JPS589083A - Optical detection for object - Google Patents

Optical detection for object

Info

Publication number
JPS589083A
JPS589083A JP56106295A JP10629581A JPS589083A JP S589083 A JPS589083 A JP S589083A JP 56106295 A JP56106295 A JP 56106295A JP 10629581 A JP10629581 A JP 10629581A JP S589083 A JPS589083 A JP S589083A
Authority
JP
Japan
Prior art keywords
light
detected
retroreflector
half mirror
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56106295A
Other languages
Japanese (ja)
Inventor
Toshiro Yamada
山田 敏郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP56106295A priority Critical patent/JPS589083A/en
Publication of JPS589083A publication Critical patent/JPS589083A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V8/00Prospecting or detecting by optical means
    • G01V8/10Detecting, e.g. by using light barriers
    • G01V8/12Detecting, e.g. by using light barriers using one transmitter and one receiver
    • G01V8/14Detecting, e.g. by using light barriers using one transmitter and one receiver using reflectors

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Controlling Sheets Or Webs (AREA)

Abstract

PURPOSE:To detect accurately whether an object exists on an optical path or not, by irradiating the light from a light projector to a retroreflection plate obliquely through a half mirror and receiving this reflected light through the half mirror by a photodetector provided in the orthogonal direction. CONSTITUTION:The light emitted and driven from a light projector 7 of a single light detecting device A passes a light transmitting hole 12 through a half mirror 9 and is irradiated to a retroreflection plate B obliquely. The reflected light from the retroreflection plate B is returned to the half mirror 9 through the same optical path and is received by a photodetector 8 provided in the orthogonal direction. When an object C to be detected exists on the optical path, the quantity of received light of the photodetector 8 is reduced considerably, and its existence is detected. Since the light is irradiated to the object C obliquely also, the reflected light from the object C does not go in the same direction as the projected light, and thus, its existence is detected accurately.

Description

【発明の詳細な説明】 この発明は再帰反射板と光検出装置を組合せて物体の有
無の検出方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for detecting the presence or absence of an object by combining a retroreflector and a photodetector.

従来光を媒体として物体の有無の検出を行う場合1被検
出物体に光を照射しその光の反射を利用するものと、被
検出物体が光の遮断的な関与を利用して行われるもの等
が一般である。この光の反射を利用して物体の検出を行
うのに投光器と受光器番同一方肉に併置した構造を有し
、投光器から受光器への光路を反射面を介して作り、そ
の反射面からの反射光を検出して行われる反射型の光セ
ンナー等が広く用いられているのが実状で゛あるが、被
検出物体の反射光量はその物体の表面の状態や色等によ
シその強弱が広範囲に渡たる。従って一定の反射光量を
得る事は困難である。そのため反射光を受光器で受けそ
の出力をデジタル信号化して被検出物体の有無を検出す
るような場合、対象被検出物体がその反射光量の高低に
依って制限を受ける場合も生じ、従って信号処理上大き
な欠点と′なる。又強いては被検出物体が検出され得な
い等の誤動作の原因を生む。又反射型の光センサーに於
いては光の非反射物体に近いものは検出され得ない。他
方光の遮断的な関与を利用した従来の速断型光センサー
等に於いては、第1図に示すように投光器(発光素子)
2と受光器(受光素子)3を一定の間隔をもって対向さ
せ、同一筐体内に収納させその光路途上の被検出物体の
有無を受光器への光の到達の有無によって検中するのが
普通であるが、この−合第1図に示す如く投光器2と受
光器3が一定間隔で支持体により連結されている構造を
有しているため、例へばスリット円板4のスリット5.
の有無の検出を想定する場合、スリットの位置は円板の
外周から光センサーの光軸と支持体1の距離lよシも大
きく取り得ない。しかし理論上は距離lを大きくすれば
問題は生じない力ζ実装の場合は大きな不利になること
は明らかである。これは−例に過ぎないが、速断型光セ
ンサーに於いては実装の場所や被検出物体の大きさに制
約を受けるのが大きな欠点となる要因である。又遮断型
光センサーを用いて物体の有無を検出する場合には、必
ず被検出物体の両側面が光学的に関与する。このことは
被検出物体の片側面の一方だけに光センサーを実装する
ことが出来ないと言う欠点を生む。
Conventional cases of detecting the presence or absence of an object using light as a medium 1. One method uses light to irradiate the object to be detected and uses the reflection of the light, and another method uses the object to be detected to block the light. is common. In order to detect objects using the reflection of this light, we have a structure in which the emitter and receiver are placed side by side on the same side, and the optical path from the emitter to the receiver is created via a reflective surface. In reality, reflective optical sensors are widely used, but the amount of reflected light from an object to be detected varies depending on the surface condition and color of the object. is widespread. Therefore, it is difficult to obtain a constant amount of reflected light. Therefore, when the reflected light is received by a receiver and the output is converted into a digital signal to detect the presence or absence of an object to be detected, there may be limitations depending on the level of the amount of reflected light of the object to be detected, and therefore the signal processing This is a major drawback. Moreover, it may cause malfunctions such as failure to detect the object to be detected. In addition, reflective type optical sensors cannot detect objects that do not reflect light. On the other hand, in conventional fast-acting optical sensors that utilize the interception of light, a floodlight (light-emitting element) is used as shown in Figure 1.
2 and a light receiver (light-receiving element) 3 are placed facing each other at a fixed interval and housed in the same housing, and the presence or absence of an object to be detected on the optical path is detected by checking whether or not light reaches the light receiver. However, as shown in FIG. 1, this combination has a structure in which the projector 2 and the receiver 3 are connected at regular intervals by supports, so for example, the slits 5.
When assuming the detection of the presence or absence of the slit, the position of the slit cannot be larger than the distance l between the optical axis of the optical sensor and the support 1 from the outer periphery of the disk. However, it is clear that the force ζ implementation, which theoretically poses no problem if the distance l is increased, is at a major disadvantage. Although this is just an example, a major disadvantage of fast-acting optical sensors is that they are restricted by the mounting location and the size of the object to be detected. Furthermore, when detecting the presence or absence of an object using a cut-off type optical sensor, both sides of the object to be detected are always optically involved. This has the drawback that the optical sensor cannot be mounted on only one side of the object to be detected.

