JPS5891139A - Manufacture of lead-calcium-aluminum alloy - Google Patents
Manufacture of lead-calcium-aluminum alloyInfo
- Publication number
- JPS5891139A JPS5891139A JP57198790A JP19879082A JPS5891139A JP S5891139 A JPS5891139 A JP S5891139A JP 57198790 A JP57198790 A JP 57198790A JP 19879082 A JP19879082 A JP 19879082A JP S5891139 A JPS5891139 A JP S5891139A
- Authority
- JP
- Japan
- Prior art keywords
- calcium
- aluminum
- lead
- alloy
- aluminum alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C11/00—Alloys based on lead
- C22C11/02—Alloys based on lead with an alkali or an alkaline earth metal as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Vessels And Coating Films For Discharge Lamps (AREA)
- Connection Of Batteries Or Terminals (AREA)
- Conductive Materials (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
- Cell Electrode Carriers And Collectors (AREA)
Abstract
Description
【発明の詳細な説明】
本発、明は鉛−カルシウム−アルミニウム合金を比較的
低温でかつ不活性気体またはフラックスの使用に頼るこ
となく製造する方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing lead-calcium-aluminum alloys at relatively low temperatures and without resorting to the use of inert gases or fluxes.
アルミニウムは、合金の再溶解中またはその後の溶融金
属の鋳造及び取扱い中におけるカルシウムの酸化を防止
するために鉛−カルシウム合金や鉛−力ルシウムー錫合
金に応々にして添加される。Aluminum is sometimes added to lead-calcium and lead-lucium tin alloys to prevent oxidation of the calcium during remelting of the alloy or during subsequent casting and handling of the molten metal.
鉛−カルシウム−錫合金中のアルミニウムのこのような
使用は米国特許第4.125.690号明細書に記載さ
れている。Such use of aluminum in lead-calcium-tin alloys is described in U.S. Pat. No. 4,125,690.
アルミニウムを船中に合金化する普通の方法は鉛をアル
ミニウムの融点(661℃)よシ高い温度に加熱溶解す
ることを必要とする。この温度で、アルミニウムは溶融
し容易に鉛と合金化され、酸化による多少の損失を伴う
。アルミニウムの融点よシ低温では、本来ならばアルミ
ニウムは少量は溶解可能であるにもかかわらず、外部の
粘着2、性酸妨
化被膜がアルミニウムの鉛中への溶解を韓げる。The common method of alloying aluminum into ships requires heating and melting the lead to a temperature above the melting point of aluminum (661°C). At this temperature, aluminum melts and easily alloys with lead, with some loss due to oxidation. Although a small amount of aluminum can originally be dissolved at temperatures lower than the melting point of aluminum, the external adhesive 2 and acid-blocking coating slow down the dissolution of aluminum into lead.
従って、アルミニウムと鉛は660℃よシ低温では効果
的に合金とはなシえない。Therefore, aluminum and lead cannot effectively form an alloy at temperatures lower than 660°C.
8
カルシウムは一般に酸化を鯵ぐために不活性気体または
溶解した塩被覆に保膿された状態で船中に合金化される
。塩の被覆を溶融状態に保つためまたはPb3Ca化合
物の鉛中への完全な溶解を達成するために高温が必要で
ある。この方法によると、1〜2□%のカルシウムを含
有するマスターアロイが通常製造される。次いで、マス
ターアロイヲ鉛または鉛−アルミニウム合金に添加する
ことによシ最終合金製品が製造される。8 Calcium is generally alloyed in ships under an inert gas or dissolved salt coating to prevent oxidation. High temperatures are required to keep the salt coating molten or to achieve complete dissolution of the Pb3Ca compound into the lead. According to this method, master alloys containing 1-2% calcium are usually produced. The final alloy product is then produced by adding the master alloy to the lead or lead-aluminum alloy.
カルシウム及びアルミニウムを船中に合金化する現在の
手段にはいくつかの問題が関係している。Several problems are associated with current means of alloying calcium and aluminum in ships.
