JPS5890513A - Blood component separation method and device - Google Patents
Blood component separation method and deviceInfo
- Publication number
- JPS5890513A JPS5890513A JP56188320A JP18832081A JPS5890513A JP S5890513 A JPS5890513 A JP S5890513A JP 56188320 A JP56188320 A JP 56188320A JP 18832081 A JP18832081 A JP 18832081A JP S5890513 A JPS5890513 A JP S5890513A
- Authority
- JP
- Japan
- Prior art keywords
- blood
- component
- components
- water
- soluble polymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- External Artificial Organs (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、血液を重力の沈降作用によって成分分離する
改良された分取法および分取装置に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improved fractionation method and device for separating components of blood by the sedimentation action of gravity.
血液は血漿成分と赤血球、白血球、血小板等の血球成分
とからなっている。近年輸血は採血された血液をそのま
ま輸血するのでなく、これらの成分層に分離し、夫々の
患者が必要とする特定の成分だけを夫々輸血することが
多くなっている。血液を静置すれば、血球成分は次第に
沈殿して血漿が分離されるが、その速度は遅い。そのた
め重力による沈降によらず、遠心分離機を用いる分離法
が従来広く採用されてきた。しかし、この方法は^価な
遠心分離機と、その回転動力、更に安全装置等を必要と
する。Blood consists of plasma components and blood cell components such as red blood cells, white blood cells, and platelets. In recent years, in blood transfusions, instead of directly transfusing collected blood, it has become increasingly common to separate the blood into its component layers and transfuse only the specific components needed by each patient. If the blood is allowed to stand still, blood cell components will gradually precipitate and plasma will be separated, but this process is slow. For this reason, separation methods using centrifuges have been widely adopted in the past, without relying on sedimentation due to gravity. However, this method requires an expensive centrifuge, its rotational power, and safety equipment.
不発明1者らは、このような人工的遠心力を用いずに重
力の沈降作用によって血液の成分分離を効率よく行なう
ことができる装置を提供すべく鋭意検討した結果、血液
を実質的水平もしくは、流れ方向に対し上昇角度を与え
つつ、連続的に流すことにより、遠心力場を用いること
なく、血液を多層の成分に容易に分離しうろことを見出
し、分離方法および装置の発明として完成し、すでに出
願している。(’l?願昭56−16190 )本発明
者らは、更に、より小型の血液成分の分離装置によシ、
血液より赤血球を除いた分画をすみやかに得るべく鋭意
検討を進めた結果、驚くべきことに血液に水浴性高分子
を添加することVこより、非常に効果的に赤血球凝集が
促進さn1血漿成分を効率よく取得できることを見出し
、本発明を完成するに至った。The inventors of the present inventors have conducted intensive studies to provide a device that can efficiently separate blood components by the sedimentation effect of gravity without using such artificial centrifugal force. He discovered that blood can be easily separated into multilayered components by flowing it continuously while giving an upward angle to the flow direction, without using a centrifugal force field, and completed the invention of a separation method and device. , has already applied. ('l? Application No. 56-16190) The present inventors further developed a smaller blood component separation device.
As a result of intensive studies to promptly obtain a fraction from blood excluding red blood cells, we found that, surprisingly, the addition of a water bathing polymer to blood very effectively promoted red blood cell agglutination. The present invention has been completed based on the discovery that it is possible to efficiently obtain the following.