本発明は反射型光センサーと遮断型光センサーのどちら
の欠点をも取り除き1、且つ両省の機能を同時に兼ね備
えた如くした、誓に依る物体の検出方法を提供するもの
である。
The present invention eliminates the drawbacks of both reflective and blocking optical sensors, and provides a method for detecting objects that relies on the detection of objects, which simultaneously combines the functions of both.

この目的のために本発明は投光と受光の光路が同一の経
路上を辿り得べくした光学係を有する光検出装置(以下
単一光路光検出装置と呼ぶ)と、再帰反射板とその投射
及受光法とを組合せて物体の検出を行うとするものであ
る。
For this purpose, the present invention provides a photodetecting device (hereinafter referred to as a single optical path photodetecting device) having an optical system in which the optical paths of light emitting and receiving light can follow the same path, a retroreflector, and its projection. The object is detected by combining the detection and light reception method.

以下この発明を図により説明をすると、第2図は本発明
の光を用いた物体の検出方法に用いる装置全体の構成図
である。即ち単一光検出装置A1台と一枚の切片状であ
る再帰反射板Bから成っている。先づある所定の位置に
再帰反射板Bをセットし、仁の再帰反射板Bより図示の
如くDの距離に、−再帰反射板Bに対して斜めに光が照
射するように、単一光検出装置Aを対向的にセットする
。図の単一光検出装置Aはその断面図を示したものであ
る〜その構造を説明すると、°図の如く投光器(発光ダ
イオード)7と受光器(フォト トランジスター)8と
光路形成のためのハーフミラ−(半透鏡)9とこれらを
収納している本体6より成る。
The present invention will be explained below with reference to the drawings. FIG. 2 is a block diagram of the entire apparatus used in the method of detecting an object using light according to the present invention. That is, it consists of one single photodetector A and a retroreflector B that is in the form of a piece. First, set the retroreflector B at a predetermined position, and emit a single beam of light from the outer retroreflector B at a distance D as shown in the figure, so that the light is irradiated obliquely to the retroreflector B. Set the detection devices A facing each other. The single photodetector A in the figure shows its cross-sectional view. To explain its structure, as shown in the figure, it consists of a light emitter (light emitting diode) 7, a light receiver (phototransistor) 8, and a half mirror for forming an optical path. - Consists of a (semi-transparent mirror) 9 and a main body 6 that houses them.

