JPS5892725A - Exhaust heat collection in hot-air oven - Google Patents

Exhaust heat collection in hot-air oven

Info

Publication number
JPS5892725A
JPS5892725A JP56189779A JP18977981A JPS5892725A JP S5892725 A JPS5892725 A JP S5892725A JP 56189779 A JP56189779 A JP 56189779A JP 18977981 A JP18977981 A JP 18977981A JP S5892725 A JPS5892725 A JP S5892725A
Authority
JP
Japan
Prior art keywords
temperature
heat exchanger
exhaust gas
metal
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56189779A
Other languages
Japanese (ja)
Inventor
Yoshio Saito
芳夫 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP56189779A priority Critical patent/JPS5892725A/en
Publication of JPS5892725A publication Critical patent/JPS5892725A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L15/00Heating of air supplied for combustion
    • F23L15/04Arrangements of recuperators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Abstract

PURPOSE:To provide the exhaust heat collection in hot-air oven the collection efficiency of which is very high by a method wherein a metal temperature is controlled within a sulphuric acid corrosion restriction zone. CONSTITUTION:If the metal temperature of a meter 14 exceeds a preset value, the opening degree of a flow rate adjustor valve 13 becomes small to reduce a bypass flow rate. As a result of this, a preheated fluid flow rate through a heat exchanger 2 becomes relatively large and the amount of collected heat from an exhaust gas 4a increases. Accordingly, the temperature of the exhaust gas 4b at an outlet of the heat exchanger 2 drops down, therefore the temperature of a low temperature side metal 11 in an exhaust gas passage 2A of the heat exchanger 2 becomes the preset value. When the detected metal temperature of the meter 14 goes down lower than the preset value, the temperature of the low temperature side metal 11 is controlled automatically to the preset value by the above-mentioned operations in the reversed order. Thus, the sulphuric acid corrosion of the metal in the exhaust gas passage 2A of the metallic heat exchanger 2 can be prevented effectively.

Description

【発明の詳細な説明】 本発明はメタル製熱交換器を用いて熱風炉の排ガスで熱
風炉の燃焼用空気及び又は燃焼用燃料ガスを予熱する熱
風炉の排熱回収方法の改良に関し、特に排熱口iIl!
2量をメタル製熱交換器保護の限度内で最大にし、燃料
使用量を低減する方法を提供する′ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a method for recovering exhaust heat from a hot-blast stove, which uses a metal heat exchanger to preheat combustion air and/or combustion fuel gas in a hot-blast stove with exhaust gas from the hot-blast stove. Heat exhaust port IIl!
2, within the limits of metal heat exchanger protection, and provide a method for reducing fuel usage.

従来′、第1図に示したように、熱風炉lに例えばプレ
ート型のメタル製熱交換器2を付設し、この熱交換器コ
において、熱風炉lより配管3をへて供給される排ガス
lIaと、プロ7ワー5より配管tをへて供給される熱
風炉lの燃焼用空気及び又は燃焼用燃料ガス(以下被予
熱流体) 7aとを熱交換し、予熱さ五た被予熱流体7
bを配管lにより熱風炉lのバーナー(図示せず)へ供
給して燃料ガス節約の省エネルギー効果を得ることが行
なわれている。なお熱交換器λで降温した排ガスpbは
、配管9をへて煙突lθより大気に放散される。
Conventionally, as shown in FIG. 1, a plate-shaped metal heat exchanger 2, for example, is attached to a hot air stove l, and in this heat exchanger, exhaust gas supplied from the hot air stove l through a pipe 3 is The preheated fluid 7 is preheated by exchanging heat with the combustion air and/or combustion fuel gas (hereinafter referred to as preheated fluid) 7a of the hot blast stove l supplied from the processor 5 through the piping t.
B is supplied to a burner (not shown) of a hot air stove L through a pipe L to obtain an energy saving effect of saving fuel gas. Note that the exhaust gas pb whose temperature has been lowered in the heat exchanger λ passes through the pipe 9 and is dissipated into the atmosphere from the chimney lθ.

