を増幅6冴で増幅した後、0.1”
Oで変化する周波数的660Hzの基準信号局の出力と
、AND回路6でANDをとり、周波数カウンタIに入
力している。
8 in the figure, the ff1 degree sensor 11 is LiNb0. It consists of a surface acoustic wave oscillator composed of a surface acoustic wave resonator 12 made of a substrate and an amplifier 13, and has an oscillation frequency output ('?5.235 MHz at 25°C) according to the S ambient temperature.
, a temperature coefficient of -89PPm/"O) is generated, and this output is radiated into the air from antenna 15 via amplification!14. On the other hand, receiver M16 receives radio waves from antenna b.
is as follows. In other words, the RF amplification filter 18 is connected to the antenna 17 that receives the oscillation output of the sensor 11, and the signal received by the antenna 17 is amplified. A total amount 19 is connected to the output end of this intensifier 18. This mixer #a19 is equipped with a local oscillator, and the output of the amplifier 18 is converted into a stable local S oscillation output (85, 92 MHz).
) to beat down and obtain the IF output. This IF output is amplified by the IF amplifier 21.
A mixer ρ is connected to the output end of the device 21. Continue. This mixture 4
! I22 neglects to connect the local oscillator, and the above amplification 1s
After beating down the output of 21 with a stable local oscillator (IO, 522M) (z) corresponding to IP at 0°C, and amplifying this signal with an amplification unit, 0.1"
An AND circuit 6 performs an AND operation with the output of a reference signal station having a frequency of 660 Hz, which changes at 0, and inputs the result to a frequency counter I.

この時、カウンタnに人力される周波数の1直は、am
そのものとなっている。この温度情報をマイクロ′iン
ピュータ墓に入力している。この検出された温度をLB
D表示表示器機示し、入力データ(資)から銃込んだデ
ータに応じ、温1jl:、11制御信号を出力している
At this time, the first shift of the frequency input to the counter n is am
It has become that. This temperature information is input into a microcomputer. This detected temperature is LB
The D display device outputs temperature 1jl:, 11 control signals according to the data input from the input data.

謔2cIJはマイクロコンピュータ四で行なう、1度続
込み及び制御信号出方のフローチャートを示している。
2cIJ shows a flowchart of one-time continuation and control signal output method performed by microcomputer 4.

つまり、初期設定した後、目* a rx Tt 、待
機時間t、検出fi度Ti読込んだ後、被一度一御物の
熱時定数を考慮して決定された侍、磯時間tになるまで
検出温度Tt(D表示のみ行ない、t=0になるとT、
−T、=ΔTに比例した制御信号を出力する。その後再
び検出温rl Tt’を続込み、Tt −T2’= j
T’ i)s h、q□になるまで温度表示のみ行ない
、上記目II(l[T。
In other words, after initial setting, after reading *a rx Tt, waiting time t, and detection fi degree Ti, detection is performed until the samurai and iso time t, which is determined by taking into account the thermal time constant of the target object, is reached. Temperature Tt (only displays D; when t=0, T;
-T, outputs a control signal proportional to ΔT. After that, the detected temperature rl Tt' is continued again, Tt - T2' = j
Only the temperature is displayed until T' i)s h, q□, and then the temperature is displayed in the above-mentioned point II (l[T.

の絖込みを行ない、以上のくりかえしでΔT=oとなる
様に温度を制御する。
The above steps are repeated to control the temperature so that ΔT=o.

この様にすることにより、熱時定数の大きなものの温度
制御が発振することrj<(aiflJップルが小さく
)精度よく行なわれる。また、熱時定数に応じて待機時
間tが外部で設定できるため、被fi装置制御物が変っ
ても積置よく安定に温度制御できるものである。
By doing so, the temperature control of a device having a large thermal time constant can be performed with high accuracy such that rj<(aiflJ pull is small). Further, since the standby time t can be set externally according to the thermal time constant, the temperature can be stably controlled with good arrangement even if the controlled object of the fi device changes.

