JPS5892957A - Thermal flow meter - Google Patents

Thermal flow meter

Info

Publication number
JPS5892957A
JPS5892957A JP56190858A JP19085881A JPS5892957A JP S5892957 A JPS5892957 A JP S5892957A JP 56190858 A JP56190858 A JP 56190858A JP 19085881 A JP19085881 A JP 19085881A JP S5892957 A JPS5892957 A JP S5892957A
Authority
JP
Japan
Prior art keywords
temperature
metal film
sensitive resistor
resistor
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56190858A
Other languages
Japanese (ja)
Inventor
Sadayasu Ueno
上野 定寧
Kanemasa Sato
佐藤 金正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56190858A priority Critical patent/JPS5892957A/en
Publication of JPS5892957A publication Critical patent/JPS5892957A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/688Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element
    • G01F1/69Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element of resistive type
    • G01F1/692Thin-film arrangements

Abstract

PURPOSE:To prevent a change with the passage of time due to adhesion of dust on a resistor surface, by a method wherein a part, where no metal film of which the resistor consists is adhered, is formed in a belt at an upstream side of a temperature-sensitive resistor. CONSTITUTION:A part, where no metal film 3 is formed, is formed in a belt at an upstream side of a temperature-sensitive resistor 1 or a side positioned facing opposite to a flaw direction A and along a surface, in an axial direction, of a supporter 2. A part, where no metal film 3 is formed on a surface in the axial direction, is formed in a belt at a downstream side also. A peripheral angle theta1 of the beltlike part with no metal film is selected within a range of 60-170 degree, and a peripheral angle theta2 of a beltlike part at a downstream side within a range of 40-90 degree. The peripheral angle of the parts with the metal film 3 across the temperature-sensitive resistor 1 are respectively set to 90 degree or more. Even if dusts accumulate at the upstream side of the temperature- sensitive resistor 1, no change in radiation characteristic of the resistor is produced, and this permits the reliable detection of flow rates.

Description

【発明の詳細な説明】 本発明は熱式流量計に関し、特に、流路内に感温抵抗体
を配置するとともに、該感温抵抗体へ発熱用電流を供給
する制御回路によシ流れ内への熱放散量と発熱量とをバ
ランスさせることによシ、該感温抵抗体の温度をほぼ一
定に維持しながら流量検出信号を取シ出す形式の熱式流
量計に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a thermal flowmeter, and in particular, a temperature-sensitive resistor is disposed in a flow path, and a control circuit that supplies heat-generating current to the temperature-sensitive resistor is used to control the temperature of the flow. The present invention relates to a thermal flowmeter that outputs a flow rate detection signal while maintaining the temperature of the temperature-sensitive resistor substantially constant by balancing the amount of heat dissipated and the amount of heat generated to the temperature-sensitive resistor.

この種の熱式流量計は例えば自動車用エンジンの吸気流
量を検出するのに好適なものである。即ち、自動車等の
エンジン制御にあっては1点火時期、空燃比、EG几(
排ガス環流システム)或いはl5C(アイドルスピード
コントロール)など各種の制御態様が実施されているが
、これらのエンジン制御は1通常、エンジン回転数や吸
気負圧などと共に吸気流量を検出し、これらの検出信号
によジエンジン状態を常時検知しながら行なわれている
。本発明による熱式流量計はこのような自動車用エンジ
ンの吸気流量検知に好適なものであるが、これに限定さ
れるものではなくその他の気体あるいは液体の流量検知
に対しても使用することができる。
This type of thermal flow meter is suitable for detecting the intake air flow rate of an automobile engine, for example. In other words, in the engine control of automobiles, etc., 1 ignition timing, air fuel ratio, EG ratio (
Various types of control methods are implemented, such as exhaust gas recirculation system (exhaust gas recirculation system) or l5C (idle speed control), but these engine controls usually detect intake flow rate along with engine speed, intake negative pressure, etc., and use these detection signals. This is done while constantly detecting the engine condition. The thermal flowmeter according to the present invention is suitable for detecting the intake flow rate of such an automobile engine, but is not limited thereto, and can also be used for detecting the flow rate of other gases or liquids. can.

