JPS5893298A - Multilayer circuit board - Google Patents

Multilayer circuit board

Info

Publication number
JPS5893298A
JPS5893298A JP19083881A JP19083881A JPS5893298A JP S5893298 A JPS5893298 A JP S5893298A JP 19083881 A JP19083881 A JP 19083881A JP 19083881 A JP19083881 A JP 19083881A JP S5893298 A JPS5893298 A JP S5893298A
Authority
JP
Japan
Prior art keywords
hole
wiring
insulating layer
film
multilayer wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19083881A
Other languages
Japanese (ja)
Inventor
吉田 次江
藤本 一之
薮下 明
川人 道善
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP19083881A priority Critical patent/JPS5893298A/en
Publication of JPS5893298A publication Critical patent/JPS5893298A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は多層配線基板における配線メタライズ構成法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a wiring metallization construction method in a multilayer wiring board.

従来実施されている薄膜多層配線基板の製造方法を第1
図および第2図によυ説明する。
The first method for manufacturing thin film multilayer wiring boards that has been conventionally implemented is
This will be explained with reference to the figure and Fig. 2.

第1図は従来の配線基板の製造工程を説明するフローシ
ート、第2図はその各工程における説明用断面図である
FIG. 1 is a flow sheet explaining the conventional manufacturing process of a wiring board, and FIG. 2 is a cross-sectional view for explaining each process.

2  頁 第1図および第2図において、A乃至Jは各工程を示す
In Figures 1 and 2 on page 2, A to J indicate each step.

先づ基板1け、一般に薄膜回路に用いられるグレーズド
セラミック基板を洗浄後、真空蒸着、あるいはスパッタ
リング法等によりAg、膜2を形成し■、続いてそのM
膜上にホトプロセスによりレジスト膜3を形成しQ3)
、itいてリン酸系エッチャントを用いてエツチングす
ることによりu配線パターンを構成しく01次にレジス
ト膜3を普通の方法によυ除去し■、続いて(へ)に示
すように層間絶縁層4を形成するが、これはポリイミド
系樹脂を回転塗布法によυ均一に形成し、約200℃で
仮ベークを行い、さらに350℃のN2中でキュアを行
なう。次に絶縁層4上に前記同様にホトプロセスにより
レジスト膜3を形成しい、続いてヒドラジノおよびエチ
レンソアミン混液よりなるエッチャントで接続スルーホ
ール6を形成しくG)、レジスト膜を除去0した後、再
度ポリイミド系絶縁層4を  □約350℃のN2中で
ベーク処理をする。
First, after cleaning the first substrate, a glazed ceramic substrate generally used for thin film circuits, a film 2 of Ag is formed by vacuum evaporation or sputtering method, and then the M
Form a resist film 3 on the film by photoprocessing Q3)
Then, the resist film 3 is removed by an ordinary method to form a U wiring pattern by etching with a phosphoric acid-based etchant. This is done by uniformly forming polyimide resin by spin coating, pre-baking at about 200°C, and then curing in N2 at 350°C. Next, a resist film 3 is formed on the insulating layer 4 by photoprocessing in the same manner as described above, and then a connecting through hole 6 is formed using an etchant made of a mixture of hydrazino and ethylenesoamine (G). After removing the resist film, The polyimide insulating layer 4 is again baked in N2 at about 350°C.

このように基板1上にM配線導体層2を形成し、3 頁 その上部の絶縁層4に接続用スルーホール6を設は九簿
膜多層配線回路では、前処理工程(I)に送られ、ここ
でスルーホール6内のAA酸化被覆をスルファミノ酸系
エッチャントにより取除き、その後リン酸系エッチャン
トによりライトエッチしている。その後に第2導体層と
してA9(あるいはNi−Cr/ッ、C1/。□など)
5を前記と同様真空蒸着またはスパッタリング法で形成
している(J)。
In this way, the M wiring conductor layer 2 is formed on the substrate 1, and the connection through holes 6 are formed in the insulating layer 4 above it. Here, the AA oxide coating inside the through hole 6 is removed using a sulfamino acid etchant, and then light etched using a phosphoric acid etchant. After that, A9 (or Ni-Cr/c, C1/.□, etc.) is used as the second conductor layer.
5 is formed by vacuum evaporation or sputtering method as described above (J).