すなわち、本発明は血液を重力の沈降作用によって成分
の分取を行う方法において、血液に水溶性高分子を添加
したのち、該血液を少なくとも、1つの層状もしくは管
状O流路に連続的、cItすことにより、該血液流を分
離された成分層からなる多層流に移行せしめ、所望Q層
成分を取得することを%徴とする血液成分の分取法およ
び血液導入口を有する空間部と、該空間部に連通した少
なくとも1つの層状もしくは管状の血液流路と、該流路
に連通した少なくとも2個の血液成分の排出口を有する
空間部とからなる血液成分分離器を用いる血液成分の分
取装置において、血液の導入部、該血液と水溶性高分子
を含む水溶液との混合器、血液成分分取器および分離さ
れた血液成分の導出部とが、この順序で配置されたこと
をq#黴とする血液成分の分取装置である。That is, the present invention provides a method for separating blood components by gravity sedimentation, in which a water-soluble polymer is added to blood, and then the blood is continuously passed through at least one layered or tubular O flow path. A method for preparative separation of blood components whose characteristics are to transfer the blood flow to a multilayer flow consisting of separated component layers and obtain a desired Q layer component, and a space having a blood inlet; Preparation of blood components using a blood component separator comprising at least one laminar or tubular blood flow channel communicating with a space and a space having at least two blood component discharge ports communicating with the flow channel In the device, the blood introduction part, the mixer for the blood and an aqueous solution containing a water-soluble polymer, the blood component fractionator, and the separated blood component extraction part are arranged in this order. This is a device that separates blood components from mold.
本発明の方法はパッチ法ではなく、連続的である点が特
徴である。The method of the present invention is characterized in that it is not a patch method but a continuous method.
本発明で用いられる水溶性高分子としては、ゼラチンも
しくはその誘導体、デキストラン、プルラン、イヌリン
などの多糖類もしくはその誘導体、ポリビニルアルコー
ル、ポリビニルピロリドンなどの水溶性ポリビニル化合
物もしくはその誘導体が用いられる。水溶性高分子とし
ては、分子量が1000 よシ大きいものが赤血球の
凝集を加速する効果がある。分子量が非常に大きいもの
は抗原性があられれ、また腎臓に障害を与えたりするの
で、好ましくない。分子量10万より小さく 、100
0より大きい水溶性高分子、より好ましくは分子t5万
より小さく 1000より大きい水溶性高分子が好適に
用いられる。As water-soluble polymers used in the present invention, gelatin or its derivatives, polysaccharides or derivatives thereof such as dextran, pullulan, and inulin, and water-soluble polyvinyl compounds or derivatives thereof such as polyvinyl alcohol and polyvinylpyrrolidone are used. As water-soluble polymers, those with a molecular weight of more than 1000 have the effect of accelerating the aggregation of red blood cells. Those with very large molecular weights are not preferred because they are antigenic and may cause damage to the kidneys. Molecular weight smaller than 100,000, 100
A water-soluble polymer having a molecular t of less than 50,000 and more than 1000 is preferably used.
水溶性高分子は生理的な状態とほぼ同等な浸透圧を有す
る水溶液として用いる方法が、連続的に血液の成分分離
を行ううえで好ましい。水溶性高分子の濃度としては、
1〜lO重量パーセントが好ましい#1度範囲である。A method in which the water-soluble polymer is used as an aqueous solution having an osmotic pressure approximately equivalent to that in a physiological state is preferable for continuous blood component separation. The concentration of water-soluble polymer is
1 to 10 weight percent is the preferred #1 degree range.
添加する水溶性高分子の水溶液の量は導入された血液に
対して10〜25容積パーセントであることが好ましい
。The amount of the water-soluble polymer aqueous solution added is preferably 10 to 25 percent by volume based on the introduced blood.
本発明に用いられている血液成分分離器は、内部に血液
の流路を有しておシ、その流路内において、血沈すなわ
ち重力による上からの力と血液の流れ方向の外力とが効
率的に赤血球に作用し、赤血球の凝集塊形成を促進させ
るためには、層状の流路ではその厚みが、20■以下、
ニジ好ましくは0.2〜lO■、さらに好ましくは0.
5〜5■、管状の流路で社その断面積が、3(111以
下、より好ましくは0.0003〜1m、さらに好まし
くは0.001〜0.5dである流路が好適に用いられ
るっ該分離器の流路は、その全容積が分離血液成分の排
出口を有する空間部とほぼ同等もしくはそれより大きな
容積をもつことが好ましい。血液導入口を有する空間部
は、該分離器内に導入された血液が流路にできるだけ均
一に分配されて流れるためのものでアシ、この目的を達
するものであればどのような形状でもよいが、その容積
はできるだけ小さいことが望ましい。The blood component separator used in the present invention has an internal blood flow path, and within the flow path, blood sedimentation, that is, the force from above due to gravity and the external force in the blood flow direction are efficiently handled. In order to effectively act on red blood cells and promote the formation of red blood cell aggregates, the thickness of the layered channel must be 20 mm or less,
Preferably 0.2 to 1O, more preferably 0.