この種の熱式流量計として、セラミック等の絶縁材料で
形成された円柱状支持体の表面に抵抗体としての白金等
の金属薄膜を形成した感温抵抗体を使用したものが提案
されている。この感温抵抗体は流れの中に設置され、流
量に応じてこの感温抵抗体から持ち去られる熱量に対応
する電気的出力が取シ出されるようになっている。この
場合。
As this type of thermal flowmeter, one has been proposed that uses a temperature-sensitive resistor in which a thin film of metal such as platinum is formed as a resistor on the surface of a cylindrical support made of an insulating material such as ceramic. . This temperature-sensitive resistor is placed in the flow, and an electrical output corresponding to the amount of heat removed from the temperature-sensitive resistor is extracted depending on the flow rate. in this case.

感温抵抗体の温度と吸気温度との差がほぼ一定になるよ
うに電子回路で制御され1例えば、吸気温度が2(lの
とき感温抵抗体の温度を190Cとし、また吸気温度が
50Cのとき感温抵抗体の温度を220Cとするように
その差が一定の170Cになるよう°制御される。
It is controlled by an electronic circuit so that the difference between the temperature of the temperature-sensitive resistor and the intake air temperature is almost constant1. At this time, the temperature of the temperature sensitive resistor is controlled to be 220C, and the difference therebetween is controlled to be a constant 170C.

第1図は従来の熱式流量計の感温抵抗体を例示する図で
あり、感温抵抗体1はセラミック(アルミナ等)などの
絶縁体で作られた円柱状支持体の表面に抵抗体として白
金等の金属膜3が形成されている。この感温抵抗体1の
両端部には電極部が形成されその部分には導体金属から
なるサポート4が接合されている。感温抵抗体1の両端
部の電極部を除く中間部分で抵抗が形成され、サポート
4を通して供給される電流によシ抵抗体が発熱しその熱
量は矢印Aで示す方向に流れる被測定流体によって奪わ
れる。しかして、感温抵抗体から流体へ放散する(熱伝
達により)熱量に見合う電流を供給するようこの電流を
制御して該感温抵抗体の温度をほぼ一定に維持すること
により、該電流を供給するに要する電圧の値から流量を
検知するようになっている。
Figure 1 is a diagram illustrating a temperature-sensitive resistor of a conventional thermal flowmeter.The temperature-sensitive resistor 1 is a resistor mounted on the surface of a cylindrical support made of an insulator such as ceramic (alumina, etc.). A metal film 3 made of platinum or the like is formed as a metal film 3. Electrode portions are formed at both ends of the temperature-sensitive resistor 1, and supports 4 made of conductive metal are bonded to the electrode portions. A resistance is formed in the middle part of the temperature-sensitive resistor 1 excluding the electrodes at both ends, and the resistor generates heat due to the current supplied through the support 4, and the amount of heat is generated by the fluid to be measured flowing in the direction shown by arrow A. be taken away. Therefore, by controlling this current so as to supply a current commensurate with the amount of heat dissipated (by heat transfer) from the temperature-sensitive resistor to the fluid, and maintaining the temperature of the temperature-sensitive resistor almost constant, the current can be reduced. The flow rate is detected from the voltage value required for supply.

しかして、従来の感温抵抗体にあっては1図示の如く、
金属膜3からなる抵抗体を円柱状支持体の全面に形成し
ていた。このため、第2図に示す如く感温抵抗体1を流
れの中に設置した場合、該感温抵抗体の上流側に流れの
ない空隙が生じると共にこの空隙部分を中心とした上流
側に時間経過と共に塵埃が堆積し、熱伝達係数の変化に
因る測定誤差或いは測定値の経時変化が生じるという問
題があった。
However, in the conventional temperature-sensitive resistor, as shown in Figure 1,
A resistor made of a metal film 3 was formed on the entire surface of the cylindrical support. For this reason, when the temperature-sensitive resistor 1 is installed in a flow as shown in FIG. There is a problem in that dust accumulates over time, resulting in measurement errors or changes in measured values over time due to changes in the heat transfer coefficient.