本体6には適当な材質の成形で得られる立方体形状とし
、図示の如く光経路としての光通過用の円形の同じ大き
さの穴10.11.12.が外部に貫通して設けられて
おり、相隣れる面の光通過用の穴10゜11、には投光
器7と受光器8が夫々光通過用の円形の穴to、it、
に関連して取付されている。この場合投光器7及受光器
8は夫々その投光面及受光面を立方体形状の中心側に向
けた状態に取付られる。
The main body 6 has a cubic shape obtained by molding a suitable material, and has circular holes 10, 11, 12, and the like of the same size for light passage as a light path as shown in the figure. are provided through the outside, and in the holes 10 and 11 for light passage on adjacent surfaces, the emitter 7 and the light receiver 8 are provided with circular holes for light passage to, it, respectively.
It is attached in connection with. In this case, the light projector 7 and the light receiver 8 are mounted with their light projecting and light receiving surfaces facing toward the center of the cube.

一方ハーフミラー9は因果の如く立方体形状の内部に設
けられた支持体部13.14.に固定される。そしてハ
ーフミラ−9は投光器7と受光器8に対していづれも4
5°の角度関係を保つようKすることが大切である。尚
本体6は図示のものには限定されず、ハーフミラ−が投
光器7及受゛光器8に対しいづれも45@の関係に配位
されればよい。又本体内部の面は反射が行われないよう
適当に処理される事は言う迄でもない。
On the other hand, the half mirror 9 has support portions 13, 14, 13, 14, and 14 provided inside the cubic shape. Fixed. And the half mirror 9 has 4 mirrors for the emitter 7 and the receiver 8.
It is important to maintain the angular relationship of 5°. The main body 6 is not limited to what is shown in the drawings, and it is sufficient that the half mirror is arranged in a 45@ relationship with respect to the light projector 7 and the light receiver 8. It goes without saying that the internal surface of the main body must be appropriately treated to prevent reflection.

次ぎに上記のようにして成った単一光検出装置Aと再帰
反射板Bとを対向的に組合せ、且つ単一光検出装置から
再帰反射板に対して斜めに光を照射・する如く設置した
場合の動作について述べると、単一光検出装置Aの投光
器7より発光駆動されたほぼ平行な光はハーフミラ−9
に向って照射され、そのほぼ半分の光量が通過直進し光
通過用穴12を通り再帰反射板Bに斜めに照射される。
Next, the single light detection device A and the retroreflection plate B formed as described above were combined to face each other, and the single light detection device was installed so that light was irradiated obliquely to the retroreflection plate. Regarding the operation in this case, the almost parallel light emitted from the light projector 7 of the single light detection device A is emitted from the half mirror 9.
Almost half of the amount of light passes straight through the light passage hole 12 and is irradiated obliquely onto the retroreflector plate B.

再帰反射板Bからの反射光は再帰反射板の原理によって
元の光路と同じ光路を逆に辿って並びノーーフミラー9
に戻り、更にノ・−7ミラー9を介して反射光量のほぼ
半分が一角方向に進んで、受光器8に受光される。
The reflected light from the retroreflector B follows the same optical path as the original optical path in reverse according to the principle of the retroreflector and is lined up at the nouf mirror 9.
Then, approximately half of the amount of reflected light travels in one direction via the -7 mirror 9 and is received by the light receiver 8.

以上あような単一光検出装置Aと再帰反射板Bを組合せ
た構成と構造とによって、再帰反射板Bと受光器8間で
光学的に対向の位置関係を形成する。
With the combination of the single light detection device A and the retroreflector B as described above, an optically opposing positional relationship is formed between the retroreflector B and the light receiver 8.

この再帰反射板Bと受光器8の対向関係だけについて考
へる場合、再帰反射板Bの反射光は見掛上再帰反射板B
が発光源として投光器の役目を演じ、対向の受光器8に
向って直接的な光路を形成して光が到達する如くなり得
る。且つ定状的に一定の光量が受光器8に受光されるご
とになる。しかも投゛光器からの光が再帰反射板に照射
される光路と同じ光路(厳密には)・−フミラー9と再
帰反射板Bの間)を逆に辿ることは前に述べた通りであ
る。
When considering only the facing relationship between the retroreflector B and the light receiver 8, the reflected light from the retroreflector B is apparently reflected by the retroreflector B.
acts as a light projector as a light emitting source, and forms a direct optical path toward the opposing light receiver 8 so that the light can reach it. Moreover, each time a constant amount of light is received by the light receiver 8. Moreover, as mentioned earlier, the light from the projector follows the same optical path (strictly speaking) - between the mirror 9 and the retroreflector B) as the one that irradiates the retroreflector. .

