JPS5892411A - Semi-permeable membrane and module using same - Google Patents

Semi-permeable membrane and module using same

Info

Publication number
JPS5892411A
JPS5892411A JP56190676A JP19067681A JPS5892411A JP S5892411 A JPS5892411 A JP S5892411A JP 56190676 A JP56190676 A JP 56190676A JP 19067681 A JP19067681 A JP 19067681A JP S5892411 A JPS5892411 A JP S5892411A
Authority
JP
Japan
Prior art keywords
blood
membrane
hydrophilic
hydrophobic
regions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56190676A
Other languages
Japanese (ja)
Other versions
JPH0143562B2 (en
Inventor
Masahiro Miki
三城 正紘
Morimasa Kaneko
金子 守正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Medical Co Ltd
Original Assignee
Asahi Medical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Medical Co Ltd filed Critical Asahi Medical Co Ltd
Priority to JP56190676A priority Critical patent/JPS5892411A/en
Publication of JPS5892411A publication Critical patent/JPS5892411A/en
Publication of JPH0143562B2 publication Critical patent/JPH0143562B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0023Organic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/003Organic membrane manufacture by inducing porosity into non porous precursor membranes by selective elimination of components, e.g. by leaching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes

Abstract

PURPOSE:To obtain a semi-permeable membrane having blood compatibility, excellent in filtering and separating efficiency and improved in the lowering of a filtering and separating speed with the elapse of time, by mutually arranging plural elongated hydrophobic regions and hydrophilic regions oriented to one direction on the surface of the semipermeable membrane at random. CONSTITUTION:A hydrophobic polymer such as polyamide and a hydrophilic polymer such as polyvinyl alcohol are dissolved or melted to be mixed uniformly and the obtained mixture is formed into a hollow fiber by applying draft to the same in a film forming direction. After a solvent or a plasticizer is removed from the hollow fiber, the hydrophilic polymer is partially removed to form fine pores. Thus obtained semi-permeable membrane is accommodated in a container to be used as a module.

Description

【発明の詳細な説明】 本発明は疎水性と親水性領域を有する半透膜に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semipermeable membrane having hydrophobic and hydrophilic regions.

従来、半透膜は一択分離能をより高度化するため、膜構
造、特に選択分離能を決める孔の大きさ4゜形状、#、
配列状態が課■であった。しかし体液を処理する医療公
費では、半透膜の選択分離能が。
Conventionally, semipermeable membranes have been designed with membrane structures, especially pores with a 4° shape, #, and
The arrangement status was part ■. However, in medical public funds that process body fluids, the selective separation ability of semipermeable membranes is insufficient.

処理時間と共に大吉〈変化をする。例えば、血液V過操
作を開始するとFfillは経時的に低下し。
Daikichi changes with processing time. For example, when blood V overoperation is started, Ffill decreases over time.

F1過すべき溶質の透過性も変化、減少する。これは、
半透膜の濾過ll1vc濃度分極を起すだけでなく。
The permeability of solutes through F1 also changes and decreases. this is,
Semipermeable membrane filtration ll1vc not only causes concentration polarization.

半透膜が血液との適合性に欠け、血液成分の変化。The semipermeable membrane is incompatible with blood, resulting in changes in blood components.

特殊成分の粘着、吸着、#血が起るためである。This is because special ingredients cause adhesion, adsorption, and #blood.

そこで生体組織の研究成果を基に1種々化体適合性、血
液適合性に優れた材料開発が積極的に研究されているが
、いまだ満足すべきものを得るに至って−ないoしかし
現在、実用化レベルにあるものは、単なる血液の通路、
流路用の管1例えば。
Therefore, the development of materials with excellent body compatibility and blood compatibility has been actively researched based on the research results of living tissues, but nothing satisfactory has yet been obtained. What is on the level is just a blood passage,
For example, a pipe 1 for a flow path.

人工血管、カテーテル等で、これらは選択分離能を必要
としない。
Artificial blood vessels, catheters, etc., which do not require selective separation power.

現在、生体組織を模倣する中で、血液適合性。Currently, in imitating living tissues, blood compatibility.

例えば抗血栓性に優れていると言われているもの(化学
と工業32900 (1979) ”)は疎水性、親水
性を持った複合構造のブロックピリマーで疎水性。
For example, a substance that is said to have excellent antithrombotic properties (Kagaku to Kogyo 32900 (1979)) is a hydrophobic block pirimer with a complex structure that has both hydrophobic and hydrophilic properties.

親水性の大きさは300〜soo Xでラメラ構造であ
るとされている。このポリマーは、lリエチレングリコ
ールとポリウレタン;メリエステル;メリカーlナート
のブロックポリマーや、ポリ酢酸ビニルVC,アクリ四
ニトリル、メタクリル酸等のグラフトポリマー(y14
Vol 2. m5 P2S5 (1977) ) 4
が倹射され開発が進められている。しかし、これらのポ
リマーに半透膜としての虐択分−能を付与出東な−のが
現状である。
It is said that the hydrophilicity is 300 to soo X and has a lamellar structure. This polymer is a block polymer of 1-lyethylene glycol and polyurethane; mer-ester;
Vol 2. m5 P2S5 (1977) ) 4
has been saved and development is progressing. However, the current situation is that these polymers have been given a selective ability as semipermeable membranes.

