JPS5893294A - Laser oscillator - Google Patents

Laser oscillator

Info

Publication number
JPS5893294A
JPS5893294A JP19086781A JP19086781A JPS5893294A JP S5893294 A JPS5893294 A JP S5893294A JP 19086781 A JP19086781 A JP 19086781A JP 19086781 A JP19086781 A JP 19086781A JP S5893294 A JPS5893294 A JP S5893294A
Authority
JP
Japan
Prior art keywords
mirror
temperature
laser
alignment
obtaining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19086781A
Other languages
Japanese (ja)
Inventor
Shigeo Shiono
塩野 繁男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP19086781A priority Critical patent/JPS5893294A/en
Publication of JPS5893294A publication Critical patent/JPS5893294A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/139Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Lasers (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To automatize the alignment work and to always obtain the desired laser output by disposing a thermal detector, obtaining the displacement of a laser light beam as the variation in the distribution of the temperature and correcting the position of a mirror as the optimum position. CONSTITUTION:The measured temperature data from thermal detectors 25 are, for example, amplified and obtained for four detectors as four temperature values, and the average value and the n difference of the maximum and minimum temperatures is calculated by an arithmetic unit 29. A mirror drive signal is obtained by a comparison arithmetic unit 30 which compares the calculated result with the reference data from a reference data memory 31 having the temperature distribution, a mirror drive pattern and the reference data, thereby obtaining a mirror drive signal and setting via a reversible rotation drive unit 24 and a mirror driving mechanism 27 via a laser light 4b so that the four temperature data of the thermal detectors 25 become equal to each other. In this manner, the optimum alignment can be automatized, thereby always obtaining the desired laser output.

Description

【発明の詳細な説明】 本発明は、レーザ発振装置に係り、特にレーザ光共振器
のアライメント調整に好適な自動制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a laser oscillation device, and particularly to an automatic control device suitable for adjusting the alignment of a laser beam resonator.

従来、炭酸ガスレーザ装置においては、レーザ光共振器
の全反射鏡と出力鏡との光軸合せすなわちアライメント
調整が微妙に変化する欠点がある。
Conventionally, carbon dioxide laser devices have a drawback that the optical axis alignment, that is, the alignment adjustment between the total reflection mirror and the output mirror of the laser beam resonator varies slightly.

すなわち、室温時とレーザ光発振時のレーザ光反射損失
熱とによりアライメントが動的に変化しレーザ出力値を
低下させる。この欠点を除去するために、架台・ベロー
ズ、鏡位置調整用のバーニヤダイヤルがどの構造対策を
施し、人力でその都度アライメント調整をし、レーザ出
力が一定値となるように調整していた。したがって、数
時間も連続して使用する場合は、途中のアライメントチ
ェックが必要であった。
That is, the alignment dynamically changes due to the laser beam reflection loss heat at room temperature and during laser beam oscillation, reducing the laser output value. In order to eliminate this drawback, structural measures were taken for the pedestal, bellows, and vernier dial for adjusting the mirror position, and the alignment was manually adjusted each time so that the laser output was adjusted to a constant value. Therefore, when using the device continuously for several hours, it is necessary to check the alignment midway.

本発明の目的は、か\る微妙々アライメント作業を自動
化し、常に所望のレーザ出力が得られるレーザ発振装置
を提供することにある。
An object of the present invention is to provide a laser oscillation device that automates such delicate alignment work and can always obtain a desired laser output.

すなわち、レーザ光ビームの光軸のズレを検出する熱検
出素子を配置して、ビームのズレを温度分布変化として
求め、温度分布を演算処理後、鏡の位置を最適な位置に
修生できる鏡層動機構部を設け、自動的にアライメント
調整が可能となり、常に所定のレーザ出力を最適光共振
器状態にできる」二うにしたことである。
In other words, the mirror layer is equipped with a thermal detection element that detects the deviation of the optical axis of the laser beam, determines the beam deviation as a temperature distribution change, and after calculating the temperature distribution, the mirror position can be adjusted to the optimal position. By providing a moving mechanism, automatic alignment adjustment is possible, and a predetermined laser output can always be brought into the optimum optical resonator state.

