JPS5890441A - Precision machining system - Google Patents

Precision machining system

Info

Publication number
JPS5890441A
JPS5890441A JP18960181A JP18960181A JPS5890441A JP S5890441 A JPS5890441 A JP S5890441A JP 18960181 A JP18960181 A JP 18960181A JP 18960181 A JP18960181 A JP 18960181A JP S5890441 A JPS5890441 A JP S5890441A
Authority
JP
Japan
Prior art keywords
axis
tool
value
cutting
micro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18960181A
Other languages
Japanese (ja)
Other versions
JPS6354508B2 (en
Inventor
Masatoshi Murofushi
室伏 正俊
Isamu Tanimoto
谷本 勇
Toshio Sagara
相良 利夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Machine Co Ltd
Original Assignee
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Machine Co Ltd filed Critical Toshiba Machine Co Ltd
Priority to JP18960181A priority Critical patent/JPS5890441A/en
Publication of JPS5890441A publication Critical patent/JPS5890441A/en
Priority to US06/701,811 priority patent/US4602540A/en
Publication of JPS6354508B2 publication Critical patent/JPS6354508B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • G05B19/39Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using a combination of the means covered by at least two of the preceding groups G05B19/21, G05B19/27 and G05B19/33
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/34Director, elements to supervisory
    • G05B2219/34161Superposition curves, combine xy slides with other xy or polar slides
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37405Contact detection between workpiece and tool, probe, feeler
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/42Servomotor, servo controller kind till VSS
    • G05B2219/42075Two position loops
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/50Machine tool, machine tool null till machine tool work handling
    • G05B2219/50313Tool offset, tool wear

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Automatic Control Of Machine Tools (AREA)
  • Numerical Control (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

PURPOSE:To compensate a difference from the theoretical value by a drive part, by furnishing a tool holder, sliding in the Y direction driven by a micro-displacement drive part, on a tool rest, and by measuring the position of the tool holder with an optical measuring instrument. CONSTITUTION:The X and Y positions of a tool holder 4 are measured by laser measuring instruments 12, 13, and the output pulses therefrom are counted by counters 14, 20. The calculated value X of the X-axis counter 14 is fed into an operator circuit 15, and the theoretical position on the Y axis corresponding to the X-axis position is calculated according to the desired curvature to be machined. The output value y with the Y-axis counter 20 is compared with the theoretical value Y of the operator circuit 15 to control a micro-displacement element 6. The counted value y held at a holder circuit 21 is compared with the theoretical value Y by the comparator 20, and every difference exceeding a specific value DELTAy is fed into an additive register 19 to give a drive signal DELTAY for driving a certain distance, and thus tool rest 5 is driven for DELTAY step by step. Accordingly the micro-displacement element can be always held in work within a proper range.

Description

【発明の詳細な説明】 本発明は軸対称な二次曲面を蜆面状に仕上げ〃ロエする
精密切削加ニジステムに係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a precision cutting system for finishing an axially symmetrical quadratic curved surface into a square shape.

近時、NvM加工の分野ではレーザー技術、超L 81
 Vt@寺の影響から0.1ミクロン以上の加工n1に
の加工機械が鼠まれている。しかしながら従来の加工機
械で0.1ミクiン以上の加工種度を有するものは王と
して研削加工によるものであってその加工対象は単なる
平面か棒状部材の外周を研削して優られる円周向に限ら
れていた。このために放物面、双曲面等をg面仕上げに
加工することができ、しかも切削加工によってそれを行
なうという技術的課罐はこれまでの加工機械では解決で
きなかった。
Recently, in the field of NvM processing, laser technology, ultra-L 81
Due to the influence of Vt @ temple, processing machines for processing n1 of 0.1 micron or more are being used. However, conventional machining machines with a machining degree of 0.1 μm or more are mostly grinding processes, and the machining target is a simple flat surface or a circumferential direction, which is best achieved by grinding the outer periphery of a rod-shaped member. was limited to. For this reason, it is possible to machine paraboloids, hyperboloids, etc. to a g-plane finish, and the technical challenge of doing so by cutting has not been possible with conventional processing machines.