本発明杼らは、生体適合性、血液適合性を有した半透膜
開発を研究し、生体又は血液に接する膜表面に、一方向
に配向し北多数の細長い疎水性領域と親水性領域を有し
、これらの領域がランダムに相互配列した半透膜を発明
した。
The inventors of the present invention have researched the development of semipermeable membranes with biocompatibility and blood compatibility, and have created a large number of elongated hydrophobic regions and hydrophilic regions oriented in one direction on the surface of the membrane that comes into contact with living organisms or blood. We have invented a semipermeable membrane in which these regions are randomly arranged with each other.

本発明は、血液適合性を有するため、血液処理する際1
例えは血液F−での濾過腫の経時低下やf遇すべき溶質
の透過性減少が大巾に改善され。
Since the present invention has blood compatibility, it is possible to
For example, the decrease in filtration over time in blood F- and the decrease in permeability of solutes to be treated are greatly improved.

半趨膜自体の測度も4IAい。The measure of the semicircular membrane itself is also 4IA.

本発明で、高分子層の少なくとも一表面とは。In the present invention, what is meant by at least one surface of a polymer layer?

上述の通り、生体や血液Ka!する面を1い、血液d樹
、血液r遥、血漿分層、血漿成分分離◆では血液、血漿
の通過側の面を言い、特に血漿分離は両面が本発明の構
成であることが望ましい。
As mentioned above, living organisms and blood Ka! 1, blood d tree, blood r distance, plasma layering, plasma component separation.

一方向に配向した多数の細長−疎水性領域、親水性−城
とは、各鎮域が長さ0.02〜4μ編度、巾0.01〜
03μ椙度の細長い帯状になった疎水性帯。
A large number of elongated hydrophobic regions and hydrophilic regions oriented in one direction, each having a length of 0.02 to 4 μm and a width of 0.01 to 4 μm.
A long and narrow hydrophobic band with a diameter of 0.3 μm.

親水性帯が、Nkさ方向にほとんどのものが並んだもの
である。故に疎水性領域と親水性領域の長さ方向が互I
AK交じわり合うものでなく平行に並んだりするもので
ある。多数とは、WIa面の大部分に疎水性領域と親水
性領域とが存在する−のである。但し、該内領域の接合
面等に細孔が存在する空間は充分に存在す、る。
Most of the hydrophilic bands are arranged in the Nk direction. Therefore, the length directions of the hydrophobic region and the hydrophilic region are the same.
AK do not intersect, but are arranged in parallel. The large number means that a hydrophobic region and a hydrophilic region are present in most of the WIa surface. However, there is sufficient space for pores to exist at the bonding surface of the inner region.

更に本発明の重要なことは該疎水性領域と親木性領域が
ランダムに相互配列していることであり。
Furthermore, an important feature of the present invention is that the hydrophobic region and the woody region are randomly arranged with each other.

ランダムとは該内領域が膜表面で一つの規則性もなく、
混然一体になったものである。
Random means that the inner region has no regularity on the membrane surface,
It is a mixed whole.

以上2つの構成は血液処理で重要なことである。The above two configurations are important in blood processing.

即ち一方向に配向することは血液及び血漿の流れ方向と
一蚊させることにより血液濾過、血漿分離でのPa効効
率1喝喝効率優れたものとなる。又疎水性、親木性領域
がランダムに相互配列は、a液適台柱で蛋白質の吸着、
フィブリノーゲン等の発生を防市り、濾過速噴1分離速
度の経時低下が改善されるものである。
That is, by orienting in one direction, the flow direction of blood and plasma is aligned with the flow direction of blood and plasma, thereby improving the Pa efficiency and pumping efficiency in blood filtration and plasma separation. In addition, the randomly arranged mutual arrangement of hydrophobic and woody regions facilitates the adsorption of proteins on the a-liquid base.
This prevents the generation of fibrinogen, etc., and improves the reduction in filtration speed jet 1 separation speed over time.

この半透膜の材料は、既知高分子で、疎水性高分子、親
水性高分子を用いろ方が蝿造上容易であるが、ブレツク
共重合体。グラフトI!#!にはポリマーコンプレック
ス等を用いてもよい。
The material for this semipermeable membrane is a known polymer, and it is easier to make it using a hydrophobic polymer or a hydrophilic polymer, but it is a Breck copolymer. Graft I! #! A polymer complex or the like may be used.

漢形態は平膜、管状、中空繊維状辱いずれでもよいが、
容器に収容したモジニールにするには。
The shape can be flat, tubular, or hollow fibrous, but
To make Modinir housed in a container.

容積一定で有効P4面積を大きくするには中空繊維状が
優れているが、躯法上は安価な面から平膜が有利である
Hollow fibers are better in increasing the effective P4 area with a constant volume, but flat membranes are advantageous in terms of construction because they are inexpensive.

一法は、#I水性ポリマー、例えばポリアミド。One method is #I waterborne polymers, such as polyamides.

ポリエステル、ポリエチレン、ポリ°プロピシン。Polyester, polyethylene, poly°propicine.

ポリカーボネート場1通常含水率10襲以下のもので好
ましくは5%以下であるものと、親木性lリマー1例え
ばセルソース、メリビニルアルコール、ポリビニールピ
ロリドン得の水に可溶性があったり、含水率10−を纏
える屯のとを溶媒に溶かしたり、可1剤を加え博融した
りして、均一な且つ疎水性ポリマーと親水性ポリマーが
完全に混在した溶液、溶融物となった後S+*する。1
lll@膜時、 −m7F向にドラフトを1以上かける
ことが必須である。−膜後、脱溶媒、脱可塑剤、v!に
親水性y +)マーの部分除去により細孔を形成する。
Polycarbonate field 1 usually has a water content of 10% or less, preferably 5% or less, and wood-loving lrimer 1, such as cellulose, melivinyl alcohol, polyvinyl pyrrolidone, which is soluble in water or has a water content of 5% or less. 10- is dissolved in a solvent, or a single agent is added and melted to form a homogeneous solution or melt in which a hydrophobic polymer and a hydrophilic polymer are completely mixed, and then S+* do. 1
When Ill@membrane, it is essential to apply one or more drafts in the -m7F direction. - After membrane, desolvent, deplasticizer, v! pores are formed by partial removal of the hydrophilic y +)mer.