即ち、空隙部分5では流速がほとんどないよどみが生じ
流速がある他の部分に対し抵抗体3からの熱放散効果が
異なることになり、このために測′::1 定誤差が生じるという問題があった。これに加え。
In other words, there is a stagnation in the gap portion 5 where there is almost no flow velocity, and the heat dissipation effect from the resistor 3 is different from that in other portions where the flow velocity is present, which causes the problem of measurement error. there were. In addition to this.

前記空隙部分5を中心とした上流側には塵埃が堆積する
ため、この塵埃の堆積量によっても抵抗体からの熱放散
効果が他の正常部分と異なることになり、流量測定値に
経時弯化を起し正確な測定が困難であるという問題があ
った。
Since dust accumulates on the upstream side of the gap 5, the heat dissipation effect from the resistor differs from other normal parts depending on the amount of accumulated dust, and the flow rate measurement value becomes curved over time. There was a problem in that accurate measurements were difficult due to

更に、従来の熱式流量計では感温抵抗体の下流側面をも
含む全面に金属膜が形成されているので、自動車用エン
ジンの吸気通路の場合の如く、吸入排気の繰シ返しにょ
電流れに脈動が生じこの脈動が激しくなると、エンジン
側から逆流することにな9この逆流をも正流と同様に検
知してしまうという欠点があった。即ち、エンジン吸気
量の検出においては、吸い込む量だけ検知したいのに吸
気とは逆方向の流量をも同時に検出するため、゛実際の
平均流量よりも逆流分だけ大きい検出値を出力し、この
ため検出誤差が生じるという問題があった。
Furthermore, in conventional thermal flowmeters, a metal film is formed on the entire surface including the downstream side of the temperature-sensitive resistor, so there is no current leakage caused by repeated intake and exhaust air flow, as in the case of the intake passage of an automobile engine. When pulsation occurs and the pulsation becomes intense, a reverse flow occurs from the engine side.9 This reverse flow is also detected in the same way as a forward flow, which is a drawback. In other words, when detecting the amount of intake air in the engine, although it is desired to detect only the intake amount, the flow rate in the opposite direction to the intake air is also detected at the same time. There was a problem that detection errors occurred.

本発明の目的は1以上述べたような従来技術の欠点を解
消し、抵抗体表面の塵埃堆積による経時変化を防止し得
る一熱式流量計を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a one-heat type flowmeter that eliminates the above-mentioned drawbacks of the prior art and prevents deterioration over time due to dust accumulation on the surface of a resistor.

本発明は、感温抵抗体の上流側に抵抗体を形成する金属
膜が付着しない部分を帯状に設けることによシ前記目的
を達成しようとするものである。
The present invention attempts to achieve the above object by providing a band-shaped portion on the upstream side of the temperature-sensitive resistor to which the metal film forming the resistor is not attached.

即ち、本発明によれば、円柱状支持体の表面に金属膜を
形成した感温抵抗体を有し、該感温抵抗体を流れの中に
設置し、流量に応じて感温抵抗体から持ち去ら扛る熱量
に対応する電気的出力を発生する熱式流量計において、
前記感温抵抗体の上流側に、前記支持体の軸方向表面に
前記金属膜を形成しない部分を帯状に設けることを特徴
とする熱式流量計が提供される。
That is, according to the present invention, the temperature-sensitive resistor is provided with a metal film formed on the surface of a cylindrical support, the temperature-sensitive resistor is installed in a flow, and the temperature-sensitive resistor is disposed in accordance with the flow rate. In a thermal flowmeter that generates an electrical output corresponding to the amount of heat being carried away,
There is provided a thermal flow meter characterized in that a band-shaped portion where the metal film is not formed is provided on the axial surface of the support body upstream of the temperature-sensitive resistor.