以下、本発明の一実例として、高速軸流形炭酸ガスレー
ザ装置適用例を図に従い説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As an example of the present invention, an application example of a high-speed axial flow type carbon dioxide laser device will be described below with reference to the drawings.

第1図は、炭酸ガスレーザ装置の動作説明図である。架
台1上に、ベアリング2を介して光学系架台3を配し、
その両端側に出力鏡5と反射鏡6を固定する。出力鏡5
と反射鏡6の光軸間には、封入ガス13たとえば炭酸ガ
ス、窒素、ヘリウム等の混合ガスを放電励起するための
電極9ど、電極9を両端に有する中空の放電管8と、封
入ガス13をガス流分配する丁字形〒714とがある。
FIG. 1 is an explanatory diagram of the operation of the carbon dioxide laser device. An optical system mount 3 is arranged on the mount 1 via a bearing 2,
An output mirror 5 and a reflecting mirror 6 are fixed to both ends thereof. Output mirror 5
Between the optical axes of the reflecting mirror 6 and the optical axis of the filled gas 13, a hollow discharge tube 8 having the electrodes 9 at both ends, and an electrode 9 for discharging and exciting a mixed gas such as carbon dioxide, nitrogen, helium, etc. are arranged. There is a T-shape 〒714 for distributing the gas flow.

一方、架台1 (1111には、封入ガス13を強制循
環するためのプロアモータ11と、放電励起による封入
ガス13を冷却し、レーザ発温効率を向上させるだめの
熱交換器]2と、電極9の対地電圧絶縁用の絶縁筒10
とがある。
On the other hand, a gantry 1 (1111 includes a promotor 11 for forcedly circulating the sealed gas 13 and a heat exchanger for cooling the sealed gas 13 by discharge excitation and improving laser heating efficiency) 2, and an electrode 9 Insulating cylinder 10 for ground voltage insulation of
There is.

い寸、電源7を電極9に与えると、放電管8内で、強制
循環している封入ガス13が、盛んに励起されて、封入
ガスのエネルキー檗位が高められると共に、安定した基
底エネルギー準位に戻る時に、コヒーレントなレーザ光
を発し、両端の鏡により光ボンピング用象により、互に
強めあいレーザ光共振を生ずる。すなわち、レーザ4ば
、内部レーザ往復反射光4bと出力鏡5がら一部外部の
与に出るl/−ザ出力光4aとがら成る。4 aの出力
は出力@5の内1t−III反射コーテング率で決丑る
When the power supply 7 is applied to the electrode 9 at a high speed, the sealed gas 13 that is being forcedly circulated within the discharge tube 8 is actively excited, increasing the energy level of the sealed gas and maintaining a stable base energy level. When returning to the original position, a coherent laser beam is emitted, and the mirrors at both ends strengthen each other due to the optical bombing effect, creating laser beam resonance. That is, the laser 4 consists of an internal laser reciprocating reflected light 4b and a l/- laser output light 4a which is partially emitted from the output mirror 5 to the outside. The output of 4a is determined by the 1t-III reflective coating rate of output @5.

ここで、両端の鏡の光軸がずれないように、光学系架台
3に鏡を固定し、レーザ光及び周囲温度による熱膨張変
形はベローズ18とベアリンク2とにより吸収し、反射
鏡6と出力鏡5と光軸がずれないような構造対策を行っ
ている。
Here, the mirrors are fixed to the optical system mount 3 so that the optical axes of the mirrors at both ends do not shift, and thermal expansion deformation due to the laser beam and ambient temperature is absorbed by the bellows 18 and the bare link 2, and the reflecting mirror 6 and Structural measures are taken to prevent the output mirror 5 and the optical axis from misaligning.