次ぎに本発明の作用について述べると、前記の構造を有
する単一光検出装置Aを用いてあらかじめ単一光検出装
置AよりDの距離にセットされた再帰仮射板Bに斜めに
ほぼ平行のビーム状の光を照射して、その反射光が投光
の光路と同じ光路を逆に辿って再び単一光検出装置Aに
受光されている光路上に、被検出物体Cが存在するが又
は光路を横切って通過する場合、受光器8への光の到達
の有無によって惑は再帰反射板Bと被検出物体Cとの反
射光量の8N比(反射の違い)によって、物体Cが検出
され得る。但し被検出物体Cはitぼ再帰反射Bと平行
に移動通することを想定し、又この場合被検出物体Cに
は再帰反射Bに照射されている光と同じ斜めの光が照射
される事は言う迄でもない。
Next, the operation of the present invention will be described. Using a single photodetector A having the above-described structure, a recursive temporary projection plate B is set in advance at a distance D from the single photodetector A. A detected object C exists on the optical path where a beam of light is irradiated and the reflected light follows the same optical path as the emitted light in the opposite direction and is received by the single light detection device A again. When passing across the optical path, the object C can be detected depending on whether the light reaches the light receiver 8 or not, depending on the 8N ratio (difference in reflection) of the amount of reflected light between the retroreflector B and the object C to be detected. . However, it is assumed that the detected object C moves in parallel with the retroreflector B, and in this case, the detected object C is irradiated with the same oblique light as the light that is irradiated on the retroreflector B. Needless to say.

上述の場合、被検出物体に斜めに光が照射されると言う
事が重要である。例へば被検出物体の状態や態様にもよ
るが金波検出物体Cが平面状で且つ照射面積より大きく
鏡面状の反射面であることを想定すると、被検出物体C
の平面の法線に対し入射光に対し・−一の方向に正反射
されて、咳単−光検出装置Aに反射光は理論止金った〈
受光されない。この事は再帰反射板Bど受光器8とが対
向の位置関係にあり、しかも再帰反射板Bからの反射光
を定状的に常に受光器8に受光されている光路の光を遮
断した効果を生み、従ってその前後で被検出物体Cの有
無が光の受光器8への到達の有無となって、確実に検出
される事になる。従ってもしも被検出物体に斜めでなく
垂直に光を照射した場合は、該単一光検出装置は反射型
光センサーとして機能し、被検出物体からの反射光が受
光されることになシ、遮断的効果を失う結果となる。こ
れはすでに述べた如く、反射型光センサーとしての欠点
につながる。又糾めに光を照射した場合には、白紙のよ
うに素面的に平面に凹凸のある拡散反射面や多少の凹凸
のある平面を有する被検出物体に於いても後述の実施例
で述べる如く再帰反射板からの一定の反射光量と比較し
、これらの被検出物体の反射光量は非常に、小さい値を
示し、即ち8N比の大角い値が得られて極めてよく光の
速断的効果が得られた。ここに言う迄でもな〈従来の反
射型光センサーに於いては、再帰反射板の反射光は受光
されにくいか、又は理論的には受光されないのが一般で
ある。次に実施例について述べると7実施例1 再帰反射板B及被検出物体としてコイン(10円。
In the above case, it is important that the object to be detected is irradiated with light obliquely. For example, if we assume that the gold wave detection object C is planar and has a mirror-like reflective surface larger than the irradiation area, although it depends on the state and aspect of the detection object, the detection object C
The incident light is specularly reflected in the -1 direction with respect to the normal to the plane of the plane, and the reflected light is theoretically stopped at the photodetector A.
No light is received. This is due to the fact that the retroreflector B and the receiver 8 are in an opposing position, and that the light reflected from the retroreflector B is regularly blocked from the optical path that is always received by the receiver 8. Therefore, the presence or absence of the object C to be detected before and after that determines whether or not the light reaches the light receiver 8, so that it can be reliably detected. Therefore, if the light is irradiated perpendicularly to the object to be detected, instead of diagonally, the single light detection device will function as a reflective photosensor, and the reflected light from the object will not be received and will be blocked. This results in a loss of effectiveness. As already mentioned, this leads to drawbacks as a reflective optical sensor. In addition, when the light is irradiated carefully, even when the object to be detected has a flat surface like a blank sheet of paper with an uneven diffusive reflection surface or a flat surface with some unevenness, as will be described in the example below. Compared to the constant amount of reflected light from the retroreflector, the amount of reflected light from these objects to be detected shows a very small value, that is, a large value of 8N ratio is obtained, and a very good rapid-cutting effect of light can be obtained. It was done. Needless to say here, in conventional reflective optical sensors, the reflected light from the retroreflector is generally difficult to receive, or theoretically not received at all. Next, Examples will be described. 7 Example 1 A coin (10 yen) was used as the retroreflector B and the object to be detected.