また2人及びJBは熱交換器コの排ガス通路及び被予熱
流体通路を示、す。
2 and JB indicate the exhaust gas passage and the preheated fluid passage of the heat exchanger.

上記熱交換器コを備えた熱風炉lにおいて、熱風炉の高
炉(図示せず)への送風量、送風温度変動等の操業変動
によって熱風炉lの一出ロ排ガス+aの温度が変化する
ことはよく知られ゛ている。例えば特定の熱風炉lにお
いてドーム温度lψoo’c。
In the hot blast stove l equipped with the heat exchanger A, the temperature of the exhaust gas +a at the outlet of the hot blast stove l changes due to operational fluctuations such as the amount of air blown from the hot blast furnace to the blast furnace (not shown) and fluctuations in the air temperature. is well known. For example, the dome temperature lψoo'c in a particular hot air stove l.

送風温度/300″Cの定常操業時、熱風炉の排ガスe
aの平均値はコロ2°Cであり、゛例えば送風温度が1
100℃に低下し、送風量が7θ係に低下した場合、上
記排ガスpaの平均値は/71r″Cでありr+″Cの
排ガス平均湿度変化がある。
During steady operation at a blowing temperature of 300″C, hot blast furnace exhaust gas e
The average value of a is 2°C; for example, if the air temperature is 1
When the temperature decreases to 100° C. and the air flow rate decreases by 7θ, the average value of the exhaust gas pa is /71r″C, and there is a change in the average humidity of the exhaust gas of r+″C.

熱風炉lの操業度が低下し、熱風炉lの排ガスaaの温
度が低下すると熱交換器−の排出排ガスIIbの温度も
低下する。そして排出排ガスtIbの温度が極端に低下
すると熱交換器2の排ガス通路JAの低温側メタル//
の温度が低下し排ガスIIa中のSO3が排ガスIIa
中のH2Oと結合して、硫酸の形で上記メタル/lの表
面に結露して、熱交換器コが硫□酸腐食され熱風炉が寿
命となる前に熱交換器λを交換しなければならなくなる
When the operating rate of the hot blast stove 1 decreases and the temperature of the exhaust gas aa of the hot blast stove 1 decreases, the temperature of the exhaust gas IIb discharged from the heat exchanger 1 also decreases. Then, when the temperature of the exhaust gas tIb drops extremely, the low temperature side metal of the exhaust gas passage JA of the heat exchanger 2
The temperature of the exhaust gas IIa decreases and SO3 in the exhaust gas IIa
Combined with H2O inside, dew condenses on the surface of the metal/l in the form of sulfuric acid, and the heat exchanger λ is corroded by sulfuric acid. If the heat exchanger λ is not replaced before the hot blast stove reaches the end of its service life. It will stop happening.

そこで従来は、上記熱風炉の操業度(排ガス温度)が最
低であるときにおいて、硫酸析出するが熱風炉寿命内で
硫酸腐食しない温度域(硫酸腐食抑制域)に少くとも上
記メタルllの温度を維持する条件で熱交換器2の容量
(伝熱面積)を決定し、て、排熱回収を実施している。
Therefore, conventionally, when the operating rate (exhaust gas temperature) of the hot blast stove is at its lowest, the temperature of the metal 1 is set at least to a temperature range (sulfuric acid corrosion suppression zone) in which sulfuric acid is deposited but does not corrode with sulfuric acid within the life of the hot blast stove. The capacity (heat transfer area) of the heat exchanger 2 is determined based on the conditions to be maintained, and exhaust heat recovery is performed.