5 to 5 mm, a tubular flow path with a cross-sectional area of 3 (111 or less, more preferably 0.0003 to 1 m, and even more preferably 0.001 to 0.5 d) is preferably used. Preferably, the total volume of the flow path of the separator is approximately equal to or larger than the space having the discharge port for the separated blood components. The reeds are for the purpose of distributing and flowing the introduced blood as uniformly as possible into the flow path, and may have any shape as long as it achieves this purpose, but it is desirable that the volume be as small as possible.
該分離器の容積は少なくともsomあることが実用的に
望ましい。又、この装置が体外循環を行なう目的で使用
される時は500 WLt以下であることが望ましい。It is practically desirable that the separator has a volume of at least som. Furthermore, when this device is used for the purpose of extracorporeal circulation, it is desirable that the power consumption be 500 WLt or less.
本発明の分取装置を好適に使用するためには、水溶性高
分子を添加した血液を該分離器の分離血液成分の排出口
を有する空間部における該血液の滞留時間が1分以上に
なるように流すことが望ましい。しかし、該血液の滞留
時間が余り長すぎると、流せる血液量が少なくなり、得
られる分離成分の量が低下するので好ましくない。In order to suitably use the fractionating device of the present invention, it is necessary that the blood to which the water-soluble polymer is added stay in the space of the separator having the discharge port for the separated blood components for at least 1 minute. It is desirable to flow it like this. However, if the residence time of the blood is too long, the amount of blood that can be flowed will decrease, and the amount of separated components obtained will decrease, which is not preferable.
血液流は35〜42℃、より好ましくは37〜40℃に
加温されることが望ましい。赤血球の凝集は温度が高い
ほど加速されるが、余!ll^いと、赤血球の溶血など
が起こり好ましくない。Preferably, the blood flow is heated to 35-42°C, more preferably 37-40°C. The agglutination of red blood cells is accelerated as the temperature increases, but... Otherwise, hemolysis of red blood cells may occur, which is undesirable.
本発明の装置の材質は、内圧によって変形しない硬質の
ものであることが必要である5又、有毒な溶出物がなく
、血栓形成を起こしにくい材質でなければならない。The material of the device of the present invention must be hard and not deformed by internal pressure.It must also be free of toxic eluates and resistant to thrombus formation.
密閉容器の材質は、内圧によって変形しない硬質のもの
であることが必要である。また、無毒で抗血橙の材料で
あることが必要である。しかし、軟質で薄い材料で密閉
容器を作り、これを硬質材料で補強して用いることもで
きる。このものは使い捨て容器としやすいことから、衛
生的観点からみて好ましい実施態様である。The material of the closed container needs to be hard and not deformed by internal pressure. It is also necessary that the material be non-toxic and anti-blood-orange. However, it is also possible to use a sealed container made of a soft, thin material and reinforced with a hard material. This is a preferred embodiment from a hygienic point of view, since it is easy to use as a disposable container.
具体的な容器材料としては、ポリカーボネート樹脂、硬
質塩化ビニール樹脂、アクリル樹脂、アルミニウム、軟
質なものとして、シリコン樹脂、軟質塩化ビニール樹脂
、ポリエチレン樹脂等があげられる。Specific container materials include polycarbonate resin, hard vinyl chloride resin, acrylic resin, aluminum, and soft materials include silicone resin, soft vinyl chloride resin, polyethylene resin, and the like.
次に図面によって本発明を具体的に説明する。Next, the present invention will be specifically explained with reference to the drawings.
第1図は本発明の血液成分の分取装置の基本釣構成例を
示す説明図である。FIG. 1 is an explanatory diagram showing an example of the basic configuration of the blood component fractionation apparatus of the present invention.