第一に、鉛を合金化するのに使用する鍋はアルミニウム
の効率荊な添加を可能にするために6600Cよシ高温
に加熱されなければならない。このことは合金化用鍋の
寿命を著しく低下させる。更に、1〜2%のマスターア
ロイを製造する際のカルシウムの回収は、不活性気体ま
たは塩の被覆があるにもかかわらず、合金化及び鋳込み
中リカルンウムの酸化のために通常90%未満である。First, the pot used to alloy the lead must be heated to temperatures as high as 6600C to enable efficient addition of aluminum. This significantly reduces the life of the alloying pan. Additionally, calcium recovery when producing 1-2% master alloys is typically less than 90% due to oxidation of the licarium during alloying and casting, despite the presence of inert gas or salt coatings. .
最後に。lastly.
船中のアルミニウムの溶解度が限られているために、ア
ルミニウムをカルシウム−鉛マスターアロイ中に直接合
金化することはで□きない。Due to the limited solubility of aluminum in ships, it is not possible to alloy aluminum directly into the calcium-lead master alloy.
本発明において、カルシウム及びアルミニウムを鉛合金
と合金化する新規な直接方法が見出された。この方法は
、不活性雰囲気またはフラックス被覆の使用を避け、カ
ルシ・、ム及びアルミニウムの100%に近い回収を与
え、かつ、合金化用鍋の損傷が無視できる低温で操作可
能である。しかも、温度要件が低下するので燃料条件も
低下する。In the present invention, a new direct method of alloying calcium and aluminum with lead alloys has been found. This process avoids the use of inert atmospheres or flux coatings, provides near 100% recovery of calcium, aluminum and aluminum, and can be operated at low temperatures with negligible damage to the alloying pan. Moreover, because the temperature requirements are reduced, the fuel requirements are also reduced.
従って本発明は、鉛を少なくとも545°C(lO20
啼)に加熱し、そして、一般には約73重量%のカルシ
ウム及び約27重量%のアルミニ、ラムを含有する共晶
カルシウム−アルミニウム合金を加熱した船中に攪拌混
合することを含むカルシウム及びアルミニウムを船中に
合金化する方法を提供する。Therefore, the present invention provides a method for heating lead at least at 545°C (lO20
and stirring mix into a heated vessel a eutectic calcium-aluminum alloy containing generally about 73% by weight calcium and about 27% by weight aluminum, ram. Provides a method for alloying in ships.
以下、本発明の詳細な説明する。The present invention will be explained in detail below.
本発明は鉛−カルシウムマスターアロイヲ使用すること
なく、かつ比較的低温で鉛−カルシウム−アルミニウム
合金を直接製造する方法に関する。The present invention relates to a method for directly producing lead-calcium-aluminum alloys at relatively low temperatures without using lead-calcium master alloys.
この方法に−より、合金元素の損失が最小にされる。This method minimizes the loss of alloying elements.
本発明は、好ましくは少なくとも約545°C(102
0°F+)の温度にされた溶融した鉛に約73%のカル
シウム及び約27%のアルミニウムを含有する共晶カル
シウム−アルミニウム合金を添力b−することを含む。The present invention preferably operates at least about 545°C (102°C).
The process involves adding a eutectic calcium-aluminum alloy containing about 73% calcium and about 27% aluminum to molten lead brought to a temperature of 0°F+.
この共晶体は545℃(1020’F)で溶解するので
、アルミニウムの融点より高温、すなわち660℃よシ
高温に頼る必要はない。カルシウム−アルミニウム共晶
体は545℃(1020’F)より低温で、例えば、4
80〜’C(900’F)程度の低温で合金化すること
が可能であるが、アルミニウムの実質的な損失が起る。This eutectic melts at 545°C (1020'F), so there is no need to rely on temperatures above the melting point of aluminum, ie, higher than 660°C. Calcium-aluminum eutectics can be produced at temperatures below 545°C (1020'F), e.g.
Although it is possible to alloy at temperatures as low as 80-900'F, substantial loss of aluminum occurs.
共晶合金中のアルミニウムが合金化中における酸化から
カルシウムを保論する。かぐして、本発明方法はカルシ
ウム及びアルミニウムの高水準の回収を可能にする。Aluminum in eutectic alloys protects calcium from oxidation during alloying. As a result, the process of the invention allows high levels of recovery of calcium and aluminum.