しかし熱風炉操業期間の大部分を占める定常操業期間に
おいては、排ガス温度が高位にあるから熱交換器2のメ
タル/1rysvib’度が硫酸析出しない温度域(硫
酸腐食防止域)に維持される。が熱交換器2の出口排ガ
スの温度が高くて十分な排熱回収がなされていない。
However, during the steady operation period, which occupies most of the operating period of the hot blast stove, the exhaust gas temperature is high, so that the metal/1rysvib' degree of the heat exchanger 2 is maintained in a temperature range in which sulfuric acid does not precipitate (sulfuric acid corrosion prevention range). However, the temperature of the exhaust gas at the outlet of the heat exchanger 2 is high, and sufficient exhaust heat recovery is not performed.

本発明者は十分に排熱回収するために熱風炉の操業度(
排ガス温度)が最高値又は最高値近傍であるときに、上
記メタル温度が硫酸腐食抑制域となる条件で熱交換器容
量を決定し排熱回収することを着想した。しかしながら
この場合、熱風炉の操業度(排ガス温度)が最低値にな
ったとき、上記メタル温度が硫酸腐食促進域となり熱交
換器寿命が短かくなる問題が生じることがわかった。
In order to sufficiently recover waste heat, the inventor has determined that the operating rate of the hot blast furnace (
The idea was to determine the heat exchanger capacity and recover exhaust heat under the condition that the metal temperature falls within the sulfuric acid corrosion suppression range when the exhaust gas temperature is at or near the maximum value. However, in this case, it has been found that when the operating rate (exhaust gas temperature) of the hot air stove reaches its lowest value, the metal temperature falls into the sulfuric acid corrosion acceleration range, resulting in a problem that the life of the heat exchanger is shortened.

本発明は上記問題を有利に解消して十分に排熱回収する
熱風炉の排熱回収方法を提供するものであり、その要旨
は次の通りである。
The present invention advantageously solves the above-mentioned problems and provides a method for recovering exhaust heat from a hot-blast stove, which sufficiently recovers exhaust heat, and the gist thereof is as follows.

熱風炉の温度変動のある排ガスと熱風炉の燃焼用空気及
び又は燃焼用燃料ガスとをメタル製熱交換器で熱交換せ
しめる熱風炉の排熱回収方法にお、いて、熱交換を上記
熱交換器の排ガス通路の低温側メタル温度が硫酸腐食促
進域となるまで上記排ガスを降温せしめるようすると共
に上記被予熱流体のL記熱交換器の人出口配管の間に被
予熱流体のバイパス配管及び又は循環配管を設け、上記
熱交換器の排ガス通路の低温側メタル温度を検出し、上
記被予熱流体のバイパス流量及び又は循環流量を操作し
て、上記メタル温度を硫酸腐食抑制域に制御することを
特徴とする熱風炉の排熱回収方法にある。
In an exhaust heat recovery method for a hot-blast stove, in which heat exchange is performed between the flue gas of the hot-blast stove whose temperature fluctuates and the combustion air and/or combustion fuel gas of the hot-blast stove using a metal heat exchanger, the heat exchange is performed using the heat exchange method described above. The temperature of the exhaust gas is lowered until the metal temperature on the low temperature side of the exhaust gas passage of the device reaches the sulfuric acid corrosion acceleration range, and a bypass pipe for the fluid to be preheated is installed between the outlet piping of the L heat exchanger for the fluid to be preheated. A circulation piping is provided, the temperature of the metal on the low temperature side of the exhaust gas passage of the heat exchanger is detected, and the bypass flow rate and/or circulation flow rate of the fluid to be preheated is controlled to control the metal temperature to a sulfuric acid corrosion suppression range. The feature lies in the exhaust heat recovery method of hot air stoves.