このように、従来は上部導体層5を設ける前に、前処理
工程(I)を設けているが、これは前記した如く、スル
ーホール6内のAg、酸化被覆7を取除くためであり、
これを省略すると、スルーホール6の接続抵抗値が数Ω
/穴〜数−〇/穴と異状に高いものが生じ、製品歩留υ
を阻害する最大要因となっていたからである。
In this way, conventionally, a pretreatment step (I) is provided before forming the upper conductor layer 5, but as described above, this is to remove Ag and oxide coating 7 in the through hole 6.
If this is omitted, the connection resistance value of through hole 6 will be several Ω.
/ hole ~ number - 〇 / hole and an abnormally high number of holes occur, reducing the product yield υ
This is because it was the biggest factor inhibiting the

前記前処理工程(I)を施すことにより、スルーホール
6の接続抵抗値は約数Ω/穴と大巾に減少したが、その
反面、スルファミン酸系およびリン酸系エッチャントに
より、AQ酸化被覆膜だ&−1でなく成金属部まで除去
され、スルーホール6内に段差特開”r’r ’+11
 !l:(2!Ili (2)を生じ、上部導体層5の
形成後に、スルーホール部での配線切れやクラックを生
じ、配線強度を低下させ、製品歩留りを低下させる要因
が新たに発生してきた。
By performing the pretreatment step (I), the connection resistance value of the through hole 6 was significantly reduced to about several Ω/hole, but on the other hand, the AQ oxide coating was Not only the film &-1 but also the formed metal part was removed, and there was a step in the through hole 6 "r'r '+11"
! l:(2!Ili (2)), and after the formation of the upper conductor layer 5, wire breakage and cracks occur at the through-hole portion, reducing the wiring strength and causing a new factor that lowers the product yield. .

本発明は、前記の如き従来技術を改善し、スルファミン
酸系およびリン酸系エッチャントを用いる前処理工程を
省き、しかもスルーホール部での接続抵抗値を小さくす
ることができる多層配線基板を提供せんとするものであ
る。
The present invention improves the prior art as described above, and provides a multilayer wiring board that can omit the pretreatment process using sulfamic acid and phosphoric acid etchants, and can reduce the connection resistance value at the through-hole portion. That is.

本発明は前記の目的を達成せんがため、薄膜多層配線基
板の下部導体層として、主たる導体部分がMからなシ、
かつその絶縁層中の開口部をAuによって被覆したもの
である。
In order to achieve the above-mentioned object, the present invention provides a lower conductor layer of a thin film multilayer wiring board in which the main conductor portion is not made of M.
In addition, the opening in the insulating layer is covered with Au.

次に第3図および第4図により本発明の一実施例を説明
する。
Next, an embodiment of the present invention will be described with reference to FIGS. 3 and 4.

第3図および第4図は従来例を説明した第1図および第
2図に相当するフローシートおよびその:;□・ 工程における説明用断面図である。
FIGS. 3 and 4 are flow sheets corresponding to FIGS. 1 and 2 explaining the conventional example, and explanatory cross-sectional views of the process.

第3図および第4図において、従来の実施例を説明した
第1図および第2図と異なるところは、5頁 (ト)工程におけるAI/Au膜形成と、0工程におけ
るAu4B  配線形成と、前処理工程CI)がないこ
とだけであり、他の工程は前述の実施例と同一でめるが
らその他の工程の説明を省略し、(ト)、(O′工程に
ついてのみ説明する。
In FIGS. 3 and 4, the differences from FIGS. 1 and 2 explaining the conventional embodiment are the formation of the AI/Au film in the step 5 (g) and the formation of the Au4B wiring in the step 0, The only difference is that there is no pretreatment step CI), and the other steps are the same as in the previous embodiment, but the explanation of the other steps will be omitted, and only steps (G) and (O') will be explained.

本実施例においても、基板1は薄膜回路に用いられるグ
レーズドセラミック基板1を洗浄後、真空蒸着あるいは
スパッタリング法等の真空製膜法によシM膜を1μ、そ
の上にAuを50OA形成する。
In this embodiment as well, the substrate 1 is a glazed ceramic substrate 1 used for a thin film circuit, and after cleaning, a 1 μm M film is formed on the M film and 50 OA of Au is formed thereon by a vacuum film forming method such as vacuum evaporation or sputtering.