第2図は血液成分分離器の一例を示す模式図で6って1
.内部が判り易いように示しである。Figure 2 is a schematic diagram showing an example of a blood component separator.
.. It is shown to make it easier to understand the inside.
いま血液の流れにしたがって本発明を説明すると、抗凝
固剤を加えられた血液は血液導入部1から導入され、必
要に応じ、例えばローラーポンプの如きポンプ2により
、混合器3金へて、血液成分分取器4に輸送される。混
合器3にて、血液と貯留器5より輸送された水溶性高分
子水溶液とが混合される。血液成分分取器4にて分離さ
れた各血液成分は各導出部7,8より導出される。Now, the present invention will be explained according to the flow of blood. Blood to which an anticoagulant has been added is introduced from a blood introduction part 1, and if necessary, a pump 2 such as a roller pump is used to transfer the blood to a mixer 3. It is transported to the component separator 4. In the mixer 3, the blood and the water-soluble polymer aqueous solution transported from the reservoir 5 are mixed. Each blood component separated by the blood component separator 4 is led out from each lead-out section 7,8.
本発明において、血液成分分取器4は、その−例が第2
図に示されているように、血液は血液導入口11から該
分取器内の空間部(A)12に導入されたのち、層状血
液流路13の一方に連続して送られる。血液は血液流路
に漏って流れるにしたがって、多血小板血漿エサなる上
澄層16とおもに赤6血球よりなる沈殿層15とに分離
する。沈殿層15は、分離がさらに進むと白血球層が赤
血球層の上の上に浮かぶ状態で中間層を形成することが
ある。血液流路13の下流において分離した成分は、空
間部(B)14に滞留した、それぞれの成分層中に開口
する排出口17.18を通して、必要に応じてポンプ9
を使用して導出部7,8へ継続的に排出される。血液流
路は上述のような構造のほか、第3図のような複数の層
状流路でもよく、また単数または複数の管状流路でもよ
い。In the present invention, the blood component separator 4 has a second
As shown in the figure, blood is introduced from a blood inlet 11 into a space (A) 12 in the fractionator, and then continuously sent to one side of a laminar blood flow path 13. As the blood leaks into the blood flow path, it separates into a supernatant layer 16, which is platelet-rich plasma food, and a precipitate layer 15, which mainly consists of six red blood cells. As the separation progresses further, the precipitate layer 15 may form an intermediate layer with the white blood cell layer floating above the red blood cell layer. The components separated downstream of the blood flow path 13 are passed through the discharge ports 17 and 18 that open into the respective component layers staying in the space (B) 14, and are pumped into the pump 9 as necessary.
It is continuously discharged to the deriving parts 7 and 8 using the following. In addition to the structure described above, the blood flow path may have a plurality of layered flow paths as shown in FIG. 3, or may have a single or plural tubular flow path.
排出される上置層への沈殿層の成分の混入を抑制するた
めには、光学的方法などによる検知手段lO(第1図)
を使用することにより、各成分の排出速度を調節するこ
とが望ましい。In order to suppress the mixing of components of the precipitated layer into the overlying layer that is discharged, a detection means such as an optical method (Fig. 1) is required.
It is desirable to control the discharge rate of each component by using
本発明において血液導入部とは、通常、シャント、注射
針などによる採血器、その他の導管とコック、必要に応
じポンプを併用し、血液を血液成分分取装置に導入する
だめの装置をいい、血液成分導出部とは、血液成分分離
器によって分離された各血液成分を導管および必要に応
じて、シャフト、コック、血圧コントロール弁、点滴等
を用いて血液成分分取装置から導出する装置をいう。混
合器は、抗血液凝固剤を加えられた血液と水溶性高分子
水溶液とを混合するためのものであって、攪拌などによ
り完全に混合を行なえるものでおるこ、とが望ましいが
、Y字塁コネクターなど二つの流体を合流させるだめの
装置であっても充分にその目的を達成することができる
。In the present invention, the blood introduction section refers to a device for introducing blood into a blood component separation device, usually using a shunt, a blood sampler using a syringe needle, other conduits and a cock, and a pump if necessary. Blood component derivation unit refers to a device that derives each blood component separated by a blood component separator from a blood component separation device using a conduit and, if necessary, a shaft, a cock, a blood pressure control valve, an intravenous drip, etc. . The mixer is for mixing blood to which an anticoagulant has been added and the water-soluble polymer aqueous solution, and it is preferable that the mixer be capable of thorough mixing by stirring, etc. Even a device for merging two fluids, such as a cross-section connector, can sufficiently accomplish the purpose.