謔3図はシリコンウェハーの両面ボリシングマシンの温
度制御に使用した例で、回転方向が互い異なる上プレー
ト謳と下プレートあの間にキャリアあかあり、そのキャ
リアの中にシリコンウェハーあが入り、砥粒を流すこと
により、同時に両面!研磨されている。この研磨時に摩
擦熱でシリコンウェハーの温度が上昇し、研磨速度、及
び条件が変化するのを防ぐため、上記上プレート凋、下
プレート35に冷却水を流すパイプaを設け、冷却水を
流し、冷却を行っている。そこで目標温度に一度を制御
するため、上プレートあに孔を設け、at図11に示し
たよりな弾性表面波発振器からなる(U[センサ胎を挿
入し、アンテナおから、温度に応じた発振周波数出力を
空中に放射するようにしている。上記アンテナおからの
電波を受信する受信部は第1図16に示すような構成と
なっており、制−信号によりパイプ37に流れる冷却水
の水量を制御し、上プレート誦、下プレー)35を冷却
することにより、間接的にシリコンウェハー興の温度が
一定となるようにしたものである。
Figure 3 shows an example of a silicon wafer double-sided boring machine used for temperature control. There is a carrier between the upper and lower plates, which rotate in different directions, and the silicon wafer is placed inside the carrier. By flowing grains, you can do both sides at the same time! Polished. In order to prevent the temperature of the silicon wafer from rising due to frictional heat during this polishing and changing the polishing speed and conditions, a pipe a is provided for flowing cooling water through the upper plate 35 and the lower plate 35, Cooling is in progress. Therefore, in order to control the target temperature at once, a hole is provided in the upper plate, and a surface acoustic wave oscillator (U) shown in Figure 11 is inserted into the upper plate, and the oscillation frequency according to the temperature is set. The output is radiated into the air.The receiving section that receives the radio waves from the antenna okara has a configuration as shown in FIG. By controlling and cooling the upper plate 35 and the lower plate 35, the temperature of the silicon wafer is indirectly kept constant.

制御方法は第2図に示したフローチャートの様になって
いるため、プレートの熱時定数に応じて待機時間tを設
定することができ、1JilLリツプルの小さい′In
Iv!jな温度制御が可能となり、一定で良品質のシリ
コンウェハーが得られることが確認された。
Since the control method is as shown in the flowchart shown in Fig. 2, the waiting time t can be set according to the thermal time constant of the plate, and the
IV! It was confirmed that precise temperature control was possible and silicon wafers of constant and good quality could be obtained.

発明の効果 以上のように本発明によれば、被制御物の熱時定数に応
じた温度制御が、常に安定に種度よく行なわれる。また
、弾性li!面波集波共振子び水晶振動子の場合、一般
に熱電対等の1M度センサに比較して体−が大きいため
、センサ自身の熱時定数が大きくなり、精密なaxat
t+−が困−であった。
Effects of the Invention As described above, according to the present invention, temperature control according to the thermal time constant of the controlled object is always performed stably and with good variety. Also, elastic li! In the case of surface wave collecting resonators and crystal oscillators, their bodies are generally larger than 1M degree sensors such as thermocouples, so the thermal time constant of the sensor itself is large, and precise axatography is required.
t+- was difficult.

なあ、この発明は上記の実施例に限定されるものではな
く、要旨を変更しない範囲に2いて櫨々変更して実施す
ることができる。
The present invention is not limited to the above-described embodiments, and can be practiced with various modifications without changing the gist.

【図面の簡単な説明】[Brief explanation of the drawing]

jllI1図は本発明の一実施例を示すブロック図、1
12図は同実施例に用いられるマイクロコンピュータ部
の1lKI#のフローチャート、s3図は不発明を両面
ポリシングマシンに応用した例を示した断II図である
。 ・  11.39・・・ilf:センサ 12 、 、
(1・・・弾性S!面波共振子13 、14 、18 
、21 、24 、 :[・・・増巾器  16・・・
受信部15 、17.33・・・アンテナ 19 、2
2・・・1合器11・・・局部発振器 謳・・・基準信
号δ・・・AND−路   n・・・周波数カウンタn
・・・マイクロコンピュータ 四・・・LftDft−(9)相入力データ凋・・・上
プレート   あ・・・下プレートあ・・・シリコンウ
ェハー A7・・・冷却水用パイプあ・・・キャリア 代虐人弁理士 期近慮佑(ほか1名)
Figure 1 is a block diagram showing an embodiment of the present invention.
Fig. 12 is a flowchart of 11KI# of the microcomputer section used in the same embodiment, and Fig. s3 is a section II diagram showing an example in which the invention is applied to a double-sided polishing machine.・ 11.39...ilf: Sensor 12 , ,
(1... Elastic S! Plane wave resonators 13, 14, 18
, 21 , 24 , : [... amplifier 16...
Receiving section 15, 17.33... antenna 19, 2
2...1 combiner 11...Local oscillator Song...Reference signal δ...AND-path n...Frequency counter n
...Microcomputer 4...LftDft-(9) Phase input data fall...Upper plate A...Lower plate A...Silicon wafer A7...Cooling water pipe A...Carrier torture Private patent attorney Chisuke Kiuchika (and 1 other person)