親木性ポリマーは血液処理に溶出しない工夫が必要で分
子量、fx練の41度、架橋等の熱処理、後処理専を行
う場合がある。
For wood-philic polymers, it is necessary to take measures to prevent them from eluting during blood treatment, and the molecular weight, fx kneading at 41 degrees, heat treatment such as crosslinking, and post-treatment may be performed.

特に血漿分離や高分子緻物質の分−Kr1上記親木性〆
リマーの部分除去である溶出は有効なろ手段で製膜条件
と組合せで膜表面、内部の細孔を制御出来る。
Particularly, plasma separation and elution, which is the partial removal of the polymeric dense material Kr1, is an effective filtration method, and the pores on the membrane surface and inside can be controlled by combining with the membrane forming conditions.

本発明は該半透膜を容器に収容したモジュールである。The present invention is a module in which the semipermeable membrane is housed in a container.

該半透膜が平膜でけ、血液側を本発明の半透膜の面にし
、中空繊維状の場合も同一であるように容器に収容した
モジュールでなければならない。
The semipermeable membrane must be a flat membrane, with the blood side facing the semipermeable membrane of the present invention, and the module must be housed in a container in the same manner as in the case of hollow fibers.

実施例1゜ アクリロニトリル916%、アクリル酸メチル8.0憾
、メタクリルスルホン酸・ンーダ0,5%のポリアクリ
四ニトリル共重合体とぎりビニールビリリドンを等量、
67−鋼機水溶液に溶解し16.5vt%& lj7−
濃噌に調頼り、−10℃でP遥説泡後、鋼状紡口に15
−/ぬ送液すると同時に環状紡口中央部分に水1.2 
tg/+mを注入した。中央部分に水を包み込んだ中空
繊維をドラ7 ) 1.5で凝固浴に導き、凝1dさせ
、30m/亀で巻取った。凝固浴は1%硝酸30℃の水
である。
Example 1 A polyacrytetranitrile copolymer containing 916% acrylonitrile, 8.0% methyl acrylate, 0.5% methacrylsulfonic acid, and an equal amount of vinyl pyridone.
67-Dissolved in steel machine aqueous solution 16.5vt%&lj7-
Relying on soybean paste, after foaming at -10℃, 15% was added to the steel spinneret.
-/At the same time, 1.2 liters of water is pumped into the center of the annular spinneret.
tg/+m was injected. The hollow fiber containing water in the center was introduced into a coagulation bath using a screwdriver of 7) 1.5, coagulated for 1 d, and wound up at a speed of 30 m/height. The coagulation bath is 1% nitric acid in water at 30°C.

得られた中空−繍は内径190μ、外径280μで。The obtained hollow embroidery has an inner diameter of 190μ and an outer diameter of 280μ.

中空MA維の内表面を7,000倍走壷麿電子顕微鏡で
一椹すると、長さ0.1〜3.0μ、巾0.05〜02
μからなるポリアクリロニトリル共重合体とポリビニル
ピロリFンの集合体がある◇ 得られた中空線維を容器に収容し、モジュールとり、血
液濾過した結果、lll1外濾過速度は20m/ば・七
・蘭Hνを得た。限外Fa、i!質の3時間までの吐E
lは5%であった。
When the inner surface of the hollow MA fiber was examined using a 7,000x magnification electron microscope, the length was 0.1 to 3.0μ, and the width was 0.05 to 0.2μ.
There is an aggregate of polyacrylonitrile copolymer consisting of μ and polyvinylpyrroli F ◇ The obtained hollow fibers were placed in a container, a module was taken, and blood was filtered. Hv was obtained. Limit Fa, i! Vomiting for up to 3 hours
l was 5%.

実施例乏 ボリエチレンテレアタレートとポリビニルアル:I −
# k 4 瀘*ヘキサフルオレイゾプリパノールに1
5wt囁濃変に溶解り、F遥説泡後、ガラス板上に0.
5M 厚さで流延速度20 m/mと高速で流延するこ
とで流延膜表面を一方向に走行させる。その後直ちに水
KeltI1. #dL牛透膜を得たO得られた膜表面
は一方向に多数の長さ0.02〜4μ、 巾o、ot〜
0,2μ のぎりエチレンテレフタレートとぎりビニル
アルコールの集合体領域が存在し。
Example Poor polyethylene tereate and polyvinylalcohol: I-
# k 4 〘 * 1 in hexafluoreizopropanol
5wt was dissolved to a low density, and after foaming, 0.0% was deposited on the glass plate.
By casting at a high speed of 20 m/m at a thickness of 5M, the surface of the cast membrane is run in one direction. Immediately thereafter water KeltI1. #dL Bovine Permeable Membrane ObtainedO The obtained membrane surface has many lengths in one direction of 0.02 to 4μ, width o, ot~
There is an aggregate region of 0.2μ of ethylene terephthalate and vinyl alcohol.

空孔率50囁の細孔0.02〜0.05μが存在した。There were pores of 0.02 to 0.05 microns with a porosity of 50 hiss.

