JPS5891082A - Heat radiative ceramic coating composition and use - Google Patents

Heat radiative ceramic coating composition and use

Info

Publication number
JPS5891082A
JPS5891082A JP56187695A JP18769581A JPS5891082A JP S5891082 A JPS5891082 A JP S5891082A JP 56187695 A JP56187695 A JP 56187695A JP 18769581 A JP18769581 A JP 18769581A JP S5891082 A JPS5891082 A JP S5891082A
Authority
JP
Japan
Prior art keywords
weight
parts
furnace
coating composition
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56187695A
Other languages
Japanese (ja)
Other versions
JPS5852952B2 (en
Inventor
市川統五郎
照井邦宏
船橋一富
村瀬光司
中村洋一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MITSUMARU KASEI KOGYO KK
Original Assignee
MITSUMARU KASEI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MITSUMARU KASEI KOGYO KK filed Critical MITSUMARU KASEI KOGYO KK
Priority to JP56187695A priority Critical patent/JPS5852952B2/en
Publication of JPS5891082A publication Critical patent/JPS5891082A/en
Publication of JPS5852952B2 publication Critical patent/JPS5852952B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、熱放射セラミック組成物並びにこのものを熱
放射特性を有する工業用加熱炉の炉内部(即ち、炉内壁
耐火材および炉内金属製構造物)の被覆物として用いる
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a heat-radiating ceramic composition and a coating material for the interior of an industrial heating furnace (i.e., the refractory wall of the furnace and the metal structure inside the furnace) having heat-radiating properties. Regarding the method used as

従来から、金属面に被覆する耐熱塗料並びに熱放射全利
用する炉内壁面]人材に被覆する組成物は知られている
BACKGROUND ART Heat-resistant paints for coating metal surfaces and compositions for coating internal furnace wall surfaces that make full use of heat radiation have been known.

更にまた炉内金属製構造物を用い間接的な加熱処理を行
う場合、炉内壁耐火材の吸収、再放射全白−卜せしめ、
かつ受熱面の炉内金属製構造物の熱伝導性吸収、再放射
性をも高めなければならない事は公知の事実である。し
かし従来の熱放射特性を持つ被覆物は、炉内金属製構造
物(て被覆しても接着不良を起1〜で剥落する。そのた
め加熱炉内壁しか被覆できず、その結果炉内構造物表面
から吸収され、該構造物壁全伝導されそして該構造物内
部に置かれた被加熱物−ヒに再放射される熱エネルギー
を充分に得ることができない。
Furthermore, when indirect heat treatment is performed using a metal structure inside the furnace, absorption of the refractory material on the inside wall of the furnace, re-emission,
It is also a well-known fact that the thermal conductivity, absorption and re-radiation properties of the metal structures in the furnace on the heat-receiving surface must also be improved. However, conventional coatings with heat radiation properties cause poor adhesion and peel off after 1~ even if they are coated on the metal structures inside the furnace.Therefore, only the inner walls of the heating furnace can be coated, and as a result, the surfaces of the metal structures inside the furnace It is not possible to obtain sufficient thermal energy that is absorbed from the structure, conducted through the walls of the structure, and re-radiated to the heated object placed inside the structure.

従って、本発明の課題は、熱伝導性、耐熱性および熱放
射特性が良好であるだけでなく、加熱、冷却による金属
の膨張、収縮に追従する密着性もU好な熱放射セラミッ
ク組成物全見出すことである。
Therefore, the object of the present invention is to create a heat-radiating ceramic composition that not only has good thermal conductivity, heat resistance, and heat radiation characteristics, but also has good adhesion that follows the expansion and contraction of metal due to heating and cooling. It's about finding out.

この課題は、研究の結果、下記の組成物によって解決で
きた。
As a result of research, this problem could be solved by the following composition.

a)40〜75重t%の熱放射材としての炭化珪素、 b)15〜405〜40重 量部珪素3・〜20重歌部、燐酸塩5〜20重着部、酸
化クロム2〜10重量 部、炭化タンタル2〜10重電部およ びアルミニウム粉末5〜20重敞部よ り成る(但し、これらの化合物の合計 は常に100重量部である) 熱放射助材並びにバインダーおよび C)10〜35重敵係の、 酸化アルミニウム1〜10重量部、ガ ラス粉末5〜15重敞部、酸化ジルコ ニウム3〜15重量部、二酸化珪素1 〜10重量部、酸化マグネシウム1〜 10重量部および酸化鉄1〜10重歌 部より成る(但し、これらの化合物の 合計は常に100重喰部である。) 密着性や塗膜量結合強度を高める添加剤より成りそして
成分a)、b)およびC)の合計が100重@係である
ことを特徴とする、熱放射セラミック被覆組成物。
a) 40-75% by weight of silicon carbide as a heat radiating material, b) 15-405-40 parts by weight silicon 3-20 parts, phosphate 5-20 parts, chromium oxide 2-10 parts by weight C) 2 to 10 parts of tantalum carbide and 5 to 20 parts of aluminum powder (however, the sum of these compounds is always 100 parts by weight), a heat radiation aid and a binder, and C) 10 to 35 parts of aluminum powder. 1 to 10 parts by weight of aluminum oxide, 5 to 15 parts of glass powder, 3 to 15 parts of zirconium oxide, 1 to 10 parts of silicon dioxide, 1 to 10 parts of magnesium oxide, and 1 to 10 parts of iron oxide. (However, the total of these compounds is always 100 parts.) Consists of additives that increase adhesion and coating bond strength, and the sum of components a), b) and C) 1. A thermally emissive ceramic coating composition, characterized in that it has a 100% weight ratio.