かくしても、光軸のずれがθ=0.5〜1ラジアンとい
う厳しい領が要求されるため、鏡の調整全適時行ってい
た。これを第2〜3図により説明する。第2図は、空寸
しい光軸条件を図示したもので、放電管8(内径D1 
 とする)を中央とすれば、両端にアパーチャ26(内
径J〕2  とする)を介して@5.6カ祐己置される
。レーザ光4のビーム太さばり、で定寸り、アパーチャ
26は第3図のy口く光軸のずれにより、鏡の有効受光
面積を規制し熱破損防止のためにおくので、DI  >
D2の条件としている。
However, since a strict optical axis deviation of θ=0.5 to 1 radian is required, the mirrors were adjusted at all times. This will be explained with reference to FIGS. 2 and 3. FIG. 2 illustrates the empty optical axis condition, and shows the discharge tube 8 (inner diameter D1
If the center is set at the center, then 5.6 mm is placed at both ends via apertures 26 (inner diameter J]2). The size of the aperture 26 is determined by the beam thickness of the laser beam 4, and the aperture 26 is provided to limit the effective light receiving area of the mirror and prevent thermal damage due to the deviation of the optical axis shown in FIG.
This is a condition for D2.

い壕、第3図の囲<違反射鏡6のみが何らかの原因によ
りθだけずれると、レーザ光4bの反射光はアパーチャ
ー26bに一部当り、出力鏡5にすべて到達しないので
、光ボンピングlが減衰し、レーザ出力光4aも戎る。
If only the reflection mirror 6 is shifted by θ for some reason, the reflected light of the laser beam 4b will partially hit the aperture 26b and not all of it will reach the output mirror 5, so that the optical bombing l will be It is attenuated and also cuts off the laser output light 4a.

本発明は、この呪象に着目し、鏡とアパーチャとの間に
、内径の熱検出素子25を配置すれば、レーザ光軸のず
れを光 温度変換することで知ることができる。(レー
ザ光が物体に当ると物体には熱エネルギーとなってバラ
ンスする)以下、本発明の実施例を第4図により説明す
ると、反射鏡61則の熱検出素子25aの温度分布、出
力鏡5側の熱検出素子25bの温度分布となる。
The present invention focuses on this phenomenon, and by arranging an inner diameter heat detection element 25 between the mirror and the aperture, the deviation of the laser optical axis can be detected by converting the optical temperature. (When a laser beam hits an object, the object becomes thermal energy and is balanced.) Hereinafter, an embodiment of the present invention will be explained with reference to FIG. This is the temperature distribution of the heat detection element 25b on the side.

第5図は、鋭部動機構部27の一実施例である。FIG. 5 shows an embodiment of the sharp movement mechanism section 27.

光学系架台3を基準として、反射鏡6を固定する鏡取付
ヘース15ば、スクリューポルI・20 トrjJ変位
置固定用のバネ22とを介して、一旦固定する。
With the optical system frame 3 as a reference, the reflecting mirror 6 is temporarily fixed via a mirror mounting head 15 for fixing it and a spring 22 for fixing the screw pole I/20 and the variable position.

3に固定されたり逆回転駆動部24(例えばパルスモー
タ)の回転力は歯車23、スクリューボルト20の先端
ギヤで直線変位(図では左右方向)に変換し、ネジ山3
を固定側としてスクリューボルト20が回転し左右変位
となる。この時鏡取付ベース】5とスクリューボルト2
0とiIj:摩擦し合うので、1駆動力損失を減らすた
めに、15と20との間にスラストベアリング21を設
ける。
The rotational force of the reverse rotation drive unit 24 (for example, a pulse motor) fixed to the screw thread 3 is converted into linear displacement (in the horizontal direction in the figure) by the gear 23 and the end gear of the screw bolt 20.
The screw bolt 20 rotates with the fixed side as the fixed side, resulting in left and right displacement. At this time, mirror mounting base] 5 and screw bolt 2
0 and iIj: Since they rub against each other, a thrust bearing 21 is provided between 15 and 20 in order to reduce the loss of driving force.

