JPS5892B2 - Magnetic recording media for thermal transfer - Google Patents
Magnetic recording media for thermal transferInfo
- Publication number
- JPS5892B2 JPS5892B2 JP13832278A JP13832278A JPS5892B2 JP S5892 B2 JPS5892 B2 JP S5892B2 JP 13832278 A JP13832278 A JP 13832278A JP 13832278 A JP13832278 A JP 13832278A JP S5892 B2 JPS5892 B2 JP S5892B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- coercive force
- cobalt metal
- thin film
- anisotropy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/86—Re-recording, i.e. transcribing information from one magnetisable record carrier on to one or more similar or dissimilar record carriers
Landscapes
- Magnetic Record Carriers (AREA)
Description
【発明の詳細な説明】
本発明は、録画用磁気テープとして使用する金属薄膜型
磁気記録媒体の大量複写に対して、磁性体の保磁力が可
逆的に温度変化する効果を用い、磁性体にはコバルト金
属を用い、温度上昇に伴う保磁力の減少を利用し、常温
付近で保磁力が大きい媒体を高温中で、マスターテープ
に接触させ、適当なバイアス磁界を加えて転写し、再び
常温まで温度を下げることにより、スレーブテープを作
成するのに容易な熱複写用磁気記録媒体を提供するもの
である。Detailed Description of the Invention The present invention utilizes the effect that the coercive force of a magnetic material reversibly changes with temperature for mass copying of a metal thin film magnetic recording medium used as a recording magnetic tape. uses cobalt metal, and takes advantage of the decrease in coercive force as temperature rises.The medium, which has a large coercive force at room temperature, is brought into contact with the master tape at high temperature, transferred by applying an appropriate bias magnetic field, and then returned to room temperature. By lowering the temperature, it is possible to provide a magnetic recording medium for thermal copying that is easy to prepare as a slave tape.
録画用磁気テープの磁性材料としては、従来より通常γ
Fe2O3やCrO2などの酸化物が使用されて来た。Traditionally, the magnetic material for recording magnetic tapes is γ.
Oxides such as Fe2O3 and CrO2 have been used.
これらの材料は粉体であって、磁気テープにするために
は高分子のバインダ中に分散したあと、ポリエチレンテ
レフタレート等の高分子フィルム上に塗布後乾燥するこ
とが必要とされる。These materials are powders, and in order to make magnetic tape, they must be dispersed in a polymeric binder, coated on a polymeric film such as polyethylene terephthalate, and then dried.
また磁気特性的にも、磁気異方性の原因が主に形状効果
にあるため、その形状異方性エネルギーが飽和磁化の2
乗に比例するという特長がある。In addition, in terms of magnetic properties, the cause of magnetic anisotropy is mainly the shape effect, so the shape anisotropy energy is 2 times the saturation magnetization.
It has the feature that it is proportional to the power.
この事実は室温付近では殆んど温度変化しないという、
磁気テープとしての安定性を与えるのに好都合である。This fact means that there is almost no temperature change near room temperature.
This is convenient for providing stability as a magnetic tape.
しかし、磁気テープの信号を大量に複写しようとした場
合、単に元の信号が記録されたマスターテープに接触し
、適当なバイアス磁界を印加するなどの方法で複写を行
っている。However, when attempting to copy a large amount of signals from a magnetic tape, copying is accomplished by simply contacting the master tape on which the original signal was recorded and applying an appropriate bias magnetic field.
酸化物磁性体の場合は、本質的に飽和磁束が5000ガ
ウスと金属にくらべて小さく、したがって異方性に付随
した保持力も高々5000eである。In the case of oxide magnetic materials, the saturation magnetic flux is essentially 5,000 Gauss, which is smaller than that of metals, and therefore the coercive force associated with anisotropy is at most 5,000 e.
この程度の保磁力を持つものには、マスターテープとし
ての保磁力もスレーブテープの保磁力の2.5倍以上で
ある高々15000eで十分である。For a tape having this level of coercive force, a coercive force of at most 15,000e is sufficient for the master tape, which is 2.5 times or more the coercive force of the slave tape.
また別の方法として強磁性体のキューり温度以上からキ
ューり温度以下に温度を下げる時に生じる熱残留磁気を
用いる方法もある。Another method is to use thermal residual magnetism generated when the temperature is lowered from above the cue temperature of the ferromagnetic material to below the cue temperature.
この方法ではキュリ一点のところで、異方性エネルギー
が殆んど0になることを用いるために、マスターテープ
の記録がバイアス磁界によって消えないかぎり、マスタ
ーテープの保磁力はそれ程大きい必要はない。Since this method uses the fact that the anisotropic energy becomes almost zero at the Curie point, the coercive force of the master tape does not need to be so large as long as the recording on the master tape is not erased by the bias magnetic field.