a)成分の熱放射材としての炭化珪素は、放射率が特に
太き((20−800°Cの温度で、全放射率0.92
 )、その使用量は成分a)、b)およびC)(以下、
全成分と略す。)の合計の40〜75重1t%の範囲に
ある必要がある。これが75重険係より多いと、該組成
物を被覆物とした時に特に金属の熱膨張率への追従が困
雑になり被覆物剥落の原因となる。またこれが40重重
量上り少なくなると、被覆物の熱放射性並びに熱伝導特
性が著しく劣り、所望の放射エネルギーを得ることが出
来ない。
Silicon carbide as the heat radiating material of component a) has a particularly high emissivity (at a temperature of 20-800°C, the total emissivity is 0.92
), the amounts used are components a), b) and C) (hereinafter,
Abbreviated as all ingredients. ) must be in the range of 40 to 75 1t% of the total weight. If the number is more than 75, it becomes difficult to follow the coefficient of thermal expansion of metal, especially when the composition is used as a coating, causing the coating to peel off. If the weight is increased by 40% or less, the thermal radiation properties and thermal conductivity of the coating will be significantly inferior, making it impossible to obtain the desired radiant energy.

熱放射助材並びにバインダーとして働ら< b)成分は
、全成分の合計に対して15〜405〜40重量部する
必要がある。b)成分全組成する個々の化合物およびそ
れら相反の割合は、窒化珪素3〜20重着部、燐酸塩5
〜20重着部、酸化クロム2〜10電歇部、炭化タンタ
ル2〜10重量部およびアルミニウム粉末5〜20重量
部である(但し、これら化合物の合計は常に100重計
部である)1、 b)成分を組成する各化合物の割合が上記の範囲を超え
ると所望の熱放射特性を得ることができない。
The component b), which acts as a heat radiation aid and a binder, should be present in an amount of 15 to 405 to 40 parts by weight based on the total of all components. b) The individual compounds in the total composition and their reciprocal ratios are silicon nitride 3 to 20 superimposed parts, phosphate 5
~20 parts by weight, 2 to 10 parts by weight of chromium oxide, 2 to 10 parts by weight of tantalum carbide, and 5 to 20 parts by weight of aluminum powder (however, the total of these compounds is always 100 parts by weight)1, If the ratio of each compound constituting component b) exceeds the above range, desired heat radiation characteristics cannot be obtained.

窒化珪素が3重1部より少ない場合は、4模の気密性が
損われ、又熱放射特性の寿命が著しく減少される。又燐
酸塩が5重置部より少ない場合には、被覆用基材への接
着強度が減退する。
If the amount of silicon nitride is less than 1 part by 3 parts, the airtightness of the 4 parts will be impaired and the life of the heat radiation property will be significantly reduced. Furthermore, if the amount of phosphate is less than 5 layers, the adhesive strength to the coating substrate will decrease.

酸化クロムが2重計部、炭化タンタルが2重置部、アル
ミニウム粉末が5重量部より少ない場合には、所望の熱
伝導特性が得られず且つ被塗装物との密着強度が劣る。
If the amount of chromium oxide is double weighed, the tantalum carbide is double weighed, and the aluminum powder is less than 5 parts by weight, the desired heat conduction properties cannot be obtained and the adhesion strength to the object to be coated is poor.

次にC)成分は全成分の合計の10〜350〜35重量
部する必要があり、c)成分を組成する個々の化合物と
しては、酸化マグネシウム5重量部、酸化アルミニウム
、酸化鉄および二酸化珪素が各10重量部、酸化ジルコ
ニウムおよびガラス粉末が各15重量部をそれぞれ超え
るべきでない。
Next, component C) must be in an amount of 10 to 350 to 35 parts by weight of the total of all components, and the individual compounds that make up component c) include 5 parts by weight of magnesium oxide, aluminum oxide, iron oxide, and silicon dioxide. 10 parts by weight each, zirconium oxide and glass powder should not exceed 15 parts by weight each.

これらの各成分の量が所定の範囲を超えると熱放射体の
気密性の高い焼成被覆層が得られ々い。
If the amount of each of these components exceeds a predetermined range, it will be difficult to obtain a fired coating layer of the heat radiator with high airtightness.