上記硫酸腐食促進域及び硫酸腐食抑制域は排ガス中の8
0311度、水分、メタル製熱交換器のメタル材質等に
より決定される。例えば第2図はSO3濃度が/ pp
m 、水分lθ%程度の排ガスでメタル材質が耐硫酸鋼
の場合のメタル表面温度と腐食速度の関係を示したもの
であり、□メタル表面温度/10°C以上が硫酸腐食防
止域で70℃〜/10″Cが硫酸腐食抑制域であり、7
0°C以下が硫酸腐食促進域である。また上記熱交換器
の排ガス通路の低温側メタル温度は、熱交換器の型式に
よって、例えばプレート型、熱媒式熱交換器の場合、メ
タルに七′7ト。
The above sulfuric acid corrosion acceleration region and sulfuric acid corrosion inhibition region are 8 in exhaust gas.
It is determined by 0311 degrees, moisture, the metal material of the metal heat exchanger, etc. For example, in Figure 2, the SO3 concentration is /pp
This shows the relationship between metal surface temperature and corrosion rate when the metal material is sulfuric acid-resistant steel in an exhaust gas with a moisture content of about lθ%. ~/10″C is the sulfuric acid corrosion inhibition range, and 7
Below 0°C is the sulfuric acid corrosion acceleration range. Also, the temperature of the metal on the low temperature side of the exhaust gas passage of the heat exchanger varies depending on the type of heat exchanger, for example, in the case of a plate type heat exchanger or a heat medium type heat exchanger, the temperature of the metal on the low temperature side of the exhaust gas passage is 7'7.

しだ熱電対等による直接測定により、回転型熱交換器の
場合、被予熱流体及び排ガスの温度1流速から推算する
間接測定により検出するものである。
Detection is performed by direct measurement using a Shida thermocouple or the like, and in the case of a rotary heat exchanger, by indirect measurement estimated from the temperature and flow rate of the fluid to be preheated and the exhaust gas.

また本発明の低温側メタル温度とは、メタル製熱交換器
において排ガスに直接接触するメタル表面温度のうちの
最低温度をいう。
Further, the low-temperature side metal temperature in the present invention refers to the lowest temperature among the metal surface temperatures that directly contact exhaust gas in a metal heat exchanger.

以下図面により本発明の詳細な説明する。The present invention will be explained in detail below with reference to the drawings.

第3図において、/2は第1図の熱交換器λ(材質;耐
硫酸II)の被予熱流体の人、出口配管t。
In FIG. 3, /2 indicates the outlet piping t of the preheated fluid of the heat exchanger λ (material: sulfuric acid resistant II) in FIG.

lの間を接続したバイパス配管で、13はバイパス配管
12に配置した流量調節弁である。l’lは熱交換器コ
の排ガス通路2Aの低温側メタル//のメタル温度を検
出する温度測定器例えば熱電対で、lSは測定器/41
からの実温度と前記第2図の硫酸腐食抑制域より予しめ
設定された設定温度にもとづいて上記流量調節弁13の
開度を操作する温度調節計である。本実施例では設定温
度は例えば温度75″Cに設定している。
1 is a bypass pipe connected between 1 and 1, and 13 is a flow rate control valve disposed in the bypass pipe 12. l'l is a temperature measuring device, such as a thermocouple, for detecting the metal temperature on the low temperature side metal // of the exhaust gas passage 2A of the heat exchanger, and lS is a measuring device/41.
This is a temperature controller that controls the opening degree of the flow rate regulating valve 13 based on the actual temperature from the sulfuric acid corrosion suppression range and the set temperature preset from the sulfuric acid corrosion suppression range shown in FIG. In this embodiment, the set temperature is set to, for example, 75''C.