この例として例えばキュリ一温度が120℃のCrO2
テープがある。As an example of this, for example, CrO2 with a Curie temperature of 120°C
There's a tape.
さらにもうひとつの方法として室温付近で、保磁力が大
きい材料でも磁気材料のもつ異方性エネルギーの温度変
化を用いて、転写時に保持力を下げ、低い保持力を持っ
たマスターテープを親テープとして転写する方法もある
。Another method is to use temperature changes in the anisotropic energy of magnetic materials at room temperature, even if the material has a high coercive force, to lower the holding force during transfer, and use a master tape with a low coercive force as the parent tape. There is also a method of transcription.
本発明は、前記第三番目に述べた方法によって複写する
ために用いられる、録画用のスレーブ磁気記録媒体に関
するものである。The present invention relates to a slave magnetic recording medium for recording, which is used for copying by the third method mentioned above.
以下本発明の磁気記録媒体を得るための方法について説
明する。The method for obtaining the magnetic recording medium of the present invention will be described below.
出発材料としては純度98.5%以上のコバルト金属を
用い、これを真空蒸着法、高周波スパツタリング法、イ
オンブレーティング法、化学メッキ法、電気メツキ法等
の公知の薄膜作成技術を用いて、厚さ1μm以下の薄膜
の作成を行う。Cobalt metal with a purity of 98.5% or higher is used as the starting material, and this is coated with a thin film using known thin film forming techniques such as vacuum evaporation, high frequency sputtering, ion blating, chemical plating, and electroplating. A thin film with a thickness of 1 μm or less is created.
成膜時には、膜の磁気異方性を制御するために斜入射蒸
着法や磁界中蒸着法等で異方性を制御する。During film formation, the anisotropy is controlled by an oblique incidence deposition method, a deposition method in a magnetic field, or the like in order to control the magnetic anisotropy of the film.
特に重要なのは、コバルト金属薄膜の構造として、その
異方性軸の主軸であるところの六方密格子の六回対称軸
(C軸)を配向させることにある。What is particularly important in the structure of the cobalt metal thin film is to orient the six-fold symmetry axis (C axis) of the hexagonal close lattice, which is the main axis of its anisotropy axis.
配向の割合を評価する指標としては、X線回折あるいは
電子線回折の回折線の強度を用いる。As an index for evaluating the orientation ratio, the intensity of diffraction lines of X-ray diffraction or electron beam diffraction is used.
ランダム配向の時の(002)面と(200)面の強度
比が3=1となるが、本発明に用いるコバルト金属薄膜
では、その比が4:1またはそれ以上に(002)面の
反射が太きいものを用いる。In the case of random orientation, the intensity ratio between the (002) plane and the (200) plane is 3=1, but in the cobalt metal thin film used in the present invention, the ratio is 4:1 or higher, which increases the reflection of the (002) plane. Use thick ones.
このようなC軸の配向を持つ薄膜では、異方性はランダ
ム配向のコバルト金属薄膜にくらべて大きくなり、その
異方性エネルギーの大きさは0.5X106〜2.0O
x106er/cm3の大きさがある。In a thin film with such C-axis orientation, the anisotropy is larger than that in a randomly oriented cobalt metal thin film, and the magnitude of the anisotropic energy is 0.5X106 to 2.0O.
It has a size of x106er/cm3.
そしてその磁気異方性エネルギーはおよそ50%以上が
結晶磁気異方性に由来することがわかる。It can be seen that approximately 50% or more of the magnetic anisotropy energy is derived from crystal magnetic anisotropy.
他の異方性の原因、たとえば形状磁気異方性、磁歪の逆
効果による異方性なども考えられるが、それらの和は高
々50%である。Other causes of anisotropy, such as shape magnetic anisotropy and anisotropy due to the reverse effect of magnetostriction, are also considered, but the sum of these is at most 50%.
よく知られているように、コバルト金属の結晶磁気異方
性は、次の式に従って温度変化する。As is well known, the magnetocrystalline anisotropy of cobalt metal changes with temperature according to the following equation:
ここで、Tは絶対温度、Kulは二次の異方性定数、M
sは飽和磁化、Tcはキュリ一温度である。Here, T is the absolute temperature, Kul is the second-order anisotropy constant, and M
s is the saturation magnetization, and Tc is the Curie temperature.
室温は300°にでコバルトのキュリ一温度は1388
°にである。The room temperature is 300°, and the Curie temperature of cobalt is 1388.
It is in °.