酸化アルミニウム、酸化マグネシウム、酸化鉄および二
酸化珪支がそれぞ瓦1重量部(lζ、酸化ジルコニウム
およびガラス粉末が各3重量部(lζ達しない場合には
、接着強度の高い安定性のある組成物は得られない。
Aluminum oxide, magnesium oxide, iron oxide and silicon dioxide each contain 1 part by weight (lζ) of the tile, and if zirconium oxide and glass powder each do not reach 3 parts by weight (lζ), a stable composition with high adhesive strength is used. cannot be obtained.

本発明の被覆組成物の炉内壁への被覆量は約1.5〜2
 、0 ’fln2であり炉内金属製構造物への被覆量
は0゜5〜1 、0 kg/m程度が最適である。
The coating amount of the coating composition of the present invention on the furnace inner wall is about 1.5 to 2.
, 0'fln2, and the amount of coating on the metal structures inside the furnace is optimally about 0.5 to 1.0 kg/m.

本発明は、更に、上述の熱放射セラミック被する、上記
熱放射セラミック被覆組成物の使用方法にも関する。ま
た、本発明の組成物を基材トに塗布するに当って、追加
的に約10〜15重量%(組成物全体量に対して)の水
を該組成物に混入した場合((、塗装作業性が向−ヒす
ることが判った。
The present invention further relates to a method of using the thermally emissive ceramic coating composition described above. Furthermore, when applying the composition of the present invention to a substrate, if approximately 10 to 15% by weight (based on the total amount of the composition) of water is additionally mixed into the composition ((, coating It was found that workability was improved.

被覆前処理として金属製炉内構造物にスケールの発生が
認められる場合には、ツイヤ−プラン等で除去する必要
がある。
If scale is observed on the metal furnace internals as a pre-coating treatment, it is necessary to remove it using a twister plan or the like.

本発明の被覆組成物を用いて炉内壁耐火材および炉内金
属製構造物(て耐熱性被覆物をもたらす特に有利な実施
形態の1つに(4,上記の割合で水を含有した被覆組成
物の塗布後に、1時間lσに100°Cずつ昇温さ+!
:400°Cまで加熱後更に600°Cで2時間加熱し
密着焼成する方法がある。
In one particularly advantageous embodiment, the coating composition of the invention provides a heat-resistant coating for refractory walls and metal structures in furnaces (4. Coating compositions containing water in the proportions indicated above) After applying the material, the temperature was increased by 100°C to lσ for 1 hour +!
: There is a method of heating to 400°C and then heating to 600°C for 2 hours to bake in close contact.

本発明の被覆組成物がこのようにして被覆物とされた時
には、1850°CJソ上の耐熱性を有する0 更に該被覆物は、炉内壁耐火材並びに炉内金属製構造物
に適用した場合に、高い熱放射率を達成し目、つ熱エネ
ルギー全節約する。例えば間接加熱炉に本発明の被覆組
成物全適用することにより受熱面の炉内金属製構造物の
昇温時間は41.6係短縮されその時の熱エネルギーは
20%節約さ7″した。
When the coating composition of the present invention is made into a coating in this way, it has a heat resistance of 1850° CJ or higher. In order to achieve high thermal emissivity, it saves all the thermal energy. For example, by applying the entire coating composition of the present invention to an indirect heating furnace, the heating time of the metal structure in the furnace on the heat-receiving surface was shortened by 41.6 times, and the thermal energy at that time was saved by 20%, 7''.

次に、添付図面により本発明の熱放射セラミック被覆組
成物を間接加熱炉に被覆利用する1態様を説明する: 第1図は間接加熱炉の見取り図であり(1)は耐火断熱
レンガを用いた加熱炉、(2)は抵抗発熱体、(3)は
炉内金属製構造物そして(4)は熱媒体油入り容器であ
る。
Next, one mode of using the thermal radiation ceramic coating composition of the present invention for coating an indirect heating furnace will be explained with reference to the accompanying drawings: Figure 1 is a schematic diagram of the indirect heating furnace, and (1) is a diagram showing the use of the heat radiation ceramic coating composition of the present invention for coating an indirect heating furnace. A heating furnace, (2) a resistance heating element, (3) a metal structure inside the furnace, and (4) a container containing heat medium oil.

第2図は加熱炉内壁耐火材の断面であす(5)は本発明
の熱放射セラミック被覆組成物を炉内側に被覆したもの
である。
FIG. 2 is a cross-section of the refractory material for the inner wall of the heating furnace. (5) shows the inner side of the furnace coated with the heat radiation ceramic coating composition of the present invention.

第6図は炉内金属製構造物(ボイラーチューブ)に本発
明の熱放射上ラミック被覆組成物全被覆j−た断面図で
ある。
FIG. 6 is a cross-sectional view of a metal structure (boiler tube) in a furnace completely coated with the thermal radiation lamic coating composition of the present invention.