以上の如く構成した熱交換器コの排ガス通路2A、の低
温側メタル// (D 温度を前記設定温度に自動制御
する制御装置を配備することG、−より1測定器/4’
のメタル温度がL記設定湛度よりも高くなると、流量調
節弁13の開度が小さくなり、バイパス流量が減じられ
相対的に熱交換器2を通る被予熱流体流量が増大し、排
ガス+aよりの回収熱量が増大して熱交換器2の出口排
ガスpbの温度が低下し2熱交換器コの排ガス通路2人
の低温側メタル//の温度が設定温度になる。−刃側定
器/lの検出メタル温度が上記設定温度よりも低くなろ
うとすると流量調節弁13の開度が増大しバイパス流量
が増大し、相対的に熱交換器2を通る被予熱流体流量が
減少し、排ガスIIaよりの回収熱量が減少して、熱交
換器コの出口排ガスIlbの温度が上昇して熱交換器2
の排ガス通路2人の低温側メタル//の温度が設定温度
4、に自動制御される。この結果、メタル製熱交換器λ
の排ガス通路2人のメタルの硫酸腐食が有効に防止され
る。
The low-temperature side metal of the exhaust gas passage 2A of the heat exchanger configured as above// (D) Providing a control device that automatically controls the temperature to the set temperature G, - 1 measuring device/4'
When the metal temperature becomes higher than the preset level L, the opening degree of the flow rate control valve 13 becomes smaller, the bypass flow rate is reduced, and the flow rate of the preheated fluid passing through the heat exchanger 2 increases, so that the flow rate of the preheated fluid increases more than the exhaust gas +a. The amount of recovered heat increases, the temperature of the exhaust gas pb at the outlet of the heat exchanger 2 decreases, and the temperature of the low-temperature side metal // of the two exhaust gas passages of the two heat exchangers reaches the set temperature. - When the detected metal temperature of the blade side regulator/l becomes lower than the above set temperature, the opening degree of the flow rate control valve 13 increases, the bypass flow rate increases, and the relative flow rate of the preheated fluid passing through the heat exchanger 2 decreases, the amount of heat recovered from the exhaust gas IIa decreases, and the temperature of the exhaust gas Ilb at the exit of the heat exchanger 2 increases.
The temperature of the low-temperature side metal of the two exhaust gas passages is automatically controlled to a set temperature of 4. As a result, the metal heat exchanger λ
Sulfuric acid corrosion of the two metals in the exhaust gas passage is effectively prevented.

第q図は本発明法の他の実IM態様を示したもので、熱
交換器λの被予熱流体の人、出口配管6゜ざ間に循環配
管16を設けこの配管l乙に、熱交換器コの出口配管g
の被予熱流体を人口配管6ヘフイードバツクできるよう
にブロワ−17を設けると共にブロワ−77出口配管部
に流量調節弁13を設け、第3図の実a態様と同様に温
度測定器llS温度調節計/Sで流量調節弁13を操作
して、詳しくは被予熱流体の循環流量を操作して、被予
熱流体の熱交換器−の入口温度を調整し、熱交換器コの
排ガス流路2人の低温側メタル//の温度を前記設定温
度に自動制御するようにしたものである。
Fig. q shows another actual IM embodiment of the method of the present invention, in which a circulation pipe 16 is provided between the preheated fluid of the heat exchanger λ and the outlet pipe 6°, and this pipe 1 is connected to the heat exchanger. Outlet piping of the container g
A blower 17 is provided so that the fluid to be preheated can be fed back to the artificial piping 6, and a flow rate control valve 13 is provided at the outlet piping of the blower 77, and a temperature measuring device llS temperature controller/ S operates the flow rate control valve 13, in detail, operates the circulation flow rate of the fluid to be preheated, adjusts the inlet temperature of the fluid to be preheated to the heat exchanger, and controls the flow rate of the two exhaust gas flow paths of the heat exchanger. The temperature of the low temperature side metal // is automatically controlled to the set temperature.

第5図はメタル製熱交換器として熱媒式熱交換器を採用
して熱風炉の燃焼用空気と燃焼用燃料ガスを予熱する際
の本発明法の実施態様を示したもので、1gは熱風炉l
と排ガス配管19に設けた排゛ガスと熱媒との熱交換室
、〃は熱風炉lの燃料ガス配管〃に設けた燃料ダスと熱
媒との熱交換室、〃11.1 は熱風炉lの空気配管′Bに設けた空気と熱媒との熱交
換室、24Iは熱媒循環配管、Bは熱媒循環ポンプであ
る。スは熱交換器の排ガス通路の低温側メタル温度を検
出する熱電対であり、刀は熱交換室nの人出口配管の間
に設けたバイパス配管、Iは。
Figure 5 shows an embodiment of the method of the present invention when a heat medium type heat exchanger is used as the metal heat exchanger to preheat the combustion air and combustion fuel gas of a hot air stove. hot stove l
11.1 is a heat exchange chamber between the exhaust gas and the heating medium provided in the exhaust gas pipe 19; 24I is a heat exchange chamber between air and a heat medium provided in the air pipe 'B', 24I is a heat medium circulation pipe, and B is a heat medium circulation pump. S is a thermocouple that detects the temperature of the low-temperature side metal in the exhaust gas passage of the heat exchanger, S is a bypass pipe installed between the exit pipes of the heat exchange room N, and I is a bypass pipe installed between the exhaust pipes of the heat exchange room n.