室温ではT/Tcは約0.2である。At room temperature, T/Tc is approximately 0.2.
上式かられかるように、T=1/3Tcのところで異方
定数は0になり、さらにそれにより温度が上のところで
は異方性定数は負になる。As can be seen from the above equation, the anisotropy constant becomes 0 at T=1/3Tc, and as the temperature increases, the anisotropy constant becomes negative.
コバルト異方性定数はこのように大ぎな温度変化をし、
例えば室温(300°K)を1.0とした時、4000
にでは約0.5にも減少する。The cobalt anisotropy constant changes greatly with temperature in this way,
For example, when room temperature (300°K) is 1.0, 4000
It decreases to about 0.5.
この様子を第1図に示している。This situation is shown in FIG.
本発明ではこのコバルト金属薄膜の異方性エネルギーの
温度変化を利用する。The present invention utilizes temperature changes in the anisotropic energy of this cobalt metal thin film.
ただしその温度変化が顕著になるためには、異方性エネ
ルギーのうちの少なくとも50%以上が結晶磁気異方性
である必要がある。However, in order for the temperature change to become significant, at least 50% or more of the anisotropic energy must be magnetocrystalline anisotropy.
以下具体的実施例について説明する。Specific examples will be described below.
コバルト(純度99.9%)を真空蒸着法を用いて、厚
さ16μmのポリエチレンテレフタレートフィルム基板
上に蒸着した。Cobalt (purity 99.9%) was deposited on a 16 μm thick polyethylene terephthalate film substrate using a vacuum deposition method.
その時に入射角60゜以上の斜入射蒸着法を用い、蒸発
速度は500〜1000λ毎秒である。At this time, an oblique incidence evaporation method with an incident angle of 60° or more is used, and the evaporation rate is 500 to 1000 λ/sec.
作成した薄膜は1000Åの膜厚である。The thin film created has a thickness of 1000 Å.
保磁力は室温で8000eであった。The coercive force was 8000e at room temperature.
X線回折を行った結果として、(002)面と(200
)面の反射強度比は4.5:1であった。As a result of X-ray diffraction, (002) plane and (200
) surface reflection intensity ratio was 4.5:1.
その薄膜の保磁力の温度変化の様子を第2図に示す。Figure 2 shows how the coercive force of the thin film changes with temperature.
また第3図には、3000にの保磁力を1.0とした時
の保磁力の温度変化を示す。Further, FIG. 3 shows the change in coercive force with temperature when the coercive force of 3000 is set to 1.0.
なお、図中の破線はコバルト金属の結晶磁気異方性定数
の温度変化の様子を示す。Note that the broken line in the figure shows how the magnetocrystalline anisotropy constant of cobalt metal changes with temperature.
このように保磁力の変化はコバルト金属の結晶異方性の
様子に相似している。In this way, the change in coercive force is similar to the crystal anisotropy of cobalt metal.
この磁気テープを用い、第4図に示される記録転写実験
装置を用いて熱転写の実験を試みたところ、次表の結果
を得た。Using this magnetic tape, a thermal transfer experiment was conducted using the recording transfer experimental apparatus shown in FIG. 4, and the results shown in the following table were obtained.
なお、第4図において、1゜2はマスターテープの送出
しリールと巻取りり一ル、3,4はスレーブテープの送
出しリールと巻取りリール、5は温度調節可能な恒温槽
、6はバイアス磁界発生器、7はバイアスコイルである
。In addition, in Fig. 4, 1°2 is a master tape delivery reel and a take-up reel, 3 and 4 are a slave tape delivery reel and a take-up reel, 5 is a temperature-adjustable constant temperature bath, and 6 is a thermostat with adjustable temperature. The bias magnetic field generator 7 is a bias coil.
バイアス磁界は45008で記録波長は5μm、またマ
スターテープとしては保磁力が温度変化しない鉄・コバ
ルト合金粉を用いたもので、その保磁力は180000
eである。The bias magnetic field is 45,008 mm, the recording wavelength is 5 μm, and the master tape is made of iron-cobalt alloy powder whose coercive force does not change with temperature, and its coercive force is 180,000 µm.
It is e.
このような室温付近ではバイアス磁界の方が、スレーブ
テープとなるコバルト金属薄膜の保磁力より小さいが、
60℃以上では顕著な転写効果が確認される。At around room temperature, the bias magnetic field is smaller than the coercive force of the cobalt metal thin film that becomes the slave tape.
A remarkable transfer effect is observed at temperatures above 60°C.
また薄膜テープは特に短記録波長領域での転写効果が優
れている。Furthermore, thin film tapes have particularly excellent transfer effects in the short recording wavelength region.