このような間接加熱炉において、(2)の抵抗発熱体に
電流を通すと熱を生じ(1)の炉内が昇温され(3)の
炉内金属製構造物(ボイラーチューブ)が次いで昇温し
内部に存在する熱媒体油が加温され(4)の容器内の熱
媒体油と循環し容器内の熱媒体油の温度は上昇する。
In such an indirect heating furnace, when an electric current is passed through the resistance heating element (2), heat is generated inside the furnace (1), and the metal structure (boiler tube) inside the furnace (3) then rises. The heating medium oil existing inside the heating chamber is heated and circulates with the heating medium oil in the container (4), and the temperature of the heating medium oil in the container rises.

第4図は加熱炉内雰囲気温度のグラフで加熱炉内壁耐火
物並びに炉内金属製構造物に本発明の熱放射セラミック
組成物全被覆する(実線)時と無被覆(破線)との比較
を示すグラフである。
Figure 4 is a graph of the atmospheric temperature inside the heating furnace, comparing the case where the refractory inner wall of the heating furnace and the metal structure inside the furnace are completely coated with the heat radiating ceramic composition of the present invention (solid line) and when they are not coated (dashed line). This is a graph showing.

第5図は加熱炉内金属製構造物の表面温度−ヒ昇速度を
示す比較グラフである。
FIG. 5 is a comparison graph showing the surface temperature of the metal structure in the heating furnace versus the rate of increase in heat.

第6図は加熱炉内金属構造物の内面温度上昇速度を示す
比較グラフである。
FIG. 6 is a comparison graph showing the rate of increase in internal temperature of the metal structure in the heating furnace.

第7図は熱媒体油の温度上昇速度を示す比較グラフであ
る。
FIG. 7 is a comparison graph showing the rate of temperature rise of heat transfer oil.

これ等の第4図〜第7図の比較で明らかなように本発明
の熱放射セラミック被覆組成物を炉内壁面」大村Jf2
びに炉内金属製構造物に被覆する場合(・ては、雰囲気
温度上昇速度において33.5係の時間短縮となり、炉
内金属製構造物表面温度−上昇速度において41.6%
の時間短縮となる。
As is clear from the comparison of these figures 4 to 7, the thermal radiation ceramic coating composition of the present invention was coated on the furnace inner wall surface.
When coating the metal structures inside the furnace, the time is reduced by 33.5 times in terms of the rate of increase in ambient temperature, and the time is reduced by 41.6% in terms of the surface temperature of the metal structures in the furnace minus the rate of rise.
This will save time.

炉内金属製構造物内面温度−上昇速度においても33.
3 q6の時間短縮となり最終加熱物である熱媒体油の
温度上昇速度は25%短縮される。
The internal temperature of the metal structure inside the furnace - rate of increase was also 33.
The time of 3q6 is shortened, and the temperature rise rate of the heat medium oil, which is the final heated material, is shortened by 25%.

このよう(て本発明の熱放射セラミック被覆組成物が同
一の加熱炉において被覆前と被覆後の比較で明らかのよ
うに加熱炉内壁耐火材並びに炉内金属製構造物(p−被
覆することにより良好な結果全示すことが確認された。
In this way, as is clear from the comparison before and after coating in the same heating furnace, the thermal radiation ceramic coating composition of the present invention can be applied to the refractory material on the inner wall of the heating furnace as well as the metal structures in the furnace (by p-coating). It was confirmed that all the results showed good results.

次に下記実施例により本発明をさらに詳細に説明する。Next, the present invention will be explained in more detail with reference to the following examples.

実施例 1 炭化珪素 45,0重置部、窒化珪素31〕重量部リン
酸アルミニウム  120重量部、酸化クロム 60重
酸部炭化タンタル    5,0重量部、アルミニウム
粉末60電量部酸化アルミニウム  70重置部、 i
t化マクネシウム   20重量部酸 化 鉄 4.0
重着部、ガ ラ ス粉  5.0重量部酸化ジルコン 
60屯量部、二酸化珪素  20重量部から々る組成物
を混合し水を追加的に15重量部加え加熱炉内壁耐火材
にはスプレーにて約0.8ル伽被覆塗装し、炉内金属製
構造物(l″!−ははけを用い約0.34侃被覆塗装す
る。1時間毎に100 ”Cずつ4時間で400°Cま
で加熱しその後600°Cで2時間焼成し密着硬化を行
う。
Example 1 Silicon carbide 45.0 parts by weight, silicon nitride 31 parts by weight Aluminum phosphate 120 parts by weight, chromium oxide 60 parts by weight Tantalum carbide 5.0 parts by weight, aluminum powder 60 parts by weight Aluminum oxide 70 parts by weight , i
Magnesium t chloride 20 parts by weight Iron oxide 4.0
Heavy deposition part, glass powder 5.0 parts by weight zircon oxide
A composition of 60 parts by weight and 20 parts by weight of silicon dioxide was mixed, an additional 15 parts by weight of water was added, and the refractory material on the inner wall of the heating furnace was coated with a coating of about 0.8 l by spray paint. Paint the manufactured structure (l''!-approximately 0.34 degrees with a brush. Heat to 400°C for 4 hours at 100"C every hour, then bake at 600°C for 2 hours to harden the adhesive.) I do.