手続補正蕾 昭和57年6月  日 特許庁長官 若杉和夫 殿 1 事件の表示 特願昭56−190676号 2 発明の名称 半透膜及びそれを用いたモジュール 6 補正をする考 事件との関係・特許出願人 旭メディカル株式会社 4代理人 東京S港区虎、ノ門−丁目2929号UF”1産業ビル
5階全文補正明細書 1、発明の名称 半透膜及びそれを用いたモジュール 2、特許請求の範囲 1)高分子膜の少なくとも一表面が、一方向に配向した
多数の細長い疎水性領域及び親水性領域を有し、かつそ
れらの領域がランダムに相互配列してなる半透膜。
Procedural amendment Buds June 1980 Japan Patent Office Commissioner Kazuo Wakasugi 1 Indication of the case Patent application No. 1986-190676 2 Title of the invention Semi-permeable membrane and module using the same 6 Relationship with the case to be amended/Patent Applicant Asahi Medical Co., Ltd. 4 Agent No. 2929 Tora, Nomon-chome, Minato-ku, Tokyo UF” 1 Industrial Building 5th floor Full text of amended specification 1 Name of the invention Semi-permeable membrane and module using the same 2 Patent claim Scope 1) A semipermeable membrane in which at least one surface of the polymer membrane has a large number of elongated hydrophobic regions and hydrophilic regions oriented in one direction, and these regions are randomly arranged with each other.

5 発明の詳細な説明 本発明は、疎水性と親水性領域を有する半透膜に関する
ものである、 従来、半透膜は選択分離能をより高度化するため、膜構
造、特に選択分離能を決める孔の大きさ、形状、数、配
列状態が課題であった、しかし、体液を処理する医療分
野で祉、半透膜の選択分離能が、処理時間と共に大きく
変化をする。例えば、血液濾過操作を開始するとか過食
紘経時的に低下し、か過すべき溶質の透過性も変化、減
少する。
5. Detailed Description of the Invention The present invention relates to a semipermeable membrane having hydrophobic and hydrophilic regions. Conventionally, semipermeable membranes have been modified to improve selective separation ability by changing the membrane structure, especially the selective separation ability. Determining the size, shape, number, and arrangement of the pores was an issue, but in the medical field where body fluids are processed, the selective separation ability of semipermeable membranes changes greatly with processing time. For example, when blood filtration is started, hyperphagia decreases over time, and the permeability of solutes to be filtered also changes and decreases.

これは、半透膜の濾過面に濃度分極を起すだけでなく、
半透膜が血液との適合性に欠け、血液成分の変化、特殊
成分の粘着、吸着、凝血が起るためである。そこで、生
体組織の研究成果を基に、種々生体適合性、血液適合性
に優れ丸材料開発が積極的に研究されているが、いまだ
満足すべきものを得るに至っていない。しかし、現在、
実用化レベルにあるものは、単なる血液の通路、流路用
の管、例えば、人工血管、カテーテル等で、これらは選
択分離能を必要としない。
This not only causes concentration polarization on the filtration surface of the semipermeable membrane, but also
This is because the semipermeable membrane lacks compatibility with blood, resulting in changes in blood components, adhesion and adsorption of special components, and coagulation. Therefore, based on the research results of living tissues, active research has been carried out to develop various round materials with excellent biocompatibility and blood compatibility, but nothing satisfactory has yet been achieved. However, currently,
Those that are at a practical level are mere blood passages, flow path tubes, such as artificial blood vessels, catheters, etc., and these do not require selective separation ability.

現在、生体組織を模倣する中で、血液適合性、例えば抗
血栓性に優れていると言われているもの(化学と工′東
旦900(1979))は、疎水性、親水性を持った複
合構造のブロックポリマーで、疎水性、親水性の大きさ
Fi300〜500λでラメラ構造であるとされている
。このポリマーは、ポリエチレングリコールとポリウレ
タン;ポリエステル:ボリカーポナートのブロックポリ
マーや、ポリ酢酸ビニルに、アクリロニトリル、メタク
リル酸等のグラフトポリマー(II Vol 2. i
s P 358(1977) )等が検討され開発が進
められている。しかし、これらのボ゛リマーに半透膜と
しての選択分離能を付与できないのが現状である。
Currently, among biological tissue imitators, those that are said to have excellent blood compatibility, such as antithrombotic properties (Chemistry and Engineering 'Todan 900 (1979)), have hydrophobic and hydrophilic properties. It is a block polymer with a composite structure, and is said to have a lamellar structure with hydrophobicity and hydrophilicity Fi of 300 to 500λ. This polymer is a block polymer of polyethylene glycol and polyurethane; polyester: polycarbonate, or a graft polymer of acrylonitrile, methacrylic acid, etc. to polyvinyl acetate (II Vol 2. i
s P 358 (1977)) etc. are being considered and development is progressing. However, the current situation is that these polymers cannot be given the selective separation ability of a semipermeable membrane.

本発明考らは、生体適合性、血液適合性を有した半透膜
開発を研究し、生体又は血液に接する膜表面に、一方向
に配向した多数の細長い疎水性領域と親水性領域を有し
、これらの領域がランダムに相互配列した半透膜を発明
した。
The present invention has been developed by researching the development of a semipermeable membrane that is biocompatible and blood compatible, and has a large number of elongated hydrophobic regions and hydrophilic regions oriented in one direction on the membrane surface that comes into contact with living organisms or blood. They invented a semipermeable membrane in which these regions are randomly arranged with each other.