この理由は二次曲面等を誂向仕上げ加工を行なう需要は
限られていた!#情を別としても、純粋に技術的に考え
た場合、加工機械の機械部材の温匿の加工精度への形番
および工具に対する送り駆動系の加工精度への形番、た
とえば案内面の槽に%態動モータ自体のリゾルージョン
、送シネジ梢政、位置フィードバック用検出器の精度、
あるいは駆動系の応答性等の誤差要因が考えられる。
The reason for this is that the demand for custom-finishing quadratic curved surfaces is limited! # Aside from the circumstances, from a purely technical perspective, the model number depends on the machining accuracy of the mechanical parts of the processing machine, and the machining accuracy of the feed drive system for the tool, such as the guide surface tank. The resolution of the motor itself, the precision of the feed screw, the accuracy of the position feedback detector,
Alternatively, error factors such as drive system responsiveness may be considered.

轡に後者の間鴫魚は前述した平向、円周面等対象として
いるのに対して、二次@面を対象とする切削加工では同
時に二軸方向に関して制御を行なうことを要求される。
On the other hand, while the latter machining process targets the aforementioned horizontal and circumferential surfaces, cutting processing that targets secondary @planes requires control in two axial directions at the same time.

従来、同時に二軸(X、Y)制御を行なう送シ駆動制御
はその加工精度を考慮外とすれば所11Nc’工作機械
によって実曳されている。しかしながらNC工作機械で
鉱テーブル等の移動量の検出精度紘^精度なものでも1
ミクロンであシ、特別なものでも±0.5ミクロン程度
である。
Conventionally, feed drive control that performs two-axis (X, Y) control simultaneously has been actually carried out by a 11Nc' machine tool, if machining accuracy is not considered. However, with NC machine tools, the accuracy of detecting the amount of movement of mining tables, etc. is 1.
Even if it is a special one, it is about ±0.5 micron.

さらにIC工作機械自体についても、今敲小分解指令値
を0.01(ミクロン/パルス)トシ、最大切削送シ速
度を600111/分とするととな多パルスの分&!速
さは高速を41!求される丸めにNC’工作機械の補間
演算等の遂行も1鑵になる。
Furthermore, regarding the IC machine tool itself, if the small resolution command value is set to 0.01 (microns/pulse) and the maximum cutting feed speed is 600111/min, the number of pulses is ! The speed is 41! It is also necessary to perform interpolation calculations on NC' machine tools for the required rounding.

さらにフィードバック制御のだめの位置検出器について
もある精度の移動量を#(illすることができ、かつ
0.01ンクロン程度の精度を漫られるものは現在レー
ザ測長器に限られる。しかしながらこのようなレーザ測
長器を用いても侮られた誤°差信号に対して駆動系が応
答できないという問題がある。
Furthermore, the only position detector that can perform feedback control is a laser length measuring device that can measure the amount of movement with a certain degree of precision, and that can achieve an accuracy of about 0.01 microns. Even if a laser length measuring device is used, there is a problem in that the drive system cannot respond to a neglected error signal.

本発明は上記の事情に鑑みてなされたもので0.1ミク
ロン以上の加工精度で二次曲面の切削加工を行なうこと
ができる稽慴切削加ニジステムを提供することを目的と
するもの−である。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a training cutting system capable of cutting a quadratic curved surface with a processing accuracy of 0.1 micron or more. .

本発明はX軸駆動系およびY@駆動系によプXY平面上
の任意の位置へ駆動される刃物台にY軸に沿って高速か
つ高精度に位置決めを行なう微小変位駆動部を介して刃
物を保持する工具保持部を設け、この工具保持部の位置
を光学的(lIJ艮器を用いて測長し、この副長値と理
論値との差分を上記微小変位駆動部で補償するとともに
、この微小変位駆動部における補償量が所定の設定値を
越える毎に上記Y441駆鯛系を駆動して上記補償量を
所定値内にすることを特徴とするものである。
The present invention provides a tool post which is driven by an X-axis drive system and a Y@drive system to a desired position on the XY plane, and which uses a micro-displacement drive unit to position the tool post along the Y-axis at high speed and with high precision. A tool holder is provided to hold the tool holder, and the position of the tool holder is measured optically (using an IJ measuring instrument), and the difference between this sub-length value and the theoretical value is compensated for by the minute displacement drive part, and this The present invention is characterized in that each time the amount of compensation in the minute displacement drive section exceeds a predetermined set value, the Y441 sea bream driving system is driven to bring the amount of compensation within a predetermined value.