以下、実施例により本発明の実施の態様をより詳細に説
明する。Hereinafter, embodiments of the present invention will be explained in more detail with reference to Examples.
実施例1
血液成分分離器としてアクリル樹脂を用いて、第2図に
示すような構造であって、血液流路の厚さ2−1その容
積30−1空間部Bの容積15csi。Example 1 An acrylic resin is used as a blood component separator, and the structure is as shown in FIG. 2, in which the thickness of the blood flow path is 2-1, the volume thereof is 30-1, and the volume of space B is 15 csi.
分離器の全容積50メである分離器を作成した。A separator was created with a total separator volume of 50 meters.
37℃に保温した該分離器を用い、第1図に示すような
血液成分分取装置を作成し、ヘノクリンにて凝固を防止
させ、38℃に加温した豚血液を101分の速度で送血
し、分取実験を行った。水溶性高分子としては、ゼラチ
ン誘導体として、ゲラフシン(東洋醸造社製;ゼラチ・
ン分解物の再重合体4111、塩化ナトリウム0.85
2 tlb 、塩イヒカルシウム0.0747 ) 、
多糖類としては、デキスFランフ0〔デキストラン糖性
(大域工場製)、ブドウII5チ、デキストラ/706
%〕、デキストラン40〔低分子デキストラン糖性(大
域工場製)、ブドウm1ss、デキストラン4010チ
〕、第1表
本分離効率は次のように定義した。Using the separator kept at 37°C, a blood component separation device as shown in Figure 1 was created, and pig blood, which had been prevented from coagulating with Henocrine and warmed to 38°C, was sent at a speed of 101 minutes. Blood was collected and fractionation experiments were performed. As a water-soluble polymer, as a gelatin derivative, gelafsin (manufactured by Toyo Jozo Co., Ltd.; gelatin,
Repolymer of decomposition product 4111, sodium chloride 0.85
2tlb, calcium salt 0.0747),
Examples of polysaccharides include DexF Lanf 0 [Dextran Saccharide (manufactured by Daiichi Factory), Grape II 5T, Dextra/706
%], Dextran 40 [Low molecular weight dextran sugar (manufactured by Daiei Factory), Grape m1ss, Dextran 4010%], Table 1 Separation efficiency was defined as follows.
を添加した。37℃における血沈が43−の豚血液を用
いたときの結果を第1表に示した。was added. Table 1 shows the results when pig blood with a blood sedimentation rate of 43 at 37°C was used.
以上詳細に述べてきたように、本発明の装置を用いるこ
とにLす、遠心力を使用せずにすみゃ力)に血液を多成
分に分離することができるのみならず、せまい病室等で
も容易に施行できるために、全身性千すテマトーデスな
ど血沈が比較的軽度に亢進した膠原病患者、ガン患者な
どの血漿交換療法或は血漿浄化療法などにもきわめて有
用である。As described in detail above, the use of the device of the present invention not only allows blood to be separated into multiple components without using centrifugal force, but also allows for the separation of blood into multiple components even in small hospital rooms. Because it can be easily performed, it is also extremely useful for plasma exchange therapy or plasma purification therapy for patients with collagen diseases such as systemic hyperthematosus where blood sedimentation is relatively mildly increased, cancer patients, etc.