この場合、前記感温抵抗体の下流側にも前記支持体の軸
方向表面に前記金属膜を形成しない部分を帯状に設けれ
ば、自動車用エンジンの吸気の場合のように逆流によっ
て脈動が生じた場合でも。
In this case, if a belt-shaped portion is provided on the axial surface of the support body on the downstream side of the temperature-sensitive resistor, pulsation will occur due to backflow, as in the case of intake air of an automobile engine. Even if

この逆流を除く正流のみを検知して正確な吸気流量測定
を行なうことができる。
Accurate intake flow rate measurement can be performed by detecting only the forward flow excluding this reverse flow.

以下第3図ないし第5図を参照して本発明の詳細な説明
する。
The present invention will be described in detail below with reference to FIGS. 3 to 5.

第3図及び第4図は本発明の第1の実施例を説明する図
であシ、感温抵抗体1の上流側即ち被測定流体の流れ方
向Aに対面する側に、支持体2の軸方向表面に沿って、
金属膜3を形成しない部分が帯状に設けられている。ま
た、感温抵抗体1の下流側にも、前記支持体2の軸方向
表面に、前記金属膜3を形成しない部分が帯状に設けら
れている。その他の構成は第1図について説明した感温
抵抗体の場合と実質上回じであシ、感温抵抗体1の両側
部に形成される電極部(図示せず)には導電性のサポー
ト4,4がそれぞれ接続されている。
3 and 4 are views for explaining the first embodiment of the present invention, in which a support 2 is provided on the upstream side of the temperature-sensitive resistor 1, that is, on the side facing the flow direction A of the fluid to be measured. Along the axial surface,
A band-shaped portion is provided where the metal film 3 is not formed. Also, on the downstream side of the temperature-sensitive resistor 1, a band-like portion is provided on the axial surface of the support 2 where the metal film 3 is not formed. The rest of the structure is substantially the same as that of the temperature-sensitive resistor explained with reference to FIG. 4 and 4 are connected to each other.

感温抵抗体1の上流側に形成される金属膜のない帯状部
分の円周角度即ち第4図中に示す角度θ1は例えば60
度ないし170度の範囲に選定することが好ましく、一
方感温抵抗体の下流側の金属膜を形成しない帯状部分の
円周角度即ち第4図中の角度θ2は40度ないし90度
程度の範囲に選定することが好ましいが、感温抵抗体1
の両側の金属膜3を有する部分の円周角はそれぞれ90
度或いはそれ以上設けることが好ましい。例□ えば第4図中で、θ、を120度に選定した場合は、下
流側のθ、はせいぜい60度程度とし、両側の金属膜を
有する部分はそれぞれ少なくとも90度分は残しておく
ことが好ましい。
The circumferential angle of the band-shaped portion without a metal film formed on the upstream side of the temperature-sensitive resistor 1, that is, the angle θ1 shown in FIG. 4, is, for example, 60.
It is preferable to select the angle between 40 degrees and 170 degrees, while the circumferential angle of the band-shaped portion on the downstream side of the temperature-sensitive resistor where no metal film is formed, that is, the angle θ2 in FIG. 4, is within the range of about 40 degrees to 90 degrees. It is preferable to select the temperature sensitive resistor 1.
The circumferential angles of the parts having the metal film 3 on both sides of are each 90
It is preferable to provide at least one degree or more. For example, in Figure 4, if θ is selected to be 120 degrees, θ on the downstream side should be approximately 60 degrees at most, and the portions with metal films on both sides should be left at least 90 degrees each. is preferred.

第5図は本発明の熱式流量計の第2実施例の断面図であ
シ、第4図の断面に相当する部分を示す図である。
FIG. 5 is a sectional view of a second embodiment of the thermal flowmeter of the present invention, and is a view showing a portion corresponding to the cross section of FIG. 4.

この第5図の場合は、感温抵抗体1の上流側即ち被測定
流体の流れ方向Aに対向する側にのみ。
In the case of FIG. 5, only on the upstream side of the temperature-sensitive resistor 1, that is, on the side facing the flow direction A of the fluid to be measured.