このように配線導体層2を形成した後、レジスト膜3を
形成し、引続き第1層配線パターンの形成工程(O′で
は、A11のバターニングにはヨウ素系エッチャント、
Mのパターニングにはリン酸系エッチャントを使用する
。以下レジストの除去およびスルーホールの形成は従来
と同様にして行い、多層配線を構成する層間絶縁膜4を
ポリイミド系樹脂を用いて形成し、その上に上層配線と
して新たなAi!/Au(或いはNi −Cr/)4 
+ Cr/Cuなど)を前述のように形成する。以下こ
れを繰返すことにょυ2つ以上の多層配線回路を構成す
る。
After forming the wiring conductor layer 2 in this way, a resist film 3 is formed, followed by a step of forming a first layer wiring pattern (in O', an iodine-based etchant is used for patterning A11,
A phosphoric acid etchant is used for patterning M. Thereafter, the removal of the resist and the formation of through holes are performed in the same manner as before, and the interlayer insulating film 4 constituting the multilayer wiring is formed using polyimide resin, and a new Ai! /Au (or Ni-Cr/)4
+ Cr/Cu) as described above. By repeating this process, two or more multilayer wiring circuits are constructed.

7r このように構成した薄膜多層配線回路では、第5図に示
すようにAnを500A以上被覆することにより、60
μφのスルーホールの接続抵抗値をすべて0.1Ω/穴
 以下にすることができることが確認された。
7r In the thin film multilayer wiring circuit constructed in this way, as shown in FIG.
It was confirmed that the connection resistance values of all μφ through holes could be reduced to 0.1Ω/hole or less.

次表は従来法による多層配線基板と本発明による多層配
線基板の具体的効果を示す比較光である。
The following table is a comparative light showing the specific effects of the multilayer wiring board according to the conventional method and the multilayer wiring board according to the present invention.

表 この表の如く、従来技術では、スルーホール接続抵抗値
が数Ω/穴穴数数Ω/穴と大きく、接続歩留りは30%
程度であった。その解決策として前処理工程(I)を施
すことにより、接続抵抗値を0.1Ω/穴〜数Ω/穴に
減少することができ、接続7  百 歩留りも80%まで向上させることができたが、M処理
によυスルーホール内の成配線層が侵食され、クラック
や配線切れがめった。これに対し木兄rJICおいては
、スルーホールがAuで被覆しているので、前処理工程
を省略しても接続抵抗値が0.1Ω/穴であり、前処理
工程を省略することにより接続歩留りを95チ程度まで
向上させることができた。
Table As shown in this table, with the conventional technology, the through-hole connection resistance value is large at several Ω/hole number of holes several Ω/hole, and the connection yield is 30%.
It was about. As a solution to this problem, by applying the pretreatment process (I), we were able to reduce the connection resistance value from 0.1Ω/hole to several Ω/hole, and the connection 7 100% yield was also improved to 80%. However, the wiring layer inside the υ through-hole was eroded by the M treatment, resulting in cracks and wire breaks. On the other hand, in the case of Kinei rJIC, the through holes are covered with Au, so even if the pretreatment process is omitted, the connection resistance value is 0.1Ω/hole. The yield could be improved to about 95 inches.

なお、前記層間絶縁層4の上に第3導体層として新たな
Ai/A11(或いはNi −Cr/Au 、Cr/C
u など)を前述のように形成し、スルーホールを設け
て2層以」二の多層配線回路を構成することもできる。
Note that a new Ai/A11 (or Ni-Cr/Au, Cr/C
It is also possible to form a multilayer wiring circuit with two or more layers by forming the wiring (e.g., U) as described above and providing through holes.