Claims (1)

【特許請求の範囲】[Claims] 被温度制御体の温度変化を感知し発振周波数が変化する
発揚器を有するとともにこの発条出力を送信する温度検
出器と、この検出IIの送信出力を受信し前記発振周波
数に対応した前記被温度制御体の温度変化を検出する受
信手段と、この受信部により検出された検出温度と目標
温度の温度差を前記被温度制御体の熱時定数に応じた所
定時間比較し該所定時間経過時の前記温度差に応じた制
御信号を出力する制御手段とを備え、前記検出温度と目
4IiIs度との差をなくするよう前記被温度制御体を
温度制御することを特徴とする1度制御装置。
a temperature detector having an oscillator whose oscillation frequency changes by sensing a temperature change in the temperature-controlled body and transmitting the oscillation output; and a temperature control device that receives the transmission output of the detection II and corresponds to the oscillation frequency. a receiving means for detecting a temperature change of the body; and comparing the temperature difference between the detected temperature detected by the receiving section and the target temperature for a predetermined time according to the thermal time constant of the temperature-controlled body, and detecting the temperature difference after the elapse of the predetermined time. 1. A one-degree control device comprising: a control means for outputting a control signal according to a temperature difference, and controlling the temperature of the temperature-controlled body so as to eliminate a difference between the detected temperature and 4IiIs degrees.
JP56191810A 1981-12-01 1981-12-01 Temperature controller Pending JPS5894016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56191810A JPS5894016A (en) 1981-12-01 1981-12-01 Temperature controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56191810A JPS5894016A (en) 1981-12-01 1981-12-01 Temperature controller

Publications (1)

Publication Number Publication Date
JPS5894016A true JPS5894016A (en) 1983-06-04

Family

ID=16280895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56191810A Pending JPS5894016A (en) 1981-12-01 1981-12-01 Temperature controller

Country Status (1)

Country Link
JP (1) JPS5894016A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1152315A2 (en) * 2000-05-03 2001-11-07 Computer Process Controls, Inc. Wireless method and apparatus for monitoring and controlling food temperature

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5454390A (en) * 1977-10-08 1979-04-28 Shibayama Kikai Kk Cooling water temperature control system for polishing table
JPS5541524A (en) * 1978-09-18 1980-03-24 Toshiba Corp Temperature control unit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5454390A (en) * 1977-10-08 1979-04-28 Shibayama Kikai Kk Cooling water temperature control system for polishing table
JPS5541524A (en) * 1978-09-18 1980-03-24 Toshiba Corp Temperature control unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1152315A2 (en) * 2000-05-03 2001-11-07 Computer Process Controls, Inc. Wireless method and apparatus for monitoring and controlling food temperature

Similar Documents

Publication Publication Date Title
US4249418A (en) Temperature detector using a surface acoustic wave device
Barmatz et al. Velocity and attenuation of first sound near the λ point of helium
US4115184A (en) Method of plasma etching
Tsai et al. An ultrasonic air temperature measurement system with self-correction function for humidity
JPH0468903A (en) Oscillator having temperature sensing function and crystal oscillator element and temperature detection method
WO1985003115A1 (en) Cooker with weight-detecting function
JPH07286997A (en) Acoustic-wave sensor device
JP3250285B2 (en) Substrate to be processed provided with information measuring means
JPS5894016A (en) Temperature controller
JPH07294541A (en) Measurement device
JP2007171047A5 (en)
JPH11307606A (en) Evaluating method and device for substrate heat treatment equipment
US5406829A (en) Temperature control for chemical sensors
CN104792821B (en) Miniature calorimeter
EP0515356B1 (en) Method and apparatus for measuring the temperature of an electrically conductive material
JP2004140167A (en) Method of measuring temperature of substrate, and substrate heat treatment apparatus and method of correcting setting temperature therein
JP5760750B2 (en) Steel temperature measurement method
Warner et al. Mass and thermal measurement with resonating crystalline quartz
CN102435342B (en) A kind of temperature measuring set and measuring method cutting quartz-crystal resonator based on AT
WO2019051217A1 (en) Pressure sensing using quantum molecular rotational state transitions
Lue Voltage readout of a temperature-controlled thin film thickness monitor
CN205991952U (en) A kind of measuring apparatus for quick measurement drop condensation point
Degertekin et al. In-situ temperature monitoring in RTP by acoustical techniques
US3956932A (en) Wind sensor
JPS6046434A (en) Temperature detector