金属膜3を形成しない部分が支持体2の軸方向表面に帯
状に形成されている。下流側には金属膜を形成しない部
分は設けられていない。この第5図に示す実施例は流れ
に大きな脈動がなく逆流によって測定値に大きな誤差が
生じる虞れがない場合に使用するのに好適である。この
第5図中の角度θ1即ち金属膜を形成しない部分の円周
角度も。
A portion where the metal film 3 is not formed is formed in a band shape on the axial surface of the support 2. There is no portion on the downstream side where no metal film is formed. The embodiment shown in FIG. 5 is suitable for use when there is no large pulsation in the flow and there is no risk of large errors in measurement values caused by backflow. The angle θ1 in FIG. 5, that is, the circumferential angle of the part where no metal film is formed.

第4図の場合と同様、60度ないし170度程鹿の範囲
内に選定することが好ましい。
As in the case of Fig. 4, it is preferable to select the angle within the range of about 60 degrees to 170 degrees.

以上第3図ないし第5図について説明したような金属膜
を形成しない帯体部分の製作方法として□ は、支持体2の表面を予めマスクで被覆をして白金或い
はニッケル等の抵抗体の金属粒子をスパッターで付着さ
せる方法、支持体”2の全表面に白金等の金属膜をスパ
ッターで付着させた後金属膜が必要な部分をマスクして
逆スパッターにより金属膜不要部分の金属膜を離脱させ
る方法、或いは支持体2の全表面にスパッターで金属膜
を形成した後この金属膜を熱処理して一部溶融状態とし
てメタルに近い状態にし、しかる後必要部分にマスクし
て不要部分の金属膜をレーザで溶かし71或いはサンド
プラッシとで削シ取ったシして抵抗体を削除する方法な
どがある。ここでぃうスパッターとは1.白金或いはニ
ッケル等の金属ターゲット(付着すべき金属)と支持体
2(金属膜を形成すべき部材)とをアルゴンガス中にお
き、これら両者間に電圧をかけてアルゴンガス粒子を金
属ターゲットに衝突させて金属分子をたたき出すと共に
、その金属粒子を支持体に電気的に付着させる方法であ
り、前記逆スパッターとは前述のスパッターとは逆に支
持体2に付着した金属膜をアルゴンガス粒子でたたき出
す方法で、1この場合は前述のスパッターとは逆の極性
が与えられる。
□ As a method of manufacturing a band portion without forming a metal film as explained above with reference to Figs. A method of attaching particles by sputtering: After depositing a metal film such as platinum on the entire surface of support 2 by sputtering, masking the areas where the metal film is needed and removing the metal film from the areas where the metal film is not needed by reverse sputtering. Alternatively, after a metal film is formed on the entire surface of the support 2 by sputtering, this metal film is heat-treated to partially melt it into a state similar to metal, and then the necessary parts are masked and the metal film is removed from unnecessary parts. There are methods to remove the resistor by melting it with a laser71 or scraping it off with sandbrush.The sputtering described here is as follows: 1. A metal target (metal to be attached) such as platinum or nickel and a support. The body 2 (the member on which the metal film is to be formed) is placed in argon gas, and a voltage is applied between them to cause the argon gas particles to collide with the metal target to knock out metal molecules, and the metal particles are used as a support. It is a method of electrically attaching the film, and the reverse sputtering is a method in which the metal film attached to the support 2 is struck with argon gas particles, contrary to the sputtering described above. is given.

以上第3図ないし第5図について説明した実施例によれ
ば、感温抵抗体1の上流側に塵埃が堆積しても抵抗体(
金属膜3)の放熱特性に変化がなく、従って長期間使用
しても感温抵抗体の熱伝達特性に変化がなく長期間の使
用によっても出力特性が一定に維持され(経時変化がな
く)常に正しい流量検知を行なうことができる信頼性に
優れた熱式流量計が得られる。
According to the embodiment described above with reference to FIGS. 3 to 5, even if dust accumulates on the upstream side of the temperature-sensitive resistor 1, the resistor (
There is no change in the heat dissipation characteristics of the metal film 3), so there is no change in the heat transfer characteristics of the temperature-sensitive resistor even after long-term use, and the output characteristics remain constant even after long-term use (no change over time). A highly reliable thermal flowmeter that can always accurately detect the flow rate can be obtained.