本発明方法にて使用した共晶合金はこの分野、において
公知であり、その製造は本発明の一部ではない。典型的
−例として共晶合金は単にアルミニウムを溶解し、次い
で、カルシウムを添加することにより製造できる。The eutectic alloys used in the method of the invention are known in the art and their manufacture is not part of the invention. Typically, eutectic alloys can be made by simply melting aluminum and then adding calcium.
共晶合金は正確に73%のカルシウム及び27%のアル
ミニウムを含有する必要はない。一方または両方の物質
について数パーゼント分離れた合金の使用は、この逸脱
が本発明方法が有効である温度を著しく高めることを必
要としないという条件で本発明の範囲に包含される。同
様に、操作温度を実質的に高めることを要求しない他の
物質もこの共晶合金中に存在してもよい。The eutectic alloy does not need to contain exactly 73% calcium and 27% aluminum. The use of alloys separated by a few percentage points for one or both materials is within the scope of the invention, provided that this deviation does not require a significant increase in the temperature at which the method of the invention is effective. Similarly, other materials may be present in the eutectic alloy that do not require a substantial increase in operating temperature.
以下、実施例によシ本発明を例示する。The present invention will now be illustrated by way of examples.
実施例
純粋な鉛182.3に9 (492ポンド)を鋳鉄ポッ
ト中で溶解し、590°C(1100°F)まで加熱し
た。平均72.4%のカルシウム及び25.3%(7)
7 ルミニウムを含有するカルシウム−アルミニウム
”?スター70イ(Pfizer、Inc、、Mate
rials。EXAMPLE 492 lbs. of pure lead was melted in a cast iron pot and heated to 590°C (1100°F). Average of 72.4% calcium and 25.3% (7)
7 Calcium-aluminum containing aluminum “?Star 70i” (Pfizer, Inc., Mate
Rials.
Pigments and Metals Divis
ion、Wallingfo’rd。Pigments and Metals Divis
ion, Walling for'rd.
Conn、製)463fを加熱した鉛に攪拌添加した。463f (manufactured by Conn.) was stirred and added to the heated lead.
得られた鉛合金をインゴットに注入し、試料を採取した
。合金元素の化学分析及び損失は以下の通りであった。The obtained lead alloy was poured into an ingot and a sample was taken. Chemical analysis and loss of alloying elements were as follows.
試料重量% 期待重量% 損失重量 損失率Ca O
,1790,182,0031,6%At O,0’
54 0.064 .010 15.6%C
a−Atマスターアロイ中のアルミニウムはカルシウム
を保護し、その損失をほぼなくした。Sample weight% Expected weight% Loss weight Loss rate Ca O
,1790,182,0031,6%At O,0'
54 0.064. 010 15.6%C
Aluminum in the a-At master alloy protected calcium and nearly eliminated its loss.