第5図ではスクリューボルト20ば1ケしか図示してい
ないが、360度変信金せるために2〜3ケあるので表
示省略している。
Although only one screw bolt 20 is shown in FIG. 5, there are two to three bolts for 360-degree transformation, so they are not shown.

一方、反射鏡6はレーザ光4bが当り反射損失が数%生
ずるが、それらはすべて熱に変換されるので、反射鏡6
の内因端部に中空水冷間隙16を設けて冷却し、熱破壊
を防止する。中空水冷間隙16には図示していない個所
で冷却水が送水されている。鏡取付ベース15の右方は
ベローズ18があり中空円筒状のアパーチャ26をはさ
んでボルト19で締結する。パツキン17は水もれある
いは封入ガス13のもれ防止用である。
On the other hand, the reflection mirror 6 is hit by the laser beam 4b and a reflection loss of several percent occurs, but all of this is converted into heat, so the reflection mirror 6
A hollow water cooling gap 16 is provided at the inner end of the tube to cool it and prevent thermal damage. Cooling water is supplied to the hollow water cooling gap 16 at a location not shown. There is a bellows 18 on the right side of the mirror mounting base 15, which is fastened with a bolt 19 across a hollow cylindrical aperture 26. The gasket 17 is for preventing water leakage or leakage of the sealed gas 13.

寸た、反射鏡6とアパーチャー26との間には第6図に
示すような絶縁中空円筒25−1に熱検出素子25a−
d2埋込んだ熱検出素子25を鏡取伺ベース15に実装
しており、レーザ光4bの温度を測定する先端となる。
In addition, between the reflecting mirror 6 and the aperture 26, a heat detection element 25a- is installed in an insulating hollow cylinder 25-1 as shown in FIG.
The heat detection element 25 embedded in d2 is mounted on the mirror base 15, and serves as the tip for measuring the temperature of the laser beam 4b.

なお、反射鏡6のみは一般に余属体を使うので、裏面側
(図中では左側)に熱検出素子25(例えばc−c熱電
対)を埋込みレーザ光の反射損失による熱伝送分布より
測定してもよい。
In addition, since only the reflector 6 is generally made of an extra material, a heat detection element 25 (for example, a CC thermocouple) is embedded on the back side (left side in the figure) to measure the heat transfer distribution due to reflection loss of the laser beam. It's okay.

以」二の構造により、レーザ光41〕のずれに伴う温度
検出が可能となると共に、夕1部から可逆回転1ju動
部24に、駆動指令を布えれば、スクリューボルト20
に変位伝達され反射鏡6が変位可能となる。全反射鏡5
については図示していないが同一機構につき省略する。
The second structure makes it possible to detect the temperature due to the deviation of the laser beam 41, and if a drive command is sent from the first part to the reversible rotation part 24, the screw bolt 20
The displacement is transmitted to and the reflecting mirror 6 becomes movable. Total reflection mirror 5
Although not shown in the figure, since they are the same mechanism, their explanation will be omitted.

以」二により、自動アライメントする為の卵重」1系の
一実施例を第7図で説明する。
Based on the following, an embodiment of the egg weight system 1 for automatic alignment will be described with reference to FIG.

熱検出素子25よりの温度測定データはnケ(第6図で
は4ケ)分を増巾して4ケ分の温度値を求め、平均値と
最大・最少温度値をn差を演算部29により演算する。
The temperature measurement data from the heat detection element 25 is amplified by n (4 in FIG. 6) to obtain 4 temperature values, and the calculation unit 29 calculates the n difference between the average value and the maximum and minimum temperature values. Calculate by