また、第3図及び第4図の実施例によれば、感温抵抗体
1の下流側にも金属膜3を形成しない部分を設けたので
、逆流成分は検知せず正流成分のみを検知する5ことに
よシ、激しい脈動領域でも出力特性が適正値に維持され
真の平均流量に近い正確な流量値を検出し得る熱式流量
計が得られる。
Furthermore, according to the embodiments shown in FIGS. 3 and 4, a portion where the metal film 3 is not formed is also provided on the downstream side of the temperature-sensitive resistor 1, so that only the forward current component is detected without detecting the reverse flow component. By doing so, it is possible to obtain a thermal flow meter that maintains the output characteristics at an appropriate value even in a region of intense pulsation and can detect an accurate flow rate value close to the true average flow rate.

更に第3図及び第4図の実施例の場合には下流側に金属
膜が形成されていないので、エンジンの吸気量測定の場
合のようにエンジンからの逆流時に生ずるバツクファイ
ヤーに対しても抵抗体が対面しないことにな#)1従っ
てバツクファイヤーのフレーム(火炎)等によって抵抗
体が損傷するおそれがなく、バツクファイヤーに対して
も出力特性が変化せず常に正しい流量検知を行ない得る
熱式流量計が得られる。
Furthermore, in the case of the embodiments shown in Figs. 3 and 4, no metal film is formed on the downstream side, so there is resistance to backfire that occurs when the backflow from the engine occurs, as in the case of measuring the intake air amount of the engine. (1) Therefore, there is no risk of the resistor being damaged by backfire flames, etc., and the output characteristics do not change even in the case of backfire, and the thermal type can always accurately detect the flow rate. A flow meter is obtained.

以上の説明から明らかな如く1本発明によれば、流れの
中に設置される感温抵抗体の上流側に塵埃が堆積しても
熱伝達特性即ち流量に応じて感温抵抗体から持ち去られ
る熱量の特性に変化が生ぜず。
As is clear from the above description, according to the present invention, even if dust accumulates on the upstream side of the temperature-sensitive resistor installed in the flow, it is removed from the temperature-sensitive resistor according to the heat transfer characteristics, that is, the flow rate. No change occurs in the heat properties.

常に電気的出力の特性を一定に維持する゛ことができ、
もって長期間の使用においても正確な流量検出を行なう
ことができる熱式流量計が得られる。
It is possible to maintain constant electrical output characteristics at all times,
As a result, a thermal flowmeter capable of accurately detecting flow rate even after long-term use is obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の熱式流量計の要部を例示する斜視図、第
2図は感温抵抗体の周囲の流れの状態を例示する説明図
、第3図は本発明による熱式流量計の一実施例の要部を
示す斜視図、第4図は第3図中の感温抵抗体の断面図、
第5図は本発明の熱式流量計の他の実施例の第4図に相
当する部分の断面図である。 1・・・感温抵抗体、2・・・円柱状支持体、3・・・
金属膜(抵抗体)、4・・・サポート、A・・・被測定
流体の流れ方向、θ8.θ2・・・金属膜を形成しない
部分の円H釦L 案 2 口 第 3 図 %4−図 第5図
Fig. 1 is a perspective view illustrating the main parts of a conventional thermal flowmeter, Fig. 2 is an explanatory diagram illustrating the state of flow around a temperature-sensitive resistor, and Fig. 3 is a thermal flowmeter according to the present invention. FIG. 4 is a sectional view of the temperature-sensitive resistor shown in FIG. 3;
FIG. 5 is a sectional view of a portion corresponding to FIG. 4 of another embodiment of the thermal flowmeter of the present invention. 1... Temperature-sensitive resistor, 2... Cylindrical support, 3...
Metal film (resistor), 4... Support, A... Flow direction of fluid to be measured, θ8. θ2...Circle H button L in the part where the metal film is not formed Plan 2 Mouth 3 Figure %4-Figure 5

Claims (1)