以上述べた如く、本発明の多層配線基板は、配線導体層
上にAuを被覆させているので、スルーホール形成時に
配線導体層が侵食されることがなく、前処理工程を省略
しても接続抵抗値を0.1Ω/穴とすることができ、接
続歩留りを大巾に向上させることができる効果がある。
As described above, in the multilayer wiring board of the present invention, since the wiring conductor layer is coated with Au, the wiring conductor layer is not eroded during through-hole formation, and connections can be made even if the pretreatment process is omitted. The resistance value can be set to 0.1Ω/hole, and the connection yield can be greatly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の多層配線基板の製造工程を示す1)開’
:: ’a8 !1,3291i (3)フローシート
、第2図は各工程における説明用断面図、第3図は本発
明の各工程を示すフローシート、第4図は各工程におけ
る説明用断面図、第5図はAu膜厚と接続抵抗値の関係
を示すグラフである。 1・・基板、2・・・配線導体層、3・・・レジスト膜
、4・・・絶縁層、5・・・第2導体層、6・・・スル
ーポール7・・酸化被膜。 代理人 弁理士 秋  本  正  実第3図 第4図
Figure 1 shows the manufacturing process of a conventional multilayer wiring board.
:: 'a8! 1,3291i (3) Flow sheet, FIG. 2 is an explanatory sectional view of each step, FIG. 3 is a flow sheet showing each step of the present invention, FIG. 4 is an explanatory sectional view of each step, and FIG. 5 is a graph showing the relationship between Au film thickness and connection resistance value. DESCRIPTION OF SYMBOLS 1... Substrate, 2... Wiring conductor layer, 3... Resist film, 4... Insulating layer, 5... Second conductor layer, 6... Through pole 7... Oxide film. Agent Patent Attorney Tadashi Akimoto Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 1、 絶縁層および絶縁層中の開口部において接続され
た絶縁層上部配線層と、絶縁層下部配線層からなる薄膜
多層配線基板において、下部導体配線部として、主たる
導体部分がMからなυ、少くとも前記開口部において上
記M配線部をAuによって被覆したことを特徴とする薄
膜多層配線基板。 2 絶縁層中の開口部がAuによって被覆されたAM配
線部を2つ以上の層に用いたことを特徴とする特許請求
の範囲第1項記載の多層配線基板。
[Claims] 1. In a thin film multilayer wiring board consisting of an insulating layer, an upper wiring layer of the insulating layer, and a lower wiring layer of the insulating layer connected through an opening in the insulating layer, the main conductor portion is used as the lower conductor wiring portion. υ is M, and the M wiring portion is coated with Au at least in the opening. 2. The multilayer wiring board according to claim 1, characterized in that two or more layers use AM wiring portions in which openings in the insulating layer are covered with Au.
JP19083881A 1981-11-30 1981-11-30 Multilayer circuit board Pending JPS5893298A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19083881A JPS5893298A (en) 1981-11-30 1981-11-30 Multilayer circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19083881A JPS5893298A (en) 1981-11-30 1981-11-30 Multilayer circuit board

Publications (1)

Publication Number Publication Date
JPS5893298A true JPS5893298A (en) 1983-06-02

Family

ID=16264602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19083881A Pending JPS5893298A (en) 1981-11-30 1981-11-30 Multilayer circuit board

Country Status (1)

Country Link
JP (1) JPS5893298A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5200026A (en) * 1990-05-18 1993-04-06 International Business Machines Corporation Manufacturing method for multi-layer circuit boards
US7611982B2 (en) 2003-04-15 2009-11-03 Tdk Corporation Method of forming sheet having foreign material portions used for forming multi-layer wiring board and sheet having foreign portions

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5200026A (en) * 1990-05-18 1993-04-06 International Business Machines Corporation Manufacturing method for multi-layer circuit boards
US7611982B2 (en) 2003-04-15 2009-11-03 Tdk Corporation Method of forming sheet having foreign material portions used for forming multi-layer wiring board and sheet having foreign portions

Similar Documents

Publication Publication Date Title
US4920639A (en) Method of making a multilevel electrical airbridge interconnect
JPH0226392B2 (en)
US3890177A (en) Technique for the fabrication of air-isolated crossovers
JP2688446B2 (en) Multilayer wiring board and manufacturing method thereof
JPH07120647B2 (en) Method for forming wiring on substrate and lift-off film
US4374159A (en) Fabrication of film circuits having a thick film crossunder and a thin film capacitor
JPS5893298A (en) Multilayer circuit board
EP0042943A1 (en) Multilayer integrated circuit substrate structure and process for making such structures
JPH07307549A (en) Method of forming thin film wiring pattern and manufacture of thin film wiring board
JP2985326B2 (en) Method for manufacturing semiconductor device
JP2530008B2 (en) Wiring board manufacturing method
JPH07131155A (en) Manufacture of multilayer interconnection substrate, and multilayer interconnection substrate
JPH07307550A (en) Manufacture of electronic component
JPS62137853A (en) Formation of multilayer interconnection
JPS62295493A (en) Manufacture of circuit board for mounting high speed device
JP4328134B2 (en) Method for manufacturing printed wiring board
JPS5820159B2 (en) Method for manufacturing thin film circuit board with cross wiring
JP2001196252A (en) Manufacturing method of electronic device
JPS59188127A (en) Electronic circuit device with multilayer interconnection and manufacture thereof
JPS5867043A (en) Manufacture of semiconductor device
JP2960536B2 (en) Method of forming thin film resistor
KR0173178B1 (en) Etching process for metal layer of semiconductor
JP2001237541A (en) Build-up multilayered substrate and method for manufacturing it
JPH05308182A (en) Manufacture of film circuit board
JPH07283544A (en) Wiring structure and its manufacturing method