比較する目的で、熱放射セラミック被覆組成物を被覆す
る前と後について試験を行なった。
For comparison purposes, tests were conducted before and after coating the thermally emissive ceramic coating composition.

炉内雰囲気温度上昇速度は35係の時間短縮となり被加
熱物の熱媒体油の温度上昇速度(tま25.5係時間が
短縮された。
The temperature rise rate of the furnace atmosphere was reduced by 35 times, and the temperature rise rate of the heating medium oil of the object to be heated (t) was reduced by 25.5 times.

この時、熱エネルギーは20係節減された。At this time, thermal energy was reduced by 20%.

実施例 2 炭 化 珪 素  65重量部、窒 化 吐 素  5
重量部リン酸アツベニウム  5重量部、酸化クロム 
  2重量部炭化タンタル  6重量部、アルミニウム
粉末  8重量部醒化アルミニウム  1重;骨部、酸
化マグネシウム  1重置部酸 化 鉄   6重量部
、ガラス粉   6重量部酸化ジルコニウム  6重量
部、および二酸化Fト素 1重着部からなる被覆組成物
を使用1〜実施例1の方法を繰返えした。
Example 2 Silicon carbide 65 parts by weight, nitriding element 5
Parts by weight Atubenium phosphate 5 parts by weight, Chromium oxide
2 parts by weight Tantalum carbide 6 parts, aluminum powder 8 parts by weight Aluminum 1 part; bone part, magnesium oxide 1 part by weight Iron oxide 6 parts by weight, glass powder 6 parts by weight Zirconium oxide 6 parts by weight, and F dioxide The procedure of Example 1 to Example 1 was repeated using a coating composition consisting of a single layer of nitrogen.

雰囲気温度の上昇速IWは69係時間が短縮され、被加
熱物の熱媒体油の温度−ヒ昇速度は27係時間が短縮さ
れた。この時熱エネルギーは22%節減された5、 実施例 3 種々の組成の混合物を用い実施例1の方法を繰り返し行
った。これらはいずれも良好な結果が確認され友。原料
組成および効果を第1表に示す。
The rate of increase in ambient temperature IW was reduced by 69 coefficients, and the rate of increase in the temperature of the heating medium oil of the object to be heated was reduced by 27 coefficients. At this time, the thermal energy was saved by 22%.5. Example 3 The method of Example 1 was repeated using mixtures of various compositions. All of these have been confirmed with good results. Table 1 shows the raw material composition and effects.