以下本発明の一実!M例を第1図に示すブロック図を参
照して詳細に説明す・る。図中1は切削工具で回転軸2
に保持されて回転駆動される工作物3に当接して切削加
工する。そして上記切削工^1を工作物3に対して相対
移動させるように駆動し、その表面を所望の形状に切削
加工するものである。以下の説明では切削工具1の駆動
方向は上記回転軸2に平行なY軸と、この回転軸2に直
角なX軸からなる直5!座標系とする。そして切削工具
1を工具保持部4に保持し、この工具保持部4を刃物台
5に値小変位累子6を介して保持するようにしている。
The following is the fruit of this invention! The M example will be explained in detail with reference to the block diagram shown in FIG. In the figure, 1 is the cutting tool and the rotating shaft 2
Cutting is carried out by contacting the workpiece 3 which is held and rotationally driven. The cutting tool ^1 is then driven to move relative to the workpiece 3 to cut the surface into a desired shape. In the following explanation, the driving direction of the cutting tool 1 is a straight line consisting of a Y axis parallel to the rotation axis 2 and an X axis perpendicular to the rotation axis 2. Let it be a coordinate system. The cutting tool 1 is held in a tool holder 4, and the tool holder 4 is held in a tool post 5 via a small displacement resistor 6.

第2図乃至第4図は上記刃物台5を示す千血図、[面図
および第2図ff−ff線矢祝断面図である。すなわち
工具保持g4は静圧軸受を介して刃物台5に対して図示
Y@方向へ進退自在に保持される。そしてこの工具保持
部4の前端部に切削工J41を取着し、後端部と刃物台
5の端部に突設した端壁5Aとの間に微小f位素子6を
介在させその両端を固層している。
2 to 4 are a cross-sectional view, a top view, and a sectional view taken along the line ff-ff in FIG. 2, showing the tool post 5. That is, the tool holder g4 is held with respect to the tool rest 5 via a hydrostatic bearing so that it can move forward and backward in the Y@ direction in the figure. A cutting tool J41 is attached to the front end of this tool holding part 4, and a minute f-position element 6 is interposed between the rear end and the end wall 5A protruding from the end of the tool rest 5, and both ends thereof are It is a solid layer.

また第5図蝶微小変位素子6の一例を示す闘面図で、た
とえば3個の圧電素子6It−両端および1間に銀箔等
の電極62,63,64゜65を介在して層状に櫨み重
ね、さらに両端の電極62.63の外側に41!!#体
66.66を介して結合部材67を設けたものである。
FIG. 5 is a battle face diagram showing an example of the butterfly micro-displacement element 6, in which, for example, three piezoelectric elements 6It are arranged in a layered manner with electrodes 62, 63, 64° 65, such as silver foil, interposed between both ends and 1. 41! ! A connecting member 67 is provided via # bodies 66 and 66.

そして電*es*tt4を接地し、この接地酸位と゛這
甑62.65との間に数百ボルトの電圧を印加して圧電
素子61を積層方向へ伸縮させるようにしている。
Then, the voltage *es*tt4 is grounded, and a voltage of several hundred volts is applied between this ground level and the voltage 62.65 to cause the piezoelectric element 61 to expand and contract in the stacking direction.

第6図はこのような微小f位素子6の印加電圧にと伸長
量Δlとの関係の一例を示す図で、たとえば厚みlxl
mの圧11E素子に対してに=500vの電圧を印加し
て0.25μの伸びを与えることができるとする。ここ
で印加電圧を500±300vの範囲で制御して圧電素
子111I!ll当勺±0.15μの変位を生じさせる
とすれば3個の圧電素子を積層することによシ全体で0
.3μ〜1,2μの範囲で厚みを制御することができる
。一方、このような微小変位素子の印加電圧に対する厚
みの変化は電圧を過当な範囲で制−した場合、略直線的
になり、しかも応答性も極めて良好である。したがって
上記微小f位累子6の印加電圧を制御することによシ刃
物台5に対して工具保持部4を相対的にY軸方向へ駆動
し、切削工具1の位置を制御することができる。
FIG. 6 is a diagram showing an example of the relationship between the voltage applied to such a minute f-level element 6 and the amount of extension Δl. For example, when the thickness lxl
Suppose that it is possible to apply a voltage of =500v to a pressure 11E element of m and give an elongation of 0.25μ. Here, the applied voltage is controlled within the range of 500±300v to drive the piezoelectric element 111I! If a displacement of ±0.15μ is to be produced, by stacking three piezoelectric elements, the entire displacement will be 0.15μ.
.. The thickness can be controlled within the range of 3μ to 1.2μ. On the other hand, the change in thickness of such a minute displacement element with respect to the applied voltage becomes approximately linear when the voltage is controlled within an appropriate range, and the response is also extremely good. Therefore, by controlling the voltage applied to the minute f-position resistor 6, the tool holder 4 can be driven in the Y-axis direction relative to the tool rest 5, and the position of the cutting tool 1 can be controlled. .