代理人 弁理士 秋 沢 政 光 他1名Agent Patent Attorney Masaaki Aki Sawa 1 other person
Claims (1)
鉛中に攪拌混合させる ことを特徴とする鉛−カルシウム−アルミニウム合金の
製造方法。 (21カルシウム−アルミニウム合金が73%のカルシ
ウム及び27%のアルミニウムの平均含量を有する特許
請求の範囲第(1)項記載の。方法。 (3) 鉛を少fxくとも545°C(1020’F
) K加熱する特許請求の範囲第(11項記載の方法。[Claims] 0) A lead method comprising: a) melting lead; b) heating the melted lead; and then C) stirring and mixing a eutectic calcium-aluminum alloy into the heated molten lead. Method for producing calcium-aluminum alloy. (21) A method according to claim 1, wherein the calcium-aluminum alloy has an average content of 73% calcium and 27% aluminum. F
) K heating method according to claim 11.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US06/321,051 US4439398A (en) | 1981-11-13 | 1981-11-13 | Method of alloying calcium and aluminum into lead |
US321051 | 1994-10-05 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5891139A true JPS5891139A (en) | 1983-05-31 |
JPS6035418B2 JPS6035418B2 (en) | 1985-08-14 |
Family
ID=23248975
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57198790A Expired JPS6035418B2 (en) | 1981-11-13 | 1982-11-12 | Manufacturing method of lead-calcium-aluminum alloy |
Country Status (9)
Country | Link |
---|---|
US (1) | US4439398A (en) |
EP (1) | EP0079765B1 (en) |
JP (1) | JPS6035418B2 (en) |
AT (1) | ATE18578T1 (en) |
AU (1) | AU534819B2 (en) |
BR (1) | BR8206607A (en) |
CA (1) | CA1190416A (en) |
DE (1) | DE3269885D1 (en) |
MX (1) | MX165728B (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4627961A (en) * | 1985-09-04 | 1986-12-09 | Pfizer Inc. | Calcium-aluminum briquettes |
US4808376A (en) * | 1987-08-10 | 1989-02-28 | The Doe Run Company | Method of alloying aluminum and calcium into lead |
US5547634A (en) * | 1994-05-09 | 1996-08-20 | Timminco Limited | Method for adding aluminum and calcium to molten lead |
BR9508848A (en) * | 1994-09-20 | 2002-04-16 | Timminco Ltd | Method and apparatus for adding aluminum and calcium to molten lead |
CN101994027A (en) * | 2010-12-10 | 2011-03-30 | 株洲冶炼集团股份有限公司 | Direct production method for lead calcium rare earth alloy |
RU2514500C1 (en) * | 2013-01-10 | 2014-04-27 | Открытое акционерное общество "Тюменский аккумуляторный завод" | Lead-based alloy |
CN105200294B (en) * | 2015-10-27 | 2017-08-29 | 长兴华源冶金材料有限公司 | A kind of battery pole plates calcium Al-Pb alloy and preparation method thereof |
TWI796541B (en) * | 2018-12-31 | 2023-03-21 | 南韓商東進世美肯股份有限公司 | Positive photosensitive resin composition, method for forming a pattern of a display device using this and a display device comprising a cured product thereof |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE381527C (en) * | 1916-09-14 | 1923-09-21 | Metallbank | Process for the production of lead alloys |
US1745729A (en) * | 1925-07-03 | 1930-02-04 | Armen H Tashjian | Structural element and structure composed thereof |
DE513623C (en) * | 1926-04-27 | 1930-11-29 | Martin W Neufeld Dr Ing | Lead bearing metal |
US1804883A (en) * | 1926-05-17 | 1931-05-12 | Mathesius Walther | Alloy metal for bearings |
US1745721A (en) * | 1927-09-16 | 1930-02-04 | S & T Metal Company | Bearing metal |
US1703212A (en) * | 1927-12-23 | 1929-02-26 | S & T Metal Company | Antifriction metal |
US1791148A (en) * | 1928-08-02 | 1931-02-03 | S & T Metal Company | Lead alloy |
US1808793A (en) * | 1928-08-02 | 1931-06-09 | S & T Metal Company | Bearing metal |
US1813324A (en) * | 1928-11-28 | 1931-07-07 | S & T Metal Company | Lead alloy |
US1815528A (en) * | 1929-12-02 | 1931-07-21 | S & T Metal Company | Lead alloy |
US1916496A (en) * | 1930-10-24 | 1933-07-04 | S & T Metal Company | Method of making lead alloys |
US2031486A (en) * | 1932-06-11 | 1936-02-18 | Calloy Ltd | Process for the production of alloys of the alkaline earth metals with lead or other metals |
GB433653A (en) * | 1934-02-01 | 1935-08-19 | S & T Metal Company | Improvement in lead alloy bearing metal |