演算の結果と、第4図に示す温度分布と鋭部動パターン
との基準値データを有する、基準データ記憶部31.と
比較する比較演算部30により鋭部動信号を鋭部動発生
信号32により得、可逆回転駆動部24および境部動機
構部27を駆動しレーザ光41)により熱検出素子25
の4ケの温度データが同じとなるように目的設定させる
。この方式のポインI・は、その製品個有の基準データ
記憶部31のデータを得ることにあるが、第4図のよう
な不均等温度分布の時に、第5図の複数個の24を何パ
ルス駆動するかのデータを実験により求め良好な結果を
得た。
A reference data storage unit 31. which has the calculation results and reference value data of the temperature distribution and sharp movement pattern shown in FIG. A sharp motion signal is obtained from the sharp motion generation signal 32 by the comparison calculation section 30, which drives the reversible rotation drive section 24 and the boundary motion mechanism section 27, and detects the heat detection element 25 using the laser beam 41).
Set the purpose so that the four temperature data are the same. The key point of this method is to obtain the data in the standard data storage section 31 unique to the product, but when there is an uneven temperature distribution as shown in FIG. We obtained data on whether to use pulse drive through experiments and obtained good results.

以上、本発明により、次のような基礎を確立することが
できた。
As described above, according to the present invention, the following foundations have been established.

(1)アライメントのずれを温度検出し、レーザビーム
径の変化を温度分布の変化で把えることができた結果、
自動制御するための検出要素が確立できた。
(1) As a result of detecting alignment deviations by temperature and being able to understand changes in laser beam diameter from changes in temperature distribution,
Detection elements for automatic control have been established.

(2)鏡の位置制御を微砂に調整できる電気−機構系の
構造を完成した。
(2) We have completed the structure of an electric-mechanical system that can precisely control the position of the mirror.

(3)レーザビーム径のずれを温度分布変化で杷え、そ
の結果、鏡の位置規制用駆動部の励磁するパルス数を与
える基皐データを得ることができた。
(3) The deviation of the laser beam diameter was stopped by a change in temperature distribution, and as a result, we were able to obtain basic data that gives the number of pulses to excite the mirror position regulating drive unit.

以上の如く、本発明によれば、レーザ出力のため最適ア
ライメントが自動化され、常に所望のアライメント条件
でレーザ出力の開閉ができる。
As described above, according to the present invention, optimal alignment for laser output is automated, and laser output can be opened and closed always under desired alignment conditions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、高速軸流形炭酸ガスレーザ装置の1同断面図
、第2,3図はアライメントの概略側断面図、第4図は
本発明よりなる熱検出素子による温度分布特性図、第5
図はその実装をした境部動機構部の側断面図、第6図は
熱検出素子の断面図、第7図は全体制御ブロック図であ
る。 6・・・反射鏡、24・・可逆回転駆動部、25・・・
熱検出素子、26・・・アパーチャー、27・・・境部
動機構部、28・・・アライメント自動制御部、31・
・・基べ(茎 副 輩4図
FIG. 1 is a sectional view of a high-speed axial flow type carbon dioxide laser device, FIGS. 2 and 3 are schematic side sectional views of the alignment, FIG. 4 is a temperature distribution characteristic diagram of the heat detection element according to the present invention, and FIG.
The figure is a sectional side view of the boundary movement mechanism section in which it is mounted, FIG. 6 is a sectional view of the heat detection element, and FIG. 7 is an overall control block diagram. 6...Reflector, 24...Reversible rotation drive unit, 25...
Heat detection element, 26... Aperture, 27... Boundary movement mechanism section, 28... Alignment automatic control section, 31.
・・Kibe (stem vice-class figure 4)

Claims (1)

【特許請求の範囲】[Claims] 1、  ”’レーザ発振器用鏡にアパーチャを取付けた
ものにおいて、上記アパーチャに取付けた熱検出素子と
、上記熱検出素子の検出値とレーザ光ビームの基準温度
とを比較処理する処理部と、処理部からの処理結果によ
り鏡位置を駆動する鏡層動機構部とから成ることを特徴
とするレーザ発振装置。
1. In a mirror for a laser oscillator with an aperture attached, a heat detection element attached to the aperture, a processing unit that compares the detected value of the heat detection element with a reference temperature of the laser beam, and a processing unit. 1. A laser oscillation device comprising: a mirror layer movement mechanism section that drives a mirror position based on a processing result from the section.
JP19086781A 1981-11-30 1981-11-30 Laser oscillator Pending JPS5893294A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19086781A JPS5893294A (en) 1981-11-30 1981-11-30 Laser oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19086781A JPS5893294A (en) 1981-11-30 1981-11-30 Laser oscillator