そして第1図において、7は刃物台5をX軸方向へ駆動
するX軸駆動機構で、たとえば駆動モータと、このモー
タによって回転駆動されるけている。そしてこのX@駆
動扱構1はX軸移動速度設定器8の設定値に応じてX軸
サーボアンプ9によシX軸方向へ一定速匿で刃物台5を
駆動する。また10は刃物台5をY@丈方向駆動するY
s駆動@栴で、たとえば駆動モータと。
In FIG. 1, reference numeral 7 denotes an X-axis drive mechanism for driving the tool rest 5 in the X-axis direction, and includes, for example, a drive motor and a shaft that is rotationally driven by this motor. The X@ drive handling mechanism 1 drives the tool post 5 at a constant speed in the X-axis direction by the X-axis servo amplifier 9 in accordance with the setting value of the X-axis movement speed setter 8. In addition, 10 is a Y that drives the tool rest 5 in the Y@length direction.
s drive@Shiru, for example with a drive motor.

このモータによって回転駆動されるとともに上記刃物台
5に螺合する送シネジを設けている。
A feed screw is provided which is rotationally driven by this motor and which is screwed into the tool rest 5.

そして上記駆動モータはY軸サーボアンプIIによ多制
御され刃物台5をY軸方向へ駆動する。
The drive motor is controlled by the Y-axis servo amplifier II to drive the tool post 5 in the Y-axis direction.

そして12.13は工具保持部4の位filを非接触に
検出するX軸副長器およびY軸副長器で、たとえばレー
ザー元の干渉を利用したレーザー測長器である。なお、
ここで工具保持部4に切削工具lを取着しているのでこ
の工具保持部4の位置から切目す工具1の先端の切刃の
位置を知ることができる。セして工具保持部4のX軸方
向への移動に応じてX軸副長器12から一定距@毎に、
たとえば0.01μ毎にパルスが出力される。またY4
1]方向への移動に応じてy a測長91Bから同様に
パルスが出力される。そしてX軸方向の位置検出を行な
うXS測長器12の出力パルスをX軸位置カウンタ14
でカウントして切削工具lの先端のX軸方向の位置を検
出する。そしてこのX軸カウンタ14のカウント1[x
をfcx)廣真回路15へ与える。このf(り演算回路
15は切削上J411のX軸上の位置Xに対応してY軸
上の理論位置f (X、)を所望の切削曲向に応じて演
算するものである。そしてこのf (rJ′&X真回路
15の演算値をデータレジスタ16へ4、tこのデータ
レジスタ16の内容を第1%第2の比較器17 * 1
 gおよび加算レジスタ19の一方の入力へ与える。一
方、y@測長@IBの出力パルスはY軸位置カウンタ2
0でカウントし切削上141の切刃の位置に対応するカ
ウント値、すなわちY軸実測値yk第1の比較器17お
よびホールド回路21を介して第2の比較器18へ与え
る。そして第1の比較527の出力は微小変位素子駆動
回路22によシ所定比で電圧に変換して微小変位素子6
へ印加する。
Reference numeral 12.13 denotes an X-axis sub-length measuring device and a Y-axis sub-length measuring device for detecting the position fil of the tool holding portion 4 in a non-contact manner, such as a laser length measuring device that utilizes interference from a laser source. In addition,
Since the cutting tool 1 is attached to the tool holder 4, the position of the cutting edge at the tip of the tool 1 to be cut can be determined from the position of the tool holder 4. and then move the tool holder 4 in the X-axis direction every fixed distance from the X-axis sub-length tool 12.
For example, a pulse is output every 0.01μ. Also Y4
1] A pulse is similarly output from the ya length measurement 91B in response to movement in the direction. Then, the output pulse of the XS length measuring device 12 that detects the position in the X-axis direction is sent to the X-axis position counter 14.
The position of the tip of the cutting tool l in the X-axis direction is detected by counting. The count of this X-axis counter 14 is 1 [x
fcx) to the Hiroma circuit 15. This f(ri calculation circuit 15 calculates the theoretical position f (X,) on the Y axis corresponding to the position X on the X axis of the cutting J411 according to the desired cutting direction. f (rJ'&
g and one input of the addition register 19. On the other hand, the output pulse of y@length measurement@IB is the Y-axis position counter 2.
The count value corresponding to the position of the cutting edge on the cutting surface 141, ie, the Y-axis actual measurement value yk, is supplied to the second comparator 18 via the first comparator 17 and the hold circuit 21. Then, the output of the first comparison 527 is converted into a voltage at a predetermined ratio by the minute displacement element drive circuit 22, and the output is converted into a voltage at a predetermined ratio to
Apply to.