このことは短波長領域で、保磁力が下っても、膜厚が薄
いために自己減磁作用による記録図形のぼやけが生じに
くくなるためであって、粉体を数μmも塗布するいわゆ
る塗布型磁気記録媒体にくらべて、短波長領域で数倍の
出力増加が可能である。This is because even if the coercive force decreases in the short wavelength region, the thin film makes it difficult for the recorded figure to become blurred due to self-demagnetization. Compared to magnetic recording media, it is possible to increase the output several times in the short wavelength region.
以上のように本発明の熱転写用磁気記録媒体は、種々の
利点を有するものであり、その産業性は大なるものであ
る。As described above, the magnetic recording medium for thermal transfer of the present invention has various advantages, and its industrial applicability is great.
第1図はコバルト金属の異方性定数の温度変化特性図、
第2図はコバルト金属薄膜の保磁力の温度変化特性図、
第3図はコバルト金属薄膜の保持力とコバルト金属の異
方性定数の温度変化特性図、第4図は記録転写実験装置
の概略構成図である。Figure 1 is a temperature change characteristic diagram of the anisotropy constant of cobalt metal.
Figure 2 is a temperature change characteristic diagram of the coercive force of a cobalt metal thin film.
FIG. 3 is a temperature change characteristic diagram of the cobalt metal thin film coercive force and cobalt metal anisotropy constant, and FIG. 4 is a schematic diagram of the recording transfer experimental apparatus.
Claims (1)
ト金属薄膜を形成し、そのコバルト金属薄膜の異方性エ
ネルギーのうち主たる部分が結晶磁気異方性で、かつ保
磁力の温度変化率が前記コバルト金属の結晶磁気異方性
エネルギーの温度変化率と相似することを特徴とする熱
転写用磁気記録媒体。1 A cobalt metal thin film is formed by vapor deposition or plating on a polymer molded substrate, and the main part of the anisotropic energy of the cobalt metal thin film is magnetocrystalline anisotropy, and the temperature change rate of coercive force is A magnetic recording medium for thermal transfer, characterized in that the temperature change rate of the magnetocrystalline anisotropy energy of the cobalt metal is similar to that of the cobalt metal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13832278A JPS5892B2 (en) | 1978-11-08 | 1978-11-08 | Magnetic recording media for thermal transfer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13832278A JPS5892B2 (en) | 1978-11-08 | 1978-11-08 | Magnetic recording media for thermal transfer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5564634A JPS5564634A (en) | 1980-05-15 |
JPS5892B2 true JPS5892B2 (en) | 1983-01-05 |
Family
ID=15219184
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13832278A Expired JPS5892B2 (en) | 1978-11-08 | 1978-11-08 | Magnetic recording media for thermal transfer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5892B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11545533B2 (en) | 2019-09-18 | 2023-01-03 | Samsung Display Co., Ltd. | Display apparatus |
-
1978
- 1978-11-08 JP JP13832278A patent/JPS5892B2/en not_active Expired
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11545533B2 (en) | 2019-09-18 | 2023-01-03 | Samsung Display Co., Ltd. | Display apparatus |
Also Published As
Publication number | Publication date |
---|---|
JPS5564634A (en) | 1980-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4232071A (en) | Method of producing magnetic thin film | |
JPS5893B2 (en) | Magnetic recording media for thermal transfer | |
JP2924935B2 (en) | Perpendicular magnetization film, multilayer film for perpendicular magnetization film, and method of manufacturing perpendicular magnetization film | |
JPS6242337B2 (en) | ||
JPS5892B2 (en) | Magnetic recording media for thermal transfer | |
JPH056738B2 (en) | ||
JPS6364816B2 (en) | ||
JP2579184B2 (en) | Magnetic recording media | |
JP4139882B2 (en) | Photo-induced magnetization control method | |
JPS6111455B2 (en) | ||
JPH0252845B2 (en) | ||
JPH0513323B2 (en) | ||
JPS6255207B2 (en) | ||
JPS6137765B2 (en) | ||
JPS5812140A (en) | Magnetic tape transcribing system | |
JPS62132222A (en) | Magnetic recording medium | |
JPH0483313A (en) | Soft magnetic thin film and magnetic head | |
JPH0315245B2 (en) | ||
JPH03273540A (en) | Magnetic recording medium and magnetic recording device and spin glass magnetic material | |
JPS63316312A (en) | Magnetic recording medium | |
JPS63250461A (en) | Magnetic recording medium | |
JPS5938642B2 (en) | Thermomagnetic recording method | |
JPH0253850B2 (en) | ||
JPS59157829A (en) | Magnetic recording medium | |
JPH0316690B2 (en) |