本発明は、血液適合性を有するため、血液処理する際、
例えば血液濾過での濾過量の経時低下やP遇すべき溶質
の透過性減少が大巾に改善され、半透膜自体の強度も強
い。
Since the present invention has blood compatibility, when processing blood,
For example, the decrease in filtration rate over time in blood filtration and the decrease in permeability of solutes that should be treated with P are greatly improved, and the strength of the semipermeable membrane itself is also strong.

本発明で、高分子膜の少なくとも一表面とは、上述のi
!j1シ、生体や血液に接する面を言い、車数透析、血
液濾過、血漿分離、血漿成分分離等では血液、血漿の通
過側の面を言い、特に血漿分離は両面が本発明の構成で
あることが望ましい。
In the present invention, at least one surface of the polymer membrane refers to the above-mentioned i.
! j1shi refers to the surface that comes into contact with living organisms and blood, and in vehicular dialysis, hemofiltration, plasma separation, plasma component separation, etc., refers to the surface on which blood and plasma pass through, and in particular, in plasma separation, both surfaces are the structure of the present invention. This is desirable.

一方向に配向した多数の細長い疎水性領域、親水性領域
とは、各領域が長さ0.02〜4μ程度、巾0.01〜
0.3μ程度の細長い帯状になった疎水性帯、親水性帯
が、長さ方向に社とんどのものが並んだものである。故
に疎水性領域と親水性領域の長さ方向が互いに交じわ)
合う奄のでなく、平行に並んだりするものである。多数
と祉、膜表面の大部分に疎水性領域と親水性領域とが存
在するものである。但し、該両領域の接合面等に細孔が
存在する空間は元号に存在する。
A large number of elongated hydrophobic regions and hydrophilic regions oriented in one direction each have a length of about 0.02 to 4 μm and a width of 0.01 to 4 μm.
Hydrophobic bands and hydrophilic bands each having a length of approximately 0.3 μm are arranged in the lengthwise direction. Therefore, the length directions of the hydrophobic region and hydrophilic region intersect with each other)
They are not rows that match, but are lined up parallel to each other. In most cases, a hydrophobic region and a hydrophilic region exist on most of the membrane surface. However, the space in which pores exist at the joint surface of both regions exists in the era name.

更に本発明の重要なことは、該疎水性領域と親水性領域
がランダムに相互配列していることであり、ランダムと
は該両領域が11表面で一つの規則性も々く、混然一体
になったものである、以上二つの構成は血液処理で重畳
なことである。
Furthermore, what is important about the present invention is that the hydrophobic region and the hydrophilic region are randomly arranged with each other, and "random" means that both regions have a single regularity on the 11 surface and are mixedly integrated. The above two configurations overlap in blood processing.

即ち一方向に配向すること社、血液及び血漿の流れ方向
と一致させることによシ血液濾過、血漿分離での濾過効
率、分離効率に優れ丸ものとなる、又疎水性、親水性領
域がランダムに相互配列は、血液適合性で蛋白質の吸着
、フィブリノ−グア等の発生を防止し、濾過速度、分離
速度の経時低下が改善されるものである、 この半透膜の材料は、既知高分子で、疎水性高分子、親
水性高分子を用いる方が製造上容易であるが、ブロック
共重合体、グラフト更にはポリマーコンプレックス等を
用いてもよい。
In other words, by oriented in one direction, and by matching the flow direction of blood and plasma, it becomes a round product with excellent filtration efficiency and separation efficiency in blood filtration and plasma separation, and the hydrophobic and hydrophilic regions are random. The mutual arrangement is blood compatible, prevents protein adsorption and the generation of fibrinogua, and improves the deterioration of filtration rate and separation rate over time.The material of this semipermeable membrane is made of known polymers. Although it is easier to manufacture using hydrophobic polymers and hydrophilic polymers, block copolymers, grafts, polymer complexes, etc. may also be used.

膜形態は平膜、管状、中空繊維状等いずれでもよいが、
容器に収容したモジュールにするには、容積一定で有効
濾過面積を大きくするには中空線維状が優れているが、
製法上は安価表面から平膜が有利である。
The membrane shape may be flat membrane, tubular, hollow fiber, etc.
In order to make a module housed in a container, hollow fibers are better for increasing the effective filtration area while keeping the volume constant.
In terms of manufacturing method, flat membranes are advantageous because of their inexpensive surface.

製法は、疎水性ポリマーとは通常いわれている疎水性を
有するポリマーで、例えばポリアミド、ポリエステル、
ポリエチレン、ポリプロピレン、ポリカーボネート等、
通常含水率10嘔以下のもので、好ましくは591i以
下である本のと、親水性ポリマーとは通常いわれている
親水性を有するボリマーで、例えはセルロース、ポリビ
ニルアルコール、ポリビニールピロリドン等の水に可溶
性がおったり、含水率10チを越えるものとを溶媒に溶
かしたり、可塑剤を加え溶融したりして、均一な且つ疎
水性ポリマーと親水性ポリマーが完全に混在した溶液、
溶融物となった後與腺する。該製膜時、fB膜方向にド
ラフトを1以上かけることが必須である。製膜後、脱溶
媒、脱可塑剤、更に親水性ポリマーの部分除去により細
孔を形成する。
The manufacturing method uses hydrophobic polymers, which are commonly referred to as hydrophobic polymers, such as polyamides, polyesters,
polyethylene, polypropylene, polycarbonate, etc.
Hydrophilic polymers are generally polymers with hydrophilic properties, such as cellulose, polyvinyl alcohol, polyvinyl pyrrolidone, etc. A homogeneous solution in which a hydrophobic polymer and a hydrophilic polymer are completely mixed can be obtained by dissolving polymers with low solubility or water content exceeding 10 cm in a solvent, or by adding a plasticizer and melting them.
After becoming a molten substance, it becomes a gland. During film formation, it is essential to apply one or more drafts in the direction of the fB film. After film formation, pores are formed by removing the solvent, removing the plasticizer, and then partially removing the hydrophilic polymer.