FR772826A (en) * | 1934-02-01 | 1934-11-07 | S & T Metal Company | Hardened lead alloy |
US2210504A (en) * | 1938-08-15 | 1940-08-06 | Robert J Shoemaker | Lead alloy bearing metal |
US2290296A (en) * | 1939-02-20 | 1942-07-21 | American Lurgi Corp | Process for preparing lead alloys |
FR947953A (en) * | 1940-07-24 | 1949-07-19 | Nat Lead Co | Improvements to hardened lead alloys |
US3741754A (en) * | 1971-04-29 | 1973-06-26 | States Smelting Refining & Min | Method for making metal alloys |
GB1402099A (en) * | 1971-12-15 | 1975-08-06 | Lucas Batteries Ltd | Battery plate grids for lead-acid batteries |
GB1454401A (en) * | 1973-04-07 | 1976-11-03 | Lucas Batteries Ltd | Battery plate grids for lead-acid batteries |
GB1458016A (en) * | 1973-06-06 | 1976-12-08 | Lucas Batteries Ltd | Manufacture of ternary alloys of lead calcium and aluminium |
US4125690A (en) * | 1976-03-05 | 1978-11-14 | Chloride Group Limited | Battery electrode structure |
US4233070A (en) * | 1978-05-26 | 1980-11-11 | Chloride Group Limited | Lead alloys for electric storage battery |
-
1981
- 1981-11-13 US US06/321,051 patent/US4439398A/en not_active Expired - Lifetime
-
1982
- 1982-10-28 CA CA000414378A patent/CA1190416A/en not_active Expired
- 1982-10-29 AU AU89895/82A patent/AU534819B2/en not_active Ceased
- 1982-11-11 MX MX007918A patent/MX165728B/en unknown
- 1982-11-11 DE DE8282306008T patent/DE3269885D1/en not_active Expired
- 1982-11-11 AT AT82306008T patent/ATE18578T1/en not_active IP Right Cessation
- 1982-11-11 EP EP82306008A patent/EP0079765B1/en not_active Expired
- 1982-11-12 BR BR8206607A patent/BR8206607A/en not_active IP Right Cessation
- 1982-11-12 JP JP57198790A patent/JPS6035418B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
AU534819B2 (en) | 1984-02-16 |
AU8989582A (en) | 1983-05-26 |
EP0079765B1 (en) | 1986-03-12 |
DE3269885D1 (en) | 1986-04-17 |
BR8206607A (en) | 1983-10-04 |
CA1190416A (en) | 1985-07-16 |
MX165728B (en) | 1992-12-02 |
EP0079765A1 (en) | 1983-05-25 |
ATE18578T1 (en) | 1986-03-15 |
JPS6035418B2 (en) | 1985-08-14 |
US4439398A (en) | 1984-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1309870C (en) | Blanketing atmosphere for molten aluminum-lithium alloys or pure lithium | |
JPS5891139A (en) | Manufacture of lead-calcium-aluminum alloy | |
US4451430A (en) | Method of producing copper alloy by melting technique | |
CA1175661A (en) | Process for aluminothermic production of chromium and chromium alloys low in nitrogen | |
US2642358A (en) | Cerium base alloy | |
US2267298A (en) | Method of producing highly pure manganese titanium alloys | |
US3355281A (en) | Method for modifying the physical properties of aluminum casting alloys | |
JPS61250144A (en) | Magnesium alloy for casting | |
EP0343012B1 (en) | Magnesium-calcium alloys for debismuthizing lead | |
JP2926280B2 (en) | Rare earth-iron alloy production method | |
US2262105A (en) | Flux for use in the treatment of light metal | |
US2686946A (en) | Refining beryllium in the presence of a flux | |
US3434825A (en) | Process for purifying copper base alloys | |
JPS6158532B2 (en) | ||
RU2102495C1 (en) | Metallothermal reaction mixture | |
US2742355A (en) | Method of producing magnesium base alloys | |
US2138459A (en) | Manufacture of alloys | |
SU949016A1 (en) | Composition for salt heating bath | |
RU2675709C9 (en) | Method of obtaining magnesium-zinc-yttrium ligature | |
US2474538A (en) | Alloying manganese with magnesium | |
JPS5633441A (en) | Manufacture of heat-resistant electrically-conductive aluminum alloy | |
SU534512A1 (en) | Ligature | |
US2168129A (en) | Method of making alloys of copper and nickel | |
RU2061078C1 (en) | Process of production of alloys based on rare-earth metals, scandium and yttrium | |
SU1060695A1 (en) | Flux for treating aluminium alloys |