第   1Part 1

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は間接710熱炉の見取り図であり、第2図およ
び第3品は炉内壁1酎人材、炉内金属製構造物(・て本
発明の熱放射セラミック被覆組成@を被覆し念断面図で
ある。 第4図〜第7図は本発明の被覆組成物の有無による比較
を示し第4図は加熱炉内雰囲気温度、第5図は炉内金属
製構造物内面温度、第6図は炉内金属製構造物内面温度
、第7図は熱媒体油の各温度上昇時間と加熱時間との関
係を示すグラフで・ある。 第1〜3図中の記号は以下を意味する。 (1)・・・耐火断熱レンガ、 (2)・・・抵抗発熱体、 (3)・・・炉内金属製構造物、 (4)・・・熱媒体油入り容器、 (5)・・・被覆組成物。 427一 第 1 図 4 第4図 第2図 第3図 0 20 40 60 80 100 120蔚藺(#
) 第5図 第6図 0 20 40 60 80 100 1201F−ト
Fj’t  <分ノ 第7図 02ジ0 40 60 80 100 120!I 1
%”l  CAシ\) 昭和57年 1 刀/& ++ 特許庁長官 島 1)春樹 殿 1、 事件の表示 昭和56年特許願第187695号 方法 3、 補正をする者 事件との関係   出願人 氏名   三九化成工業株式会社 (名  fl・) 4、代理人 イ1 所 東京都港区虎ノ門二丁118番1号(虎の1
・・縄気ビル)〔電話03 (502) 1476 (
代表)〕6補正の内存 (1) を特許請求の範囲を別紙の通り訂正する。 (21第5自下がら第5〜4行の記載「(但し、これら
の化合物の合計は常1c100重量部である)」を削除
する。 (3ン  オ6自第5〜6行の記載[(但し、これらの
化合物の合計は常に100貞量部である。目金削除する
。 (4)  オフ自オ9〜1o行の記載[(但し、これら
化合物の合計は常に100重量部である。」を削除する
。 (5)  オ9貝712〜13行の記載「ツイヤ−ブラ
シ」ト1ワイヤーブラシ」に訂正する。 (6) 第15員の第1衣を次の通9訂正します。 +21 1 (7)  第1図および第2図音別紙図面の未配の通9
訂正しますので、御刀I]筆をお顕い致します。 2特許請求の範囲 flla)40〜75i量%の熱放射材としての炭化珪
素、 b) 15〜40重量%の、 窒素珪素3〜20重量部、燐酸塩5〜 20厘量部、酸化クロム2〜10重膚 部、炭化タンタル2〜toフ量部およ びアルミニウム粉末5〜20車量部よ り成る 熱放射助材並びにバインダーおよび c) 10〜35貞量%の、 酸化アルミニウム1〜] Oiit MIS、ガラス粉
末3〜15[ii部、順化ジルコニウム3〜15n量部
、二酸化珪素1 〜10重縦部、酸化マグネシウム1〜 10重量部および酸化鉄1〜10重縫 部より成る 密層性や塗膜間結合強匿葡高める添加剤より成りそして
成分a) 、 b)およびC)の合計が100重遺%で
あることを持敵とする、熱放射セラミック被覆組成物。 (2)a) 40〜75重葉%の熱放射材としての炭化
珪素、 b) 15〜40貞量%の、 望化珪素3〜20重量部、燐酸塩5〜 20貞遺部、酸化クロム2〜10重喧 部、炭化夕/タル2〜】0貞着部およ びアルミニウム粉末5〜20電量部よ り成る 熱放射助材並びにバインダーおよび C) 10〜35重會%の、 酸化アルミニウム1〜10重量部、ガ ラス粉末3〜15厘量部、酸化ジルコ ニウム3〜15直量部、二酸化珪素1 〜10重量部、酸化マグネシウム1〜 10重量部および酸化鉄1〜10重着 mlSより成る 蜜宥注や塗膜量結合強度を高める硲加剤より成りそして
成分a) 、 b)および0)の合計が100重遺%で
ある熱放射セラミック被覆組成物を基材上VC塗布し、
室温の出発温度から400 ’0〜5000の温度まで
段階的にまたは連続的に昇温させながら3〜5時間加熱
しそして更に5500〜800°0の温朋で1〜34間
加熱焼成すること全時機とする、上記熱放射セラミック
被覆組成物の使用方法。 (3) 熱放射セラミックal板組成吻に、該組成物に
対して約10〜15型破%の水を加えて基材上に塗布す
る脣許請求の範囲〕・2項記載の方法。 (4)  基材が工粟用訓熱炉の炉内壁耐火材または炉
内金属製構造物である時cff請求の範囲力・2項また
は第3項記載の方法。 第1図 第2図 第3図
Figure 1 is a sketch of an indirect 710 thermal furnace, and Figures 2 and 3 show the inner wall of the furnace, the metal structure inside the furnace, and the thermal radiation ceramic coating composition of the present invention. Figures 4 to 7 show a comparison between the presence and absence of the coating composition of the present invention, and Figure 4 shows the atmospheric temperature in the heating furnace, Figure 5 shows the internal temperature of the metal structure in the furnace, and Figure 6 shows the comparison between the presence and absence of the coating composition of the present invention. is the inner surface temperature of the metal structure inside the furnace, and Fig. 7 is a graph showing the relationship between each temperature rise time and heating time of the heat transfer oil. The symbols in Figs. 1 to 3 have the following meanings. ( 1)... Fireproof insulation brick, (2)... Resistance heating element, (3)... Metal structure inside the furnace, (4)... Heat transfer oil container, (5)... Coating composition. 427-1 Figure 4 Figure 4 Figure 2 Figure 3 Figure 0 20 40 60 80 100 120
) Fig. 5 Fig. 6 0 20 40 60 80 100 1201 Fj't < Min. I 1
%"l CA \) 1981 1 Sword/& ++ Commissioner Shima of the Patent Office 1) Haruki Tono1, Indication of the case 1987 Patent Application No. 187695 Method 3, Person making the amendment Relationship to the case Applicant's name Sanku Kasei Kogyo Co., Ltd. (name: fl.) 4. Agent 1. Address: 118-1 Toranomon 2-chome, Minato-ku, Tokyo (Tora no 1)
...Nawake Building) [Telephone 03 (502) 1476 (
(Representative)] 6. Subsistence of Amendment (1) The scope of claims is amended as shown in the attached sheet. (Delete the statement "(However, the total of these compounds is always 1c100 parts by weight)" in lines 5 to 4 of the 5th column below. However, the total of these compounds is always 100 parts by weight. The eyelids are deleted. (4) Description in lines 9 to 1o [(However, the total of these compounds is always 100 parts by weight.) (5) Correct the description in lines 712 to 13 of O9 to read “Tsuiya brush” and “T1 wire brush.” (6) Correct the following 9 to the 15th member's first robe. +21 1 (7) Undistributed copy of Figure 1 and Figure 2 attached drawings 9
I would like to make a correction, so I will reveal my sword I] brush. 2 Claims fla) 40-75i% by weight of silicon carbide as heat radiating material, b) 15-40% by weight of 3-20 parts by weight of silicon nitrogen, 5-20 parts by weight of phosphate, 2 parts by weight of chromium oxide. a heat radiation aid and a binder consisting of ~10 parts by weight, 2 to 2 parts by weight of tantalum carbide and 5 to 20 parts by weight of aluminum powder; A dense layer or coating film consisting of 3 to 15 parts of glass powder, 3 to 15 parts of acclimatized zirconium, 1 to 10 parts of silicon dioxide, 1 to 10 parts of magnesium oxide, and 1 to 10 parts of iron oxide. A thermally emissive ceramic coating composition comprising a bond enhancing additive and wherein the sum of components a), b) and C) is 100% by weight. (2) a) 40-75% silicon carbide as a heat radiating material; b) 15-40% silicon carbide, 3-20 parts by weight of silicon, 5-20 parts of phosphate, chromium oxide 2 to 10 weight parts, carbonized aluminum/tal 2 to 0 parts and a heat radiation aid and binder consisting of 5 to 20 weight parts of aluminum powder and C) 10 to 35 weight percent of aluminum oxide 1 to 10 parts by weight, 3 to 15 parts by weight of glass powder, 3 to 15 parts by weight of zirconium oxide, 1 to 10 parts by weight of silicon dioxide, 1 to 10 parts by weight of magnesium oxide, and 1 to 10 parts by weight of iron oxide. A thermally emissive ceramic coating composition comprising 100% by weight of components a), b) and 0) is applied to the substrate by VC coating, and the composition is VC-coated on the substrate.
Heat for 3 to 5 hours while increasing the temperature stepwise or continuously from the starting temperature of room temperature to a temperature of 400° to 5000°C, and further heat and bake at a temperature of 5500 to 800°C for 1 to 34 hours. A method of using the thermally emissive ceramic coating composition in a timely manner. (3) The method according to claim 2, wherein approximately 10 to 15 percent of water is added to the heat-emitting ceramic Al plate composition and the mixture is coated on the substrate. (4) The method according to claim 2 or 3, when the base material is a refractory material for the furnace inner wall or a metal structure in the furnace of a millet training furnace. Figure 1 Figure 2 Figure 3