また第2の比較器18にはホールド回路21に保持され
たY@位置カウンタ20のカウント値すなわち実測値y
とデータレジスタ16の理−値Yとが与えられてその内
容を比較しこの差分が予め設定した所定値Δγを越える
毎に加算レジスタ19の他方の入力に対して一定距ll
lを駆動すべき駆動信号へYを与える。そして加算レジ
スタ19の加算出力を与えられるY軸サーボアンプ11
はこの駆動信号に応動して刃物台5を所定蓋ΔYたけス
テップ的に駆動する。なお上記所定値Δyを適値に設定
することにより微小変位素子6に対する制御電圧を適正
な範囲に維持し、直1151性を慣ないあるいは過大な
電圧を印加することのないようにしている。
The second comparator 18 also has a count value of the Y@position counter 20 held in the hold circuit 21, that is, an actual measurement value y.
and the logical value Y of the data register 16 are given, their contents are compared, and each time the difference exceeds a predetermined value Δγ, a certain distance ll is added to the other input of the addition register 19.
Apply Y to the drive signal to drive l. And the Y-axis servo amplifier 11 is given the addition output of the addition register 19.
In response to this drive signal, the tool rest 5 is driven stepwise by a predetermined distance ΔY. By setting the predetermined value Δy to an appropriate value, the control voltage for the minute displacement element 6 is maintained within an appropriate range, and the straightness is not affected or an excessive voltage is not applied.

このような構成であれば切削加工の開始に先だって、図
示しないIIIIJ#糸によシ切削“工具1を加工物S
の加工原点X0eY(1へ駆動し、全てのカウンタおよ
びレジスタをリセットする。そして切削加工を開始する
とX@移動速度設定器8の設定値に応じてX軸サーボア
ンプ9を弁してXa駆動機構1によシ切削工具1を加工
物Sの外周から中心へ向かって一定速度で駆動する。
With such a configuration, prior to the start of cutting, the "cutting tool 1" is connected to the workpiece S by the IIIJ# thread (not shown).
The machining origin is driven to X0eY (1, and all counters and registers are reset. Then, when cutting starts, the X-axis servo amplifier 9 is valved according to the setting value of the X @ movement speed setting device 8, and the Xa drive mechanism 1, a cutting tool 1 is driven at a constant speed from the outer periphery of the workpiece S toward the center.

そして上記切削工具1を保持する刃物台4のX軸方向の
位置に応じてX@副長器12から、たとえば0.01μ
毎にパルスが出力される。そしてこのパルスをx@ca
カウンタ14でカウントして加工原点Xo K対する切
削工具1の実測値Xを得る。この実測値Xはf(ト)演
算回路16へ与えて演算しその値に対応するY軸方向゛
の理理値Yをデータレジスタ16を介して加算レジスタ
19へ与える。なおこの場合、実測値IはX@位置カウ
ンタ14からデジタル値として与えられるので駆動系の
精度、応答性等に応じて一定の移動量ΔI毎、たとえば
5μ毎にで(幻演算回路15へ与える実測値Xの値を更
新して演算を行なうようKしている。
Then, depending on the position of the tool rest 4 that holds the cutting tool 1 in the X-axis direction, the
A pulse is output every time. And this pulse is x@ca
The counter 14 counts to obtain the actual measurement value X of the cutting tool 1 with respect to the machining origin XoK. This measured value X is given to the f(g) arithmetic circuit 16 for calculation, and a logical value Y in the Y-axis direction corresponding to the value is given to the addition register 19 via the data register 16. In this case, since the actual measurement value I is given as a digital value from the K is set so that the value of the actual measurement value X is updated and the calculation is performed.