Publications (1)

Publication Number Publication Date
JPS5893294A true JPS5893294A (en) 1983-06-02

Family

ID=16265078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19086781A Pending JPS5893294A (en) 1981-11-30 1981-11-30 Laser oscillator

Country Status (1)

Country Link
JP (1) JPS5893294A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60115273A (en) * 1983-11-28 1985-06-21 Mitsubishi Electric Corp Laser device
JPS60148181A (en) * 1984-01-12 1985-08-05 Mitsubishi Electric Corp Laser device
JPS60175475A (en) * 1984-02-22 1985-09-09 Mitsubishi Electric Corp Automatic aligning device of laser oscillator
JPS60176284A (en) * 1984-02-22 1985-09-10 Mitsubishi Electric Corp Laser device
JPS60229382A (en) * 1984-04-27 1985-11-14 Mitsubishi Electric Corp Laser device
JPS6170776A (en) * 1984-09-13 1986-04-11 Mitsubishi Electric Corp Laser device
JPH0289865U (en) * 1988-12-28 1990-07-17
JPH0499856U (en) * 1991-02-08 1992-08-28

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60115273A (en) * 1983-11-28 1985-06-21 Mitsubishi Electric Corp Laser device
JPS60148181A (en) * 1984-01-12 1985-08-05 Mitsubishi Electric Corp Laser device
JPS60175475A (en) * 1984-02-22 1985-09-09 Mitsubishi Electric Corp Automatic aligning device of laser oscillator
JPS60176284A (en) * 1984-02-22 1985-09-10 Mitsubishi Electric Corp Laser device
JPH0249542B2 (en) * 1984-02-22 1990-10-30 Mitsubishi Electric Corp
JPS60229382A (en) * 1984-04-27 1985-11-14 Mitsubishi Electric Corp Laser device
JPS6170776A (en) * 1984-09-13 1986-04-11 Mitsubishi Electric Corp Laser device
JPH0249543B2 (en) * 1984-09-13 1990-10-30 Mitsubishi Electric Corp
JPH0289865U (en) * 1988-12-28 1990-07-17
JPH0499856U (en) * 1991-02-08 1992-08-28

Similar Documents

Publication Publication Date Title
JP5049133B2 (en) Active beam delivery system with variable optical path sections passing through the air
JPS5893294A (en) Laser oscillator
KR100598247B1 (en) Pulse oscillation solid-state laser apparatus and laser machining apparatus
US5359616A (en) Solid state laser apparatus and laser machining apparatus
JP2644315B2 (en) High frequency discharge pumped laser device
CN109742642B (en) Solid laser thermal focal length measuring method
US6233268B1 (en) Laser apparatus
JP3814397B2 (en) Expansion measuring device
JP6110419B2 (en) Laser oscillator having a fan for cooling the resonator section
JP2536900B2 (en) NC laser device
JP4067167B2 (en) Beam axis deviation detecting device and beam axis position control device for laser resonator
Lukac Output energy characteristics of optimally pumped rotating mirror Q-switch lasers
JP2659210B2 (en) NC laser device
CN213182451U (en) Laser gyro resonant cavity constant temperature equipment
JP2583719B2 (en) Gas controlled output stabilized gas laser system
US20230236116A1 (en) Measurement Apparatus
JPH0632697Y2 (en) Gas laser oscillator
Tuttle et al. Vibration-heating in ADR Kevlar suspension systems
Zhou et al. A high average power rotating hollow cylinder Nd: glass laser
JP2001053370A (en) Method and apparatus for aligning laser beam
JPH01258885A (en) Laser output detection device
JPH0627974Y2 (en) Moving slab laser equipment
JPS628585A (en) Laser light source apparatus
JPH01241882A (en) Controlling method for output of gas laser oscillator
Belozerov et al. Single-frequency emission from a YAG: Nd3+ minilaser with wavelength tuning