100円の貨幣)に対し、単一光検出装置Aからの光の
照射角を30°とし、検出距離5mmの条件のもとでは
再帰反射板の反射光蓋対コインの反射光量の値の比はほ
ぼ10 : 1.21となった。又同上の条件で再帰反
射板の反射光量対艶なしの黒紙の反射光量の比はほぼ1
0 : 1.08の値を得た。その8N比ゆ前者で8:
1、後者は9.2 : 1であった。この実施例の被検
出物体であるコインに於いては、裏表に凹凸のある模様
等はかなシ乱反射の光が現われる面であるが、反射光量
がO近傍に近い艶なしの黒紙と比較し、その反射光量の
値に大きな差異のない結果が得られた。
100 yen coin), the irradiation angle of the light from the single photodetector A is 30°, and the detection distance is 5 mm. The ratio was approximately 10:1.21. Also, under the same conditions as above, the ratio of the amount of light reflected from the retroreflector to the amount of light reflected from the matte black paper is approximately 1.
A value of 0:1.08 was obtained. 8N compared to the former 8:
1, the latter was 9.2:1. In the case of a coin, which is the object to be detected in this example, the surface has irregular patterns on the front and back, and ephemeral and diffusely reflected light appears, but compared to matte black paper, the amount of reflected light is close to O. , results were obtained with no significant difference in the value of the amount of reflected light.

実施例2 実施例1と同様の条件下で被検出物体にアメリカコダッ
ク社製の反射率90チと称する標準白(KodehkN
eutral  T・st Car4 )を採用して測
定を行った”ものでは、再帰反射板の反射光量対コダッ
ク社製標準白紙の反射光量比はほぼ10 : 1.3の
値となり8N比は7:1であった。このコダック社製標
準白紙は完全拡散面に近いものである。従って単一光検
出装置には、他の被検出物体に比較してその反射光が入
シ易い条件となシ得るものである。
Example 2 Under the same conditions as in Example 1, a standard white (KodehkN
The ratio of the amount of light reflected from the retroreflector to the amount of light reflected from Kodak's standard white paper was approximately 10:1.3, and the 8N ratio was 7:1. This standard white paper made by Kodak is close to a completely diffusing surface.Therefore, it is possible to create a condition in which the reflected light from the object enters the single light detection device more easily than from other objects to be detected. It is something.

実施例1.2では、鏡面反射の面や拡散面及凹凸のある
面の反射光量と再帰反射板の反射光量とのSN比が非常
に大きい値が得られる効果がある事を示すものであって
、出力信号をデヂタル信号化する様な場合、容易に且つ
確実に行へる効果がち9、従って確実に物体が検出され
得ることになる。
Example 1.2 shows the effect of obtaining a very large S/N ratio between the amount of light reflected from a specular reflection surface, a diffused surface, and a surface with uneven surfaces and the amount of light reflected from a retroreflector. Therefore, when converting the output signal into a digital signal, it tends to be easy and reliable9, and therefore the object can be detected reliably.

)又このような構成であるので、実装時に於いては場所
や被検出物体の大きさには拘束され得ない。
) Also, because of this configuration, there is no restriction on the location or size of the object to be detected during implementation.

以上説明したように本発明では投光と受光の光路が同一
の経路上を通り得べくなした光検出装置を用いてこれと
対向的に設置された再帰反射板に斜めに光を照射し、そ
の反射光が再び元の経路を逆に辿って光検出装置に受光
されるようにした構成によって物体の有無を検出するに
、際して従来の反射型光センサーの欠点である被検出物
体の反射光量の強弱による依存性を妨ぎ、又従来の遮断
型光センサーの欠点である実装に際し、場所や被検出物
体の大きさの制約を受けない自在に実装出来ると言う効
果がある。
As explained above, in the present invention, the light is obliquely irradiated onto a retroreflector plate installed opposite to the photodetector using a photodetector whose light paths for emitting and receiving light can pass along the same path. The presence or absence of an object is detected using a configuration in which the reflected light retraces its original path and is received by a photodetector. This has the effect of preventing the dependence of the amount of reflected light on the strength and weakness of the reflected light, and that it can be mounted freely without being restricted by the location or the size of the object to be detected, which is a drawback of conventional cut-off type optical sensors.