一方切削工具1のY軸方向の位置に応じてY軸−Jfk
613から出力されるパルスはY軸位置カウンタ20で
カウントされこの実測値yは第1の比較器17および上
He X @ Iff li1カウンタ14の出力デー
タの更新に同期して上記実測値ytホールドするホール
ド回路21へ与えられる。
On the other hand, depending on the position of the cutting tool 1 in the Y-axis direction, Y-axis - Jfk
Pulses output from the Y-axis position counter 20 are counted by the Y-axis position counter 20, and this actual value y is held in synchronization with the update of the output data of the first comparator 17 and the upper HeX@Iffli1 counter 14. The signal is applied to the hold circuit 21.

そして上記ホールド回路21から出力される実測値yと
データレジスタ16から与えられる理論値Yとを第2の
比較器18へ与えて比績しその差分が所定値Δyk越え
る毎に加算レジスタI9の他方の入力へ与えこの出力に
よfiY軸サーボアンプ11を介してY41]駆wJ機
構10を駆動し切削工具1のY軸方向の位置をΔYだけ
ステップ的に駆動する。また同時に第1の比較器17に
より実測値yと理論側Yとのか分盆漫、この値に応じて
微小変位素子駆動回路21を介して電圧に変換し、微小
変位素子6に与える電圧を制御して工J4深持部4の位
置を制御する。
Then, the actual measured value y outputted from the hold circuit 21 and the theoretical value Y given from the data register 16 are given to the second comparator 18 for comparison, and each time the difference exceeds a predetermined value Δyk, the other of the addition registers I9 This output drives the Y41] driving mechanism 10 via the Y-axis servo amplifier 11, and moves the position of the cutting tool 1 in the Y-axis direction by ΔY in steps. At the same time, the first comparator 17 divides the measured value y from the theoretical side Y, converts it into a voltage via the minute displacement element drive circuit 21 according to this value, and controls the voltage applied to the minute displacement element 6. to control the position of the J4 deep holding part 4.

ここで第1図において第2の比較器18、加算レジスタ
192よびホールド回路21を設けずデータレジスタ1
6の出力を第1の比較器17およびY軸サーボアンプ1
1へ与えるものについて考える。この場合にはたとえば
@7図に示すように切削工具lを加工原点(X・、Yo
)からX軸方向へ駆動すると所定値ΔI毎にfに)演算
回路15から理論値f (X6) * f (11) 
e f(it )・・・が与えられる。なおこの理論値
f((転)は所望の加工曲面の目標でおる理想曲4[1
1FCX:から与えられるものである。そして上記理論
値f(至)に応じてY軸サーボアンプ11を介してY軸
部#磯構10を駆動しその実測値yは次第に理論値f(
ト)に接近する。そしてこの過mにおいて実測値yと理
論値f(2)との差分を第1の比較器17で得てこの値
Ylを微小変位素子駆動回路22t−介して微小変位素
子6へ与えて駆動するようにしている。しかしながらこ
のようなものでは図示X軸の位置xsのように実測値y
と理論(if(dとの差分が着るしく大きくなると微小
変位素子6を制御する信号Yσも着るしく大きくなり、
その適正な制御範囲一を逸脱して直線性が慣なわれ、め
るいは制御不可能に陥ることもある。
Here, in FIG. 1, the second comparator 18, addition register 192, and hold circuit 21 are not provided, and the data register 1
6 output to the first comparator 17 and Y-axis servo amplifier 1
Think about what you give to 1. In this case, for example, as shown in Figure @7, the cutting tool l is moved to the machining origin (X・, Yo
) in the X-axis direction, the theoretical value f (X6) * f (11)
ef(it)... is given. Note that this theoretical value f((transformation) is the ideal curve 4 [1
1FCX:. Then, the Y-axis section #isostructure 10 is driven via the Y-axis servo amplifier 11 according to the above-mentioned theoretical value f(to), and the actual measured value y gradually changes to the theoretical value f(
approach). Then, during this period of time, the difference between the measured value y and the theoretical value f(2) is obtained by the first comparator 17, and this value Yl is applied to the minute displacement element 6 via the minute displacement element drive circuit 22t to drive it. That's what I do. However, in such a case, the actual measured value y, such as the position xs on the X axis shown in the diagram
The theory (if(d) and when the difference becomes large enough, the signal Yσ that controls the minute displacement element 6 also becomes large,
If the linearity is exceeded by deviating from the proper control range, the motor may become uncontrollable.