配管刀に設けた流量調節弁、刀は熱電対スがらの実温度
と設定温度とを比較して、上記流量調節弁Jの開度を調
節して低温側メタル温度を設定値に制御する温度調節計
である。
The flow rate control valve installed on the piping knife compares the actual temperature of the thermocouple with the set temperature and adjusts the opening degree of the flow rate control valve J to control the low temperature side metal temperature to the set value. It is a controller.

以上の1様に被予熱流体のメタル製熱交換器の人出口配
管の間に被予熱流体のバイパス配管及び又は循環配管を
設けると共に熱交換器の排ガス通路の低温側メタル温度
を検出し、被予熱流体のバイパス流量及び又は循環流量
を操作してメタル温度を設定温度に制御するものである
がら熱風炉排ガス温度が変動しても熱交換器での硫酸腐
食速度を小さくすることができる。この結果熱風炉寿命
内で硫酸腐食による熱交換器の取替が不要となる。
As described above, a bypass piping and/or circulation piping for the preheated fluid is provided between the outlet piping of the metal heat exchanger for the preheated fluid, and the temperature of the metal on the low temperature side of the exhaust gas passage of the heat exchanger is detected. Although the metal temperature is controlled to a set temperature by manipulating the bypass flow rate and/or circulation flow rate of the preheating fluid, the sulfuric acid corrosion rate in the heat exchanger can be reduced even if the hot blast furnace exhaust gas temperature fluctuates. As a result, there is no need to replace the heat exchanger due to sulfuric acid corrosion within the life of the hot blast stove.

また熱風炉排ガス温度が変動しても熱交換器の硫り酸腐
食速度を小さくすることができるがら、変動する熱風炉
排ガス温度の最大値を、前記設定メタル温度に対応する
温度まで降温させる熱回収量最大の条件で熱交換器容量
を決定して排熱回収せしめることができ、最大の熱回収
を行なうことかでパ□、きる。この結果最大の燃料ガス
節約を行なうことができる。
In addition, even if the hot air stove exhaust gas temperature fluctuates, it is possible to reduce the sulfuric acid corrosion rate of the heat exchanger. The capacity of the heat exchanger can be determined under the condition of maximizing the amount of recovery, and exhaust heat can be recovered, and the performance can be achieved by performing the maximum heat recovery. As a result, maximum fuel gas savings can be achieved.