第1図は、本発明装置の構成を例示する説明図であるう
第2図は、血液成分分離器の一例を示す斜示図であり、
内部が判り易いように正面を断面図で示し、血液が分離
していく挙動金例示したものである。
第3図は、複数の層状血液流路を有する血液成分分離器
の一例を示す斜示図であって、正面を断面図で示したも
のでろる。
l 血液導入部 2 ボンダ
3 混合器 4 血液成分分離器5 水
溶性高分子水溶液貯貿器 6 ポングア 血液成分排
出部 8 血液成分排出部9 ポンプ
lO赤血球の検知手段11 血液導入口
12 空間1ts(ム)13 血液流路
14 空閾部(B)15 上漬層
16 沈殿層17 血液成分排出口 1
8 血液成分排出口特許出願人 旭化成工業株式会社FIG. 1 is an explanatory view illustrating the configuration of the device of the present invention. FIG. 2 is a perspective view showing an example of a blood component separator.
The front view is shown as a sectional view to make it easier to understand the inside, and the behavior of blood separating is shown as an example. FIG. 3 is a perspective view showing an example of a blood component separator having a plurality of laminar blood flow channels, and is a front sectional view. l Blood introduction section 2 Bonder 3 Mixer 4 Blood component separator 5 Water-soluble polymer aqueous solution storage device 6 Pongua Blood component discharge section 8 Blood component discharge section 9 Pump
IO Red Blood Cell Detection Means 11 Blood Inlet
12 Space 1ts (mu) 13 Blood flow path
14 Sky threshold part (B) 15 Upper layer
16 Precipitation layer 17 Blood component outlet 1
8 Blood component outlet patent applicant Asahi Kasei Corporation
Claims (1)
法において、血液に水溶性高分子を添加したのち、該血
液を少なくとも1つの層状もしくは管状の流路に連続的
に流すことにエリ、該血液流を分離された成分層からな
る多層流状に移行せしめ、所望の層成分を取得すること
を特徴とする血液成分の分取法 2 血液導入口を有する空間部と、該空間部に連通した
少なくとも1つの層状もしくは管状の血液流路と、該流
路に連通した、少なくとも2個の血液成分の排出口を有
する空間部とからなる血液成分分離器を用いる血液成分
の分取装置において、血液の導入部、該血液と水溶性高
分子を含む水溶液との混合器、血液成分分離器および分
離された血液成分の導出部とが、この順序で配置された
ことを特徴とする血液成分の分取装置[Claims] 1. A method of separating blood components by gravity sedimentation, in which a water-soluble polymer is added to blood, and then the blood is continuously passed through at least one layered or tubular channel. Blood component fractionation method 2 characterized in that the blood flow is transferred to a multi-layered flow consisting of separated component layers to obtain desired layer components.A space portion having a blood inlet; Blood component separation using a blood component separator comprising at least one laminar or tubular blood flow channel communicating with the space and a space communicating with the flow channel having at least two blood component discharge ports. The preparative separation device is characterized in that a blood introduction section, a mixer for mixing the blood with an aqueous solution containing a water-soluble polymer, a blood component separator, and a discharge section for the separated blood components are arranged in this order. blood component separation device
Priority Applications (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP56188320A JPS5890513A (en) | 1981-11-26 | 1981-11-26 | Blood component separation method and device |
| EP82100771A EP0057907B1 (en) | 1981-02-05 | 1982-02-03 | Apparatus for separating blood components |
| AT82100771T ATE24401T1 (en) | 1981-02-05 | 1982-02-03 | DEVICE FOR SEPARATING BLOOD COMPONENTS. |
| DE8282100771T DE3274800D1 (en) | 1981-02-05 | 1982-02-03 | Apparatus for separating blood components |
| US06/369,439 US4409106A (en) | 1981-09-08 | 1982-04-19 | Apparatus and method for separating blood components |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP56188320A JPS5890513A (en) | 1981-11-26 | 1981-11-26 | Blood component separation method and device |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPS5890513A true JPS5890513A (en) | 1983-05-30 |
Family
ID=16221536
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP56188320A Pending JPS5890513A (en) | 1981-02-05 | 1981-11-26 | Blood component separation method and device |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPS5890513A (en) |