【特許請求の範囲】 1、円柱状支持体の表面に金属膜を形成した感温抵抗体
を有し、該感温抵抗体を流れの中に設置し。 流量に応じて感温抵抗体から持ち去られる熱量に対応す
る電気的出力を発生する熱式流量計において、前記感温
抵抗体の上流側に、前記支持体の軸方向表面に前記金属
膜を形成しない部分を帯状に設けることを特徴とする熱
式流量計。 2、前記感温抵抗体の下流側にも、前記支持体の軸方向
表面に前記金属膜を形成しない部分を帯状に設けること
を特徴とする特許請求の範囲第1項記載の熱式流量計。
[Claims] 1. A temperature-sensitive resistor having a metal film formed on the surface of a cylindrical support, and the temperature-sensitive resistor is installed in a flow. In a thermal flowmeter that generates an electrical output corresponding to the amount of heat carried away from a temperature-sensitive resistor according to the flow rate, the metal film is formed on the axial surface of the support body upstream of the temperature-sensitive resistor. A thermal flow meter characterized by having a band-shaped section that does not cover the area. 2. The thermal flowmeter according to claim 1, wherein a band-shaped portion where the metal film is not formed is provided on the axial surface of the support body also on the downstream side of the temperature-sensitive resistor. .
JP56190858A 1981-11-30 1981-11-30 Thermal flow meter Pending JPS5892957A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56190858A JPS5892957A (en) 1981-11-30 1981-11-30 Thermal flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56190858A JPS5892957A (en) 1981-11-30 1981-11-30 Thermal flow meter

Publications (1)

Publication Number Publication Date
JPS5892957A true JPS5892957A (en) 1983-06-02

Family

ID=16264938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56190858A Pending JPS5892957A (en) 1981-11-30 1981-11-30 Thermal flow meter

Country Status (1)

Country Link
JP (1) JPS5892957A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2599153A1 (en) * 1986-05-23 1987-11-27 Djorup Robert ANEMOMETER WITH DIRECTIONAL THERMAL TRANSDUCER

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2599153A1 (en) * 1986-05-23 1987-11-27 Djorup Robert ANEMOMETER WITH DIRECTIONAL THERMAL TRANSDUCER
JPS6325562A (en) * 1986-05-23 1988-02-03 ロバ−ト・エス・ディジョラップ Thermal action type wind-speed measuring transducer having directivity
JP2511456B2 (en) * 1986-05-23 1996-06-26 ロバ−ト・エス・ディジョラップ Directional thermal action wind velocity transducer

Similar Documents

Publication Publication Date Title
US4304130A (en) Flow rate meter with temperature dependent resistor
US4833912A (en) Flow measuring apparatus
KR100251025B1 (en) Flow rate detector
US4843882A (en) Direct-heated flow measuring apparatus having improved sensitivity response speed
US6314807B1 (en) Thermal-type flow sensor
EP0069253B2 (en) Thermal flow rate sensor
JPS5892957A (en) Thermal flow meter
US4425792A (en) Apparatus for measuring a fluid flow rate
US4761995A (en) Direct-heated flow measuring apparatus having improved sensitivity and response speed
US5140854A (en) Intake air quantity measuring apparatus
US4434656A (en) Mass air flow sensor
US5315871A (en) Thermal flowmeter with detecting element supported by supports having engaging portions
US5817933A (en) Sensor arrangement for measuring the mass of a flowing fluid
JPWO2002066936A1 (en) Heating resistor type flow measurement device
JP2655257B2 (en) Thermal air flow detector using thin film resistors
JP3569129B2 (en) Flow detector
JPH095135A (en) Thermal flowmeter and its measuring element
JP3663267B2 (en) Thermal air flow meter
JP2875948B2 (en) Intake air flow rate detection device
JPH11201792A (en) Flow detecting element and flow sensor
JPS5920645Y2 (en) Intake air amount detection device for internal combustion engines
JPH01314921A (en) Correcting method for electronic engine control apparatus
JPH11295126A (en) Flow detecting element and flow sensor
JPH04291115A (en) Hot-wire air flowmeter
JPH11351930A (en) Heating resistor type air flowmeter