例えば第S図の排熱回収装置における熱風炉の°C1最
低温度/71″C1メタル温度制御装置の設定温度75
″C1このときの熱交換器出口排ガス温度/20″Cで
ある場合、メタル温度制御装置を用いない従来の排熱回
収方法では硫酸腐食防止のため排ガス最低温度17g″
Cのときに、熱交換器量ロ排ガスfB度/20″C(メ
タル温度75″C)になるように熱交換器の容量(排ガ
ス通路の伝熱面積)を決めるからその容量はjooo1
112となり、熱風炉排ガス温度がム2°Cの最大のと
き、その熱交換器の出口排ガス温度は17/”Cとなる
。−力木発明法では設定     □温度75℃のメタ
ル温度制御装置を備えているがら排ガス温度が262°
Cの最大値のとき′、熱交換器の出口排ガス温度が/2
0″C(メタル温度7s″C)になるように、熱交換器
の容量を決定でき、その容量は/6000112となる
。従って本発明法では、従来法に比して熱風炉排ガス温
度−42℃のとき熱量にして1.s6倍回収でき、56
%だけ燃料ガスを節約できる。
For example, in the exhaust heat recovery device shown in Figure S, the minimum temperature of the hot air stove in °C1/71"C1 is the set temperature of the metal temperature control device 75
``C1 At this time, the exhaust gas temperature at the heat exchanger outlet / 20''C, in the conventional exhaust heat recovery method that does not use a metal temperature control device, the minimum exhaust gas temperature is 17g'' to prevent sulfuric acid corrosion.
At C, the capacity of the heat exchanger (heat transfer area of the exhaust gas passage) is determined so that the amount of heat exchanger x exhaust gas fB degrees/20"C (metal temperature 75"C), so the capacity is jooo1
112, and when the hot stove exhaust gas temperature is at its maximum of 2°C, the outlet exhaust gas temperature of the heat exchanger is 17/''C. Even though it is equipped, the exhaust gas temperature is 262°
At the maximum value of C', the exhaust gas temperature at the outlet of the heat exchanger is /2
The capacity of the heat exchanger can be determined so that the temperature is 0''C (metal temperature 7s''C), and the capacity is /6000112. Therefore, in the method of the present invention, compared to the conventional method, the amount of heat is 1. s can be recovered by 6 times, 56
You can save fuel gas by %.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の熱風炉の排熱回収方法の説明図1第λ図
は熱交換器のメタル温度、と腐食速度の′・関係説明閥
、第3〜S図は本発明の熱風炉の排熱回収方法の説明図
である。 l・・・熱風炉、2・・・熱交換器、3.t、r、q・
・・配管、+a 、 +b・・・排ガス、! 、 /7
・・・ブロワ−17a。 7b・・・被予熱流体、10・・・煙突、ll・・・低
温側メタル、1”/J s E ””バイパス配管、1
3,1・・・流量調節弁、/41・一温度測定器、/j
 、 !・・・温度調節計、16・・・循環配管、/I
 、 27 、22・・・熱交換室、/デ・・・排ガス
配管、J・・・燃料ガス配管、n・・・空気配管、24
I・・・熱媒循環配管、j・・・ポンプ、ぶ・・・熱電
対。 特許出願人 新日本製鐵、、林式会社
Figure 1 is an explanatory diagram of the conventional exhaust heat recovery method for a hot-blast stove. Figure 1 is an explanation of the relationship between the metal temperature of the heat exchanger and the corrosion rate. FIG. 2 is an explanatory diagram of an exhaust heat recovery method. 1...Hot stove, 2...Heat exchanger, 3. t, r, q・
...Piping, +a, +b...exhaust gas,! , /7
...Blower-17a. 7b...Fluid to be preheated, 10...Chimney, ll...Low temperature side metal, 1"/J s E "" bypass piping, 1
3,1...flow control valve, /41-1 temperature measuring device, /j
, ! ...Temperature controller, 16...Circulation piping, /I
, 27 , 22... Heat exchange chamber, /D... Exhaust gas piping, J... Fuel gas piping, n... Air piping, 24
I...heat medium circulation piping, j...pump, B...thermocouple. Patent applicant: Nippon Steel, Hayashi Shiki Kaisha

Claims (1)