Cited By (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2007515936A (en) * | 2003-09-04 | 2007-06-21 | アリックス インコーポレイテッド | Particle and cell separation based on multilayer flow using laser steering |
| JP2009185056A (en) * | 2002-01-15 | 2009-08-20 | Roberto Beretta | System and method for preparing autologous fibrin glue |
| US8158927B2 (en) | 2002-07-31 | 2012-04-17 | Arryx, Inc. | Multiple laminar flow-based particle and cellular separation with laser steering |
| US11187224B2 (en) | 2013-07-16 | 2021-11-30 | Abs Global, Inc. | Microfluidic chip |
| US11193879B2 (en) | 2010-11-16 | 2021-12-07 | 1087 Systems, Inc. | Use of vibrational spectroscopy for microfluidic liquid measurement |
| US11243494B2 (en) | 2002-07-31 | 2022-02-08 | Abs Global, Inc. | Multiple laminar flow-based particle and cellular separation with laser steering |
| US11331670B2 (en) | 2018-05-23 | 2022-05-17 | Abs Global, Inc. | Systems and methods for particle focusing in microchannels |
| US11415503B2 (en) | 2013-10-30 | 2022-08-16 | Abs Global, Inc. | Microfluidic system and method with focused energy apparatus |
| US11628439B2 (en) | 2020-01-13 | 2023-04-18 | Abs Global, Inc. | Single-sheath microfluidic chip |
| US11889830B2 (en) | 2019-04-18 | 2024-02-06 | Abs Global, Inc. | System and process for continuous addition of cryoprotectant |
| US12135270B2 (en) | 2020-11-23 | 2024-11-05 | Abs Global, Inc. | Modular flow cytometry systems and methods of processing samples |
| US12497648B2 (en) | 2020-10-21 | 2025-12-16 | Abs Global, Inc. | Methods and systems for processing genetic samples to determine identity or detect contamination |
-
1981
- 1981-11-26 JP JP56188320A patent/JPS5890513A/en active Pending
Cited By (26)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2009185056A (en) * | 2002-01-15 | 2009-08-20 | Roberto Beretta | System and method for preparing autologous fibrin glue |
| US11243494B2 (en) | 2002-07-31 | 2022-02-08 | Abs Global, Inc. | Multiple laminar flow-based particle and cellular separation with laser steering |
| US8158927B2 (en) | 2002-07-31 | 2012-04-17 | Arryx, Inc. | Multiple laminar flow-based particle and cellular separation with laser steering |
| US8653442B2 (en) | 2002-07-31 | 2014-02-18 | Premium Genetics (Uk) Limited | Multiple laminar flow-based particle and cellular separation with laser steering |
| US8933395B2 (en) | 2002-07-31 | 2015-01-13 | Premium Genetics (Uk) Ltd. | Multiple laminar flow-based particle and cellular identification |
| US9000357B2 (en) | 2002-07-31 | 2015-04-07 | Premium Genetics (Uk) Ltd. | Multiple laminar flow-based particle and cellular identification |
| US9140690B2 (en) | 2002-07-31 | 2015-09-22 | Premium Genetics (Uk) Ltd. | Method of identifying components in a fluid mixture |
| US9977401B2 (en) | 2002-07-31 | 2018-05-22 | Premium Genetics (Uk) Ltd. | Multiple laminar flow-based particle and cellular separation with laser steering |
| US10216144B2 (en) | 2002-07-31 | 2019-02-26 | Premium Genetics (Uk) Ltd | Multiple laminar flow-based particle and cellular separation with laser steering |
| US11415936B2 (en) | 2002-07-31 | 2022-08-16 | Abs Global, Inc. | Multiple laminar flow-based particle and cellular separation with laser steering |
| US11422504B2 (en) | 2002-07-31 | 2022-08-23 | Abs Global, Inc. | Multiple laminar flow-based particle and cellular separation with laser steering |
| JP2012020149A (en) * | 2003-09-04 | 2012-02-02 | Arryx Inc | Apparatus and method for purifying/separating particle |
| JP2007515936A (en) * | 2003-09-04 | 2007-06-21 | アリックス インコーポレイテッド | Particle and cell separation based on multilayer flow using laser steering |
| US11965816B2 (en) | 2010-11-16 | 2024-04-23 | 1087 Systems, Inc. | Use of vibrational spectroscopy for microfluidic liquid measurement |