Claims (4)

【特許請求の範囲】[Claims] (1)a)40・〜75重計係の熱放射イ1と(7ての
炭化珪素、 b)15〜40重計係の、 窒化珪素3〜20重附部、燐酸塩5〜 20重敏部型缶化クロム2〜10M計 部、炭化タンタル2〜10重量部卦よ びアルミニウム粉末5〜20重量部よ り改ル(俳し、これらの化合物の合計 0ま常に100重敏型缶ある) 熱放射助材並びにバインダーおよび C)10〜350〜35重 量部アルミニウム1〜10重量部、ガ ラス粉末3〜15重量部、酸化ジルコ ニウム3〜15重量部、二酸化珪素1 〜10重着部、酸化マグネシウム1〜 10重欧部および酸化鉄1〜10重量 部より成る(但し、これらの化合物の 合唱は常に100重量部である。) 密着性−や塗膜量結合強度を高める添加剤より成りそし
て成分a)、 b)およびC)の合計が100重沿チで
あることを特徴とする、熱放射セラミック被覆組成物。
(1) a) Thermal radiation of 40 to 75 weight units (1) and (7) silicon carbide, b) 15 to 40 weight units, silicon nitride 3 to 20 weight units, phosphate 5 to 20 weight units Modified from 2 to 10 M parts of chromium, 2 to 10 parts by weight of tantalum carbide, and 5 to 20 parts by weight of aluminum powder (although the total of these compounds is 0 to 100 parts by weight). Auxiliary materials and binders and C) 10 to 350 to 35 parts by weight, 1 to 10 parts by weight of aluminum, 3 to 15 parts by weight of glass powder, 3 to 15 parts by weight of zirconium oxide, 1 to 10 parts by weight of silicon dioxide, 1 to 10 parts by weight of magnesium oxide. It consists of 10 parts by weight of iron oxide and 1 to 10 parts by weight of iron oxide (however, the total amount of these compounds is always 100 parts by weight).It consists of additives that increase adhesion and coating strength and component a). , b) and C) have a total of 100 layers.
(2)FL)40・−75重@係の熱放射材としての炭
化珪素、 b) 15〜40重@係の、 窒化珪素3・〜20重着部、燐酸塩5〜20重隈部、酸
化クロム2〜10型缶 部、炭化タンタル2〜10重量部およ びアルミニウム粉末5〜20重量部よ り成も(但し、これらの化合物の合計 は常に100重量部である) 熱放射助材並びにバインダーおよび C) 10・〜35重敵係の、 酸化アルミニウム1〜10重敞部、ガ ラス粉末5〜15重量部、酸化ジルコ ニウム5〜15重着部、二酸化珪素1 〜10重量部、酸化マグネンウム1〜 10重量部および酸化鉄1〜10重:肴部より成る(但
し、これらの化合物の 合計は常に100重計重敞ある。、) 密着性−や塗膜量結合強度を高める添加剤より成りそし
て成分a)、b)およびC)の合d−1がioo重量係
である熱放射セラミック被覆組成物を基材上に塗布し、
室温の出発温度から400″C〜500°Cの温度捷で
段階的にまたは連続的に昇温させながらろ〜5時間加熱
しそして更υて550°C〜800°Cの温度で1〜3
時間加熱焼成することを特徴とする、上記熱放射セラミ
ック被覆組成物の使用方法。。
(2) FL) Silicon carbide as a heat radiating material with a weight of 40 and -75, b) Silicon nitride with a weight of 15 to 40, 3 to 20, phosphate 5 to 20, oxidation Chromium type 2-10 can, 2-10 parts by weight of tantalum carbide and 5-20 parts by weight of aluminum powder (however, the total of these compounds is always 100 parts by weight); heat radiation aid and binder; and C. ) 10 to 35 parts by weight, 1 to 10 parts by weight of aluminum oxide, 5 to 15 parts by weight of glass powder, 5 to 15 parts by weight of zirconium oxide, 1 to 10 parts by weight of silicon dioxide, 1 to 10 parts by weight of magnesium oxide. (However, the total of these compounds is always 100 parts by weight) and 1 to 10 parts by weight of iron oxide.Consists of additives that increase adhesion and coating strength and component a. applying a thermally emissive ceramic coating composition on a substrate, in which the sum d-1 of a), b) and C) is an ioo weight factor;
From the starting temperature of room temperature, heat for 5 hours with increasing temperature stepwise or continuously at a temperature of 400"C to 500C, and then for 1 to 3 hours at a temperature of 550C to 800C.
A method of using the thermally emissive ceramic coating composition described above, comprising heating and baking for a time. .
(3)  熱放射セラミック被覆組成物(て、該組成物
(て対して約10〜15重t %の水を加えて基材上に
塗布する特iff請求の範囲第2項記載の方法。
3. The method of claim 2, wherein the thermally emissive ceramic coating composition is coated on the substrate with the addition of about 10 to 15 weight percent water.
(4)  基材が工業用加熱炉の炉内壁面1人材または
炉内金属製構造物である特許請求の範囲第2項]トタは
第3項記載の方法。
(4) The method according to claim 3, wherein the base material is an inner wall surface of an industrial heating furnace or a metal structure inside the furnace.
JP56187695A 1981-11-25 1981-11-25 Thermoradiant ceramic coating composition and method of use thereof Expired JPS5852952B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56187695A JPS5852952B2 (en) 1981-11-25 1981-11-25 Thermoradiant ceramic coating composition and method of use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56187695A JPS5852952B2 (en) 1981-11-25 1981-11-25 Thermoradiant ceramic coating composition and method of use thereof