親水性ポリマーは血液処理に溶出しない工夫が必要で分
子量、混綿の程度、架橋等の熱処理、後処理等を行う場
合がある。
Hydrophilic polymers must be designed to prevent them from eluting during blood treatment, and may be subject to changes in molecular weight, degree of blending, heat treatment such as crosslinking, post-treatment, etc.

中空繊維に成型するには、疎水性ポリマー、親水性ポリ
マーが完全混合した溶液、溶融物を環状紡口から吐出す
る。特に溶液の場合は、中空形成を安定化させるため環
状紡口の中央部分より中空形成剤を注入する。この中空
形成剤は気体又は液体を用いるが、一般に液体がよ多安
定であり、中空を紡口の形状、特に円形に保ち易い。中
空形成剤は溶液等と反応など起さ、ないものであれば特
に限定しない。但し、凝固を早めるには凝固能の^い液
体を選択することになる。
To form hollow fibers, a solution or melt in which a hydrophobic polymer and a hydrophilic polymer are completely mixed is discharged from an annular spinneret. Particularly in the case of a solution, a hollow forming agent is injected from the center of the annular spinneret to stabilize hollow forming. This hollow forming agent uses a gas or a liquid, but liquids are generally more stable and tend to keep the hollow in the shape of the spinneret, particularly circular. The hollow forming agent is not particularly limited as long as it does not react with the solution or the like. However, in order to accelerate coagulation, a liquid with high coagulation ability must be selected.

環状紡口よシ流出し丸流体は、流出方向にドラフトを1
以上、好ましくは1.5以上10程度かけながら中空−
線化する。
The circular fluid flowing out from the annular spindle creates a draft in the direction of the outflow.
Above, preferably 1.5 to 10 while hollow -
Linearize.

環状紡口から中空繊維化性、ドラフトを除き通常の中空
繊維法、乾式、湿式のいずれでμい。その得られた中空
II1維は、脱溶媒、脱可塑剤等の処理を行い、必l!
によっては熱処理等の処理も行う。
It can be made into hollow fibers using a circular spinneret, and can be produced using the usual hollow fiber method, dry or wet, except for drafting. The obtained hollow II1 fibers are treated with solvent removal, deplasticizer, etc.
In some cases, treatments such as heat treatment are also performed.

特に血漿分離や高分子量物質の分離Vctli上記親水
性ポリマーの部分除去である溶出は有効なる手段で製膜
条件と組合せで膜表面、内部の細孔を制御出来る。
Particularly, blood plasma separation, separation of high molecular weight substances, Vctli, and elution, which is the partial removal of the hydrophilic polymer mentioned above, are effective means, and the membrane surface and internal pores can be controlled in combination with membrane forming conditions.

本発明の半透膜性、一般に容器内に収容してモジュール
として使用される、そして、一般に皺牛透膜が平膜では
、血液側を本発明の半透膜のIIにし、中空繊維状の場
合も同一であるように容器に収容したモジュールでなけ
ればならない。
The semipermeable membrane of the present invention is generally used as a module by being housed in a container, and in general, when the semipermeable membrane is a flat membrane, the blood side is the II of the semipermeable membrane of the present invention, and the hollow fiber-like The module must be housed in a container so that it is the same in all cases.

本発明の好ましいモジュールは、被処理液の流入口及び
流出口を有し、F液口を設けた容器に半透膜を収容した
モジエールにおいて、半透膜が高分子膜で、該高分子膜
の少なくとも一表面が、一方向に配向し九多数のlIl
長い疎水性領域及び親水性領域を有し、かつそれらの領
域がランダムに相互配列して々す、容器のF液口は該半
透膜を介して設けられたことを特徴とするモジュールで
ある、第1図、第2図は本発明の半透膜を用い九モジュ
ールを説明するものであって、半透膜が平膜の場合が第
1図、半透膜が中空繊維の場合が第2図である、 図面において、イは半透膜、1及び2は被処理液の導入
口、導出口、[Fl[回収口である。
A preferred module of the present invention is a module in which a semipermeable membrane is housed in a container having an inlet and an outlet for a liquid to be treated and is provided with an F liquid inlet, wherein the semipermeable membrane is a polymer membrane. has at least one surface oriented in one direction and has a large number of lIl
The module is characterized in that it has a long hydrophobic region and a hydrophilic region, and these regions are randomly arranged with each other, and the F liquid port of the container is provided through the semipermeable membrane. , Figures 1 and 2 illustrate nine modules using the semipermeable membrane of the present invention. Figure 1 shows the case where the semipermeable membrane is a flat membrane, and Figure 1 shows the case where the semipermeable membrane is a hollow fiber. In the drawing, A is a semipermeable membrane, 1 and 2 are an inlet and an outlet for the liquid to be treated, and a collection port [Fl].

本発明は、血液濾過、血漿分離等の血液処理だけでなく
、血液と接触容器、輸送管、血液回路等にも利用出来る
。更らにカーラーチル々ど生体材料として利用が可能で
ある。又、カチオン、アニオン等荷電性溶液の処理、例
えば塗装廃液、電解液等の処理膜として利用が考えられ
る。
The present invention can be used not only for blood processing such as blood filtration and plasma separation, but also for blood contact containers, transport pipes, blood circuits, etc. Furthermore, curlers can be used as biomaterials. Further, it can be considered to be used as a treatment membrane for treating charged solutions such as cations and anions, such as coating waste liquids and electrolytes.