【特許請求の範囲】[Claims] 熱風炉の温度変動のある排ガスと熱風炉の燃焼用空気及
び又は燃焼用燃料ガスとをメタル製熱交換器で無交換せ
しめる熱風炉の排熱回収方法において、熱交換を上記熱
交換器の排ガス通路の低温側メタル温度が硫酸腐食促進
域となるまで上記排ガスを降温せしめるようにすると共
に、上記被予熱流体の上記熱交換器の人出口配管の間に
被予熱流体のバイパス配管及び又は循環配管を設け、上
記熱交換器の排ガス通路の低温側メタル温度を検出し、
上記被予熱流体のバイパス流量及び又は循環流量を操作
して、上記メタル温度を硫酸腐食抑制域に制御すること
を特徴とする熱風炉の排熱1′回収方法0
In a hot-blast stove exhaust heat recovery method in which the flue gas of the hot-blast stove whose temperature fluctuates and the combustion air and/or combustion fuel gas of the hot-blast stove are not exchanged with a metal heat exchanger, heat exchange is performed with the flue gas of the heat exchanger. The temperature of the exhaust gas is lowered until the metal temperature on the low temperature side of the passage reaches the sulfuric acid corrosion acceleration range, and bypass piping and/or circulation piping for the preheated fluid is provided between the outlet piping of the heat exchanger for the fluid to be preheated. is installed to detect the temperature of the metal on the low temperature side of the exhaust gas passage of the heat exchanger,
Method 0 for recovering exhaust heat 1' of a hot blast stove, characterized by controlling the metal temperature to a sulfuric acid corrosion suppression range by controlling the bypass flow rate and/or circulation flow rate of the fluid to be preheated.
JP56189779A 1981-11-26 1981-11-26 Exhaust heat collection in hot-air oven Pending JPS5892725A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56189779A JPS5892725A (en) 1981-11-26 1981-11-26 Exhaust heat collection in hot-air oven

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56189779A JPS5892725A (en) 1981-11-26 1981-11-26 Exhaust heat collection in hot-air oven

Publications (1)

Publication Number Publication Date
JPS5892725A true JPS5892725A (en) 1983-06-02

Family

ID=16247057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56189779A Pending JPS5892725A (en) 1981-11-26 1981-11-26 Exhaust heat collection in hot-air oven

Country Status (1)

Country Link
JP (1) JPS5892725A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6338818A (en) * 1986-08-01 1988-02-19 Ishikawajima Harima Heavy Ind Co Ltd Corrosion preventive device for air preheater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6338818A (en) * 1986-08-01 1988-02-19 Ishikawajima Harima Heavy Ind Co Ltd Corrosion preventive device for air preheater

Similar Documents

Publication Publication Date Title
JPH09126665A (en) Recovering method of waste heat of steel heating furnace and facility therefor
KR100660565B1 (en) Condensing boiler and method for controlling heating of boiler
CN108344180A (en) A kind of condensed type combustion gas heating stove
CN106197049A (en) A kind of waste heat recovery system of pipe heater and method
CN201014751Y (en) Wastewater afterheat recovering gas water heater
JPS5892725A (en) Exhaust heat collection in hot-air oven
CN208832737U (en) A kind of condensation-proof burnt gas wall hanging furnace
CN109297312A (en) A kind of separated phase transition smoke heat exchanging system
CN206073741U (en) A kind of tubular heater waste-heat recovery device
CN209909964U (en) Air preheater capable of preventing low-temperature acid dew point
JPS5860194A (en) Recovery method of low temperature waste heat
CN214664376U (en) Flue gas recirculation system and boiler
JPS5928838B2 (en) Waste heat recovery method to prevent corrosion caused by sulfur oxides
CN212390884U (en) Regulation type phase transition heat medium heat transfer device
CN207815376U (en) A kind of air preheater based on wind-heat matchmaker's technology
CN218740926U (en) Device for preserving heat of pulse dust collector by using waste heat of metallurgical furnace
CN1069125C (en) Circulating hot-blast stove
RU2386712C1 (en) Waste heat recovery method of copper purification furnace
JPH08114318A (en) Preheating method of air for incinerator
JPS6213508A (en) Waste heat recovering installation for hot stove
CN107192278A (en) High temperature resistant shoe last tube core heat exchanger
JPH0365405B2 (en)
CN208312423U (en) A kind of boiler smoke-gas residual-heat recovering device by series connection hot wind temperature adjustment
CN112097553A (en) Regulation type phase transition heat medium heat transfer device
KR19980038994U (en) Circulating water device for heat recovery system