Publications (2)

Publication Number Publication Date
JPS5891082A true JPS5891082A (en) 1983-05-30
JPS5852952B2 JPS5852952B2 (en) 1983-11-26

Family

ID=16210529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56187695A Expired JPS5852952B2 (en) 1981-11-25 1981-11-25 Thermoradiant ceramic coating composition and method of use thereof

Country Status (1)

Country Link
JP (1) JPS5852952B2 (en)

Also Published As

Publication number Publication date
JPS5852952B2 (en) 1983-11-26

Similar Documents

Publication Publication Date Title
JP6462011B2 (en) Coating member and method for manufacturing coating member
US4931413A (en) Glass ceramic precursor compositions containing titanium diboride
JP2003239087A (en) Article comprising material containing silicon
JP2022539581A (en) High emissivity cerium oxide coating
JP2003268572A (en) Parts comprising silicon-containing substrate
JPH0133507B2 (en)
JPS5891082A (en) Heat radiative ceramic coating composition and use
TW202012552A (en) High emissivity coating composition and substrate coated therewith
JPS58190839A (en) Production of enamel for irradiation of far ultraviolet light
KR102001537B1 (en) High Temperature Heat resistant Coating Composition For Protection of Metal Substrate With Enhanced Theraml Shock Resistance And Coating Methods Using The Same
JP4299155B2 (en) Oxidation-resistant coating method for carbon / carbon composite materials
JPS6353264B2 (en)
JPH0460314B2 (en)
JPH0684270B2 (en) Infrared radiation coating
JPS63154341A (en) Far infrared radiator
JPS6015467A (en) Organic matter decomposing film
JP2589511B2 (en) SiC structural material for steam resistant atmosphere
JP2002154818A (en) beta-CRISTOBALITE, MANUFACTURING METHOD THEREFOR AND NON- OXIDE BASED CERAMIC MATERIAL
WO2000068166A1 (en) MATERIAL WITH HIGH-TEMPERATURE OXIDATION RESISTANCE CONSISTING MAINLY OF MoSi2 WITH EXCELLENT BRITTLE RESISTANCE AND HEATING MATERIAL
JPH07215782A (en) Corrosion resistant insulating coating method for silicon carbide heating element
JPH05148047A (en) Joined material of silicon nitride ceramics
KR100669843B1 (en) Absorbent composition of radiant heat energy and product manufactured by coating the same on a surface of the product
JPH05152059A (en) Silicon carbide heating body
JP2005327484A (en) Silicon carbide heating element and manufacturing method of the same
JPH068220B2 (en) Aluminum nitride sintered body and manufacturing method thereof