実施例1 アクリロニトリル91.59G、アクリル酸メチル8.
0 %、メタクリルスルホ/酸ソーダ0.5 %のポリ
アクリロニトリル共重合体とポリビニールピロリドンを
等量、67チ硝酸水溶液に溶解し16.翫vt−ポリマ
ー濃度に調製し、−10Cで濾過脱泡後、環状勢口に1
.5m/”送液すると同時に環状紡口中央部分に水1.
2+d/−を注入した。中央部分に水を包み込んだ中空
繊維を・ドラフト1.5で凝固浴に導き、凝固させ、3
0W!/−で巻取った。凝固浴キ1チ硝酸30Cの水で
ある、 得られた中空繊維は内径190μ、外径280μで、中
空繊維の内表面を7,000倍走f型電子顕微鏡で観察
すると、長さ0.1〜3.0μ、巾0.05〜0.2μ
からなるポリアクリロニトリル共重合体とポリビニルピ
ロリド/の集合体がある。
Example 1 Acrylonitrile 91.59G, methyl acrylate 8.
16. Dissolve equal amounts of polyacrylonitrile copolymer containing 0.5% methacryl sulfo/sodium acid and polyvinyl pyrrolidone in an aqueous solution of 67 nitric acid. After adjusting the concentration of the polymer to VT-polymer and filtering and defoaming at -10C, add 1 to the annular opening.
.. At the same time, 1.5 m/" of water is pumped into the center of the annular spindle.
2+d/- was injected. The hollow fiber with water wrapped in the center part is introduced into a coagulation bath with a draft of 1.5 and coagulated,
0W! It was wound up with /-. The coagulation bath was 30C of nitric acid water.The obtained hollow fibers had an inner diameter of 190μ and an outer diameter of 280μ, and when the inner surface of the hollow fibers was observed with a 7,000x scanning f-type electron microscope, the length was 0.1μ. ~3.0μ, width 0.05~0.2μ
There is an aggregate of polyacrylonitrile copolymer and polyvinylpyrrolid.

得られた中穿鰺維を容器に収容し、モジュールとし、血
液濾過した結果、限外p過速度ti20j/wL宜・H
r−11Hgを得た。限外か過速度の5時間までの低下
率Fl5チであった。
The obtained medium perforated mackerel fibers were placed in a container, used as a module, and blood filtrated.
r-11Hg was obtained. The rate of decrease of the limit or overspeed up to 5 hours was Fl5ch.

実施例2 ポリエチレンテレフタレートトポリビニルアル”−ルを
等m、ヘキサフルオロイソプロパツールに15wtチ濃
度に溶解し、濾過脱泡後、ガラス賽上に0.5鶴厚さで
流延速度20m/−と高速で流延することで流延膜表面
を一方向に走行させる2その後直ちに水に浸漬、凝固し
半透膜を得た。
Example 2 Polyethylene terephthalate topolyvinyl alcohol was dissolved in hexafluoroisopropanol to a concentration of 15 wt, and after filtration and defoaming, it was cast onto a glass die to a thickness of 0.5 m/- at a speed of 20 m/-. The cast film was cast at high speed to run in one direction on the surface of the cast film.2 Immediately thereafter, it was immersed in water and coagulated to obtain a semipermeable film.

得られた膜表面は一方向に多数の長さ0.02〜4μ、
中0.01〜0.2μのポリエチレンテレフタレートと
ポリビニルアルコールの集合体領域が存在し、空孔率5
0−の細孔0.02〜0.05μが存在した。
The obtained membrane surface has many lengths of 0.02 to 4μ in one direction,
There is an aggregate region of polyethylene terephthalate and polyvinyl alcohol with a size of 0.01 to 0.2μ, and the porosity is 5.
There were 0.02-0.05μ pores.

得られた膜をモジュールに組み、血f(生新鮮血T P
 = 7.Of/dt%at−41)濾過を行った結果
、限外濾過速度24.5 wl/ m′−Tk ・ll
Hg t−得、限外濾過速度の4時間までの低下率は8
−であった。又、血液V返血後1を生食で返血後、5チ
グルタルアルデヒド固定を行い、乾燥後走査型電子顕微
鏡で表面に血球の付着は観察される。フィブリノーゲン
等の網状固着物は観察されなかった。
The obtained membrane was assembled into a module, and blood f (fresh blood T P
= 7. Of/dt%at-41) As a result of filtration, the ultrafiltration rate was 24.5 wl/m'-Tk ・ll
Hg t-obtained, the rate of decrease in ultrafiltration rate up to 4 hours was 8
-It was. In addition, after returning the blood V, 1 was returned with saline, 5 was fixed with tiglutaraldehyde, and after drying, the adhesion of blood cells to the surface was observed using a scanning electron microscope. No reticular deposits such as fibrinogen were observed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本発明の半透膜を用いたモジュールの
説明図で、第1図は半透膜が平膜の場合、第2図は半透
膜が中空線維の場合を示す。 イ・・・・・・・・・半透膜 1・・・・・−・・道入
口2・・・・−・・・・導出口 5・・・・・・・・・
回収口第1図 第2図
Figures 1 and 2 are explanatory diagrams of a module using the semipermeable membrane of the present invention. Figure 1 shows the case where the semipermeable membrane is a flat membrane, and Figure 2 shows the case where the semipermeable membrane is a hollow fiber. . A... Semipermeable membrane 1... Entrance 2... Outlet 5...
Collection port Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 1)高分子膜の少なくとも一表面が、一方向に配向した
多数の細長い疎水性領域及び親水性領域を有し、かつそ
れらの領域がランダムに相互配列してなる半透膜。 2)高分子膜の少なくとも一表面が、一方向に配向した
多数の細長い疎水性領域及び親水性領域を有し、かつそ
れらの領域がランダムに相互配列してなる半透膜を容器
に収容したモジュール。
[Claims] 1) A semi-permeable polymer membrane in which at least one surface of the polymer membrane has a large number of elongated hydrophobic regions and hydrophilic regions oriented in one direction, and these regions are randomly arranged with each other. film. 2) A semipermeable membrane in which at least one surface of the polymer membrane has a large number of elongated hydrophobic regions and hydrophilic regions oriented in one direction, and in which these regions are randomly arranged with each other, was housed in a container. module.
JP56190676A 1981-11-30 1981-11-30 Semi-permeable membrane and module using same Granted JPS5892411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56190676A JPS5892411A (en) 1981-11-30 1981-11-30 Semi-permeable membrane and module using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56190676A JPS5892411A (en) 1981-11-30 1981-11-30 Semi-permeable membrane and module using same