| US11193879B2 (en) | 2010-11-16 | 2021-12-07 | 1087 Systems, Inc. | Use of vibrational spectroscopy for microfluidic liquid measurement |
| US11512691B2 (en) | 2013-07-16 | 2022-11-29 | Abs Global, Inc. | Microfluidic chip |
| US11187224B2 (en) | 2013-07-16 | 2021-11-30 | Abs Global, Inc. | Microfluidic chip |
| US11415503B2 (en) | 2013-10-30 | 2022-08-16 | Abs Global, Inc. | Microfluidic system and method with focused energy apparatus |
| US11639888B2 (en) | 2013-10-30 | 2023-05-02 | Abs Global, Inc. | Microfluidic system and method with focused energy apparatus |
| US11796449B2 (en) | 2013-10-30 | 2023-10-24 | Abs Global, Inc. | Microfluidic system and method with focused energy apparatus |
| US11331670B2 (en) | 2018-05-23 | 2022-05-17 | Abs Global, Inc. | Systems and methods for particle focusing in microchannels |
| US12337320B2 (en) | 2018-05-23 | 2025-06-24 | Abs Global, Inc. | Systems and methods for particle focusing in microchannels |
| US11889830B2 (en) | 2019-04-18 | 2024-02-06 | Abs Global, Inc. | System and process for continuous addition of cryoprotectant |
| US11628439B2 (en) | 2020-01-13 | 2023-04-18 | Abs Global, Inc. | Single-sheath microfluidic chip |
| US12497648B2 (en) | 2020-10-21 | 2025-12-16 | Abs Global, Inc. | Methods and systems for processing genetic samples to determine identity or detect contamination |
| US12135270B2 (en) | 2020-11-23 | 2024-11-05 | Abs Global, Inc. | Modular flow cytometry systems and methods of processing samples |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP3712182B2 (en) | Method for obtaining intermediate density component blood products with increased yield | |
| CA2281649C (en) | System and method for separation of particles | |
| US4409106A (en) | Apparatus and method for separating blood components | |
| JP5723026B2 (en) | System and method for collecting platelets and predicting return of plasma | |
| US4187979A (en) | Method and system for fractionating a quantity of blood into the components thereof | |
| Buckner et al. | Leukapheresis* by continuous flow centrifugation (CFC) in patients with chronic myelocytic leukemia (CML) | |
| DK175916B1 (en) | System and method for treating biological fluids | |
| CN101269246B (en) | Continuous blood cleaning equipment with replacement liquid purifier | |
| JPS5890513A (en) | Blood component separation method and device | |
| NURMOHAMED et al. | Long-term Efficacy and Safety of a Low Molecular Weight Heparin in Chronic Hemodialysis Patients A Comparison with Standard Heparin | |
| US20190269844A1 (en) | Systems And Methods For Performing Online Extracorporeal Photopheresis | |
| US20100081985A1 (en) | Platelet Additive Solution For Leukoreducing White Blood Cells In Apheresed Platelets | |
| US10675641B2 (en) | Method and apparatus for continuous removal of sub-micron sized particles in a closed loop liquid flow system | |
| Simon et al. | Collection of platelets with a new cell separator and their storage in a citrate‐plasticized container | |
| WO2016174180A1 (en) | Separating and transferring phases of a fluid through centrifugation | |
| JP2022115928A (en) | Systems and methods for platelet filtration using additives | |
| JPH01249062A (en) | Outside body circulation circuit | |
| Weston et al. | Resin column perfusion with whole blood or plasma separated by the continuous flow celltrifuge | |
| JPS62688Y2 (en) | ||
| US11285494B2 (en) | Method and apparatus for continuous removal of sub-micron sized particles in a closed loop liquid flow system | |
| JPS5841562A (en) | Apparatus for separating blood components | |
| JPS6230782B2 (en) | ||
| Dinda | BLOOD AND ITS USE IN MODERN ERA | |
| JPS5841822A (en) | Blood component separation method and device | |
| Bronzino et al. | Therapeutic Apheresis and Blood Fractionation |