本発明は上述のような効果があるので、例えばコインの
検出に依って機能する電話機、各種自動販売機、コイン
選別機、各種物体のカウンター機、位置検関係、コンピ
ューター人出力関係等に採用されれば、大きな効果が期
待できる。
Since the present invention has the above-mentioned effects, it can be applied to, for example, telephones that function by detecting coins, various vending machines, coin sorting machines, counter machines for various objects, position detection systems, computer human output systems, etc. If so, we can expect great effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来技術に係る遮断型光センサーの一例を示す
説明図、第2図は本発明による1実施例を示す構成図と
一部装置の断面図である。 ム10.光検出装置の断面、 13.、、再帰反射板C
10,被検出物体
FIG. 1 is an explanatory diagram showing an example of a cut-off type optical sensor according to the prior art, and FIG. 2 is a configuration diagram and a sectional view of a part of the device, showing an embodiment according to the present invention. Mu10. Cross section of photodetector, 13. ,, retroreflector C
10, Detected object

Claims (1)

【特許請求の範囲】[Claims] 投光器からの光をハーフミラ−を介して照射しその反射
光が再び元の経路を逆に辿ってハーフミラ−に戻るよう
にされた後、該ハーフミラ−を介して直角方向に設置し
た受光器によって受光されるべくなした光検出装置に於
いて、該投光器にょシ再帰反射板に斜めに照射し、その
光路の途上の物体の有無の検出を行うことを特徴とする
、光を用いた物体の検出方法。
The light from the projector is irradiated through the half mirror, and the reflected light retraces its original path and returns to the half mirror, and then is received by the receiver installed at right angles through the half mirror. Detection of an object using light, which is characterized in that the light detecting device is characterized in that the projector illuminates a retroreflector plate obliquely and detects the presence or absence of an object on the optical path. Method.
JP56106295A 1981-07-09 1981-07-09 Optical detection for object Pending JPS589083A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56106295A JPS589083A (en) 1981-07-09 1981-07-09 Optical detection for object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56106295A JPS589083A (en) 1981-07-09 1981-07-09 Optical detection for object

Publications (1)

Publication Number Publication Date
JPS589083A true JPS589083A (en) 1983-01-19

Family

ID=14430045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56106295A Pending JPS589083A (en) 1981-07-09 1981-07-09 Optical detection for object

Country Status (1)

Country Link
JP (1) JPS589083A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1308407A2 (en) * 2001-11-02 2003-05-07 Koenig & Bauer Aktiengesellschaft Device for detecting the position of an edge of a transparent product

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5145487U (en) * 1974-09-28 1976-04-03

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5145487U (en) * 1974-09-28 1976-04-03

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1308407A2 (en) * 2001-11-02 2003-05-07 Koenig & Bauer Aktiengesellschaft Device for detecting the position of an edge of a transparent product
EP1308407A3 (en) * 2001-11-02 2004-03-17 Koenig & Bauer Aktiengesellschaft Device for detecting the position of an edge of a transparent product

Similar Documents

Publication Publication Date Title
US5818062A (en) Original edge detecting system and optical sensor using distance detecting light-receiving means
US5424717A (en) Laser light transmitter and proximity detector
JP2589278Y2 (en) Apparatus for detecting an object in sheet form
JPH0415433B2 (en)
JPS589083A (en) Optical detection for object
JPH07209079A (en) Optical device
US5867263A (en) Laser survey instrument having a reflection light blocking means
JP3205072B2 (en) Photoelectric detector
US4296332A (en) Sprocket hole sensing detector for moving translucent paper sheets
US6710887B2 (en) Testing device and method for establishing the position of a notch or bump on a disk
JP2002251259A (en) Touch panel device
JPH06222156A (en) Object detecting device
JP3004867U (en) Object detection device for automatic doors
JPH08167731A (en) Photocoupler
JPS59157512A (en) Optical position detector
JPH10307045A (en) Transmission photosensor
JPS61259189A (en) Reflective type photoelectric switch
JP2004205361A (en) Object detecting method
JPH08122058A (en) Object edge-position detecting sensor
JPH08265130A (en) Reflection type photoelectric switch provided with retro-reflecting plate
JPH04128605A (en) Orientation flat detecting apparatus
JPH0410569B2 (en)
JPH0520237U (en) Optical fiber type photoelectric switch
JPS62289713A (en) Reflection type photoelectric sensor
JP2871494B2 (en) Door sensor