Publications (2)

Publication Number Publication Date
JPS5892411A true JPS5892411A (en) 1983-06-01
JPH0143562B2 JPH0143562B2 (en) 1989-09-21

Family

ID=16262026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56190676A Granted JPS5892411A (en) 1981-11-30 1981-11-30 Semi-permeable membrane and module using same

Country Status (1)

Country Link
JP (1) JPS5892411A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6227005A (en) * 1985-07-27 1987-02-05 Choichi Furuya Gas permeable membrane
CN114653229A (en) * 2022-03-17 2022-06-24 福州福龙膜科技开发有限公司 Preparation method of PVDF hydrophilic membrane

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4971076A (en) * 1972-09-21 1974-07-09
JPS5170190A (en) * 1974-12-17 1976-06-17 Mitsubishi Petrochemical Co KOTOKASEIMAKU
JPS5424987A (en) * 1977-07-27 1979-02-24 Teijin Ltd Photopolymerizable composition
JPS551887A (en) * 1979-04-09 1980-01-09 Toyobo Co Ltd Preparing membrane by removing component from multiple component material
JPS555773A (en) * 1978-06-30 1980-01-16 Sekisui Chem Co Ltd Semipermeable membraneous substance
JPS5676408A (en) * 1979-11-27 1981-06-24 Toyo Soda Mfg Co Ltd Block copolymer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4971076A (en) * 1972-09-21 1974-07-09
JPS5170190A (en) * 1974-12-17 1976-06-17 Mitsubishi Petrochemical Co KOTOKASEIMAKU
JPS5424987A (en) * 1977-07-27 1979-02-24 Teijin Ltd Photopolymerizable composition
JPS555773A (en) * 1978-06-30 1980-01-16 Sekisui Chem Co Ltd Semipermeable membraneous substance
JPS551887A (en) * 1979-04-09 1980-01-09 Toyobo Co Ltd Preparing membrane by removing component from multiple component material
JPS5676408A (en) * 1979-11-27 1981-06-24 Toyo Soda Mfg Co Ltd Block copolymer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6227005A (en) * 1985-07-27 1987-02-05 Choichi Furuya Gas permeable membrane
JPH0415016B2 (en) * 1985-07-27 1992-03-16 Choichi Furuya
CN114653229A (en) * 2022-03-17 2022-06-24 福州福龙膜科技开发有限公司 Preparation method of PVDF hydrophilic membrane

Also Published As

Publication number Publication date
JPH0143562B2 (en) 1989-09-21

Similar Documents

Publication Publication Date Title
KR100432464B1 (en) Polysulfone Hollow Fiber Semipermeable Membrane
AU652912B2 (en) Novel high flux hollow fiber membrane
US6042783A (en) Hollow yarn membrane used for blood purification and blood purifier
WO2002087735A1 (en) Asymmetric porous films and process for producing the same
CN1087841A (en) Polysulfone-based hollow fiber membrane and preparation method thereof
US6355730B1 (en) Permselective membranes and methods for their production
Su et al. Polyethersulfone hollow fiber membranes for hemodialysis
JP4265701B2 (en) Polysulfone porous membrane
EP0750936B1 (en) Permselective membranes and methods for their production
JP3617194B2 (en) Permselective separation membrane and method for producing the same
RU2108144C1 (en) Cellulose acetate semipermeable diaphragm in the form of hollow fibre, method of manufacture of hollow-fibre semipermeable cellulose acetate diaphragm, hemodialyzer and apparatus for treatment of extracorporeal blood
JP3966481B2 (en) Semipermeable membrane
JP3714686B2 (en) Polysulfone-based hollow fiber membrane and method for producing the same
JP3548354B2 (en) Hollow fiber membrane and method for producing the same
JP2519831B2 (en) Method for producing charged separation membrane
JP3314861B2 (en) Hollow fiber membrane
JPH05317664A (en) Porous hollow fiber membrane
JPH053335B2 (en)
JPS5892411A (en) Semi-permeable membrane and module using same
JPH0194902A (en) Polysulfone hollow fibrous membrane and production thereof
JPS63130103A (en) Polyacrylonitrile-base semipermeable membrane and manufacturing thereof
JPH09308685A (en) Hollow fiber membrane for blood purification and blood purifying device
JPS5814906A (en) Permeable membrane
Ran et al. Polyethersulfone fiber
JP3688109B2 (en) Blood purification membrane