これに対して上記実WAfPIlでは第8図に示すよう
に実測値yと理論値f (X)との差分が所定値Δyを
越えたことを第2の比較器18で検出すると所定距離を
駆動すべき駆動信号ΔYを加算回路19へ与えるように
している。したがってY軸サーボアンプ11には理論値
f(りと上記駆動信号ΔYを加えた信号が与えられみか
け上の理論値f((転)と実測値yとの差分が大きくな
ったことになる。し友がってY軸サーボアンプ11はこ
のみかけの差分を目標としてY軸駆動機構IOを駆動す
るので実測値yは急速に理論値f (dに接近する。し
たがって微小変位素子6に対する駆動信号Yσは所定の
適正な範囲±Cmawに制御することができ良好な直線
性と正確な制御を行なうことができる。
On the other hand, in the actual WAfPIl, as shown in FIG. 8, when the second comparator 18 detects that the difference between the actual value y and the theoretical value f (X) exceeds the predetermined value Δy, the drive is driven a predetermined distance. The drive signal ΔY to be added is supplied to the adder circuit 19. Therefore, the Y-axis servo amplifier 11 is given a signal that is the sum of the theoretical value f(ri) and the drive signal ΔY, and the difference between the apparent theoretical value f((revolution) and the actual value y becomes large). As a result, the Y-axis servo amplifier 11 drives the Y-axis drive mechanism IO with this apparent difference as a target, so the actual measured value y rapidly approaches the theoretical value f (d. Therefore, the drive signal for the minute displacement element 6 Yσ can be controlled within a predetermined appropriate range ±Cmaw, and good linearity and accurate control can be achieved.

したがって切削工具の切込み方向の位置に関して機械的
な駆動機構によって生じる誤差を磁気的な圧′鑞効果を
利用した微小f位素子によって補正し、かつこの微小変
位素子に与える電圧が適正範囲を越えると、上記駆動機
構により補正量を減少させるように切削工具を駆動する
ようにしているので微小変位素子は常に適正範囲で動作
することになる。
Therefore, the error caused by the mechanical drive mechanism regarding the position of the cutting tool in the direction of cut is corrected by a minute f-position element that utilizes the magnetic pressure solder effect, and if the voltage applied to this minute displacement element exceeds the appropriate range. Since the cutting tool is driven by the drive mechanism to reduce the amount of correction, the minute displacement element always operates within an appropriate range.

なお本発明は上記実施列に限定されるものではなく、た
とえばX@側長器12の出力パルスから帰られた実測値
Xを各別のf (XJ廣算回路で演算して第1、第2の
比較器17.111へそれぞれ与えるようにしてもよい
。またf(→演算回路としては与えられた実測値Xから
所望の切削S面のY軸方向の理論値Yを高速演算するも
のに限定されず、たとえば予め演算した理−値Yを記憶
したメモリを設け、この記憶内容を順次VC読み出すよ
うにしてもよい。
Note that the present invention is not limited to the above-mentioned implementation sequence; for example, the actual measurement value X returned from the output pulse of the Alternatively, f(→The calculation circuit may be one that quickly calculates the theoretical value Y in the Y-axis direction of the desired cutting surface S from the given actual measurement value X. The present invention is not limited to this, and for example, a memory may be provided in which a logical value Y calculated in advance is stored, and the stored contents may be sequentially read out by VC.

さらに微小f位素子はその駆動信号に対する応答性が惚
めて良好なために過敏な場合は第1図に破線で示すよう
に第10比e器17の出力と微小変位素子駆動回路23
との間に積分回路22を介挿するようにしてもよい。第
9図はこのような積分回路23の一列を示す図で、たと
えば第1の比較器17から与えられる複数ビットのデジ
タル信号をデジタル−アナログ変換器DAでアナログ信
号に変侠して抵抗R,および第1のスイッチSW、 を
介して演誹増:@器op。
Furthermore, since the minute f-position element has a very good response to the drive signal, if it is sensitive, the output of the tenth ratio e unit 17 and the minute displacement element drive circuit 23 are connected to each other as shown by the broken line in FIG.
An integrating circuit 22 may be inserted between the two. FIG. 9 is a diagram showing one line of such an integrating circuit 23. For example, a multi-bit digital signal given from the first comparator 17 is converted into an analog signal by a digital-to-analog converter DA, and then connected to a resistor R, and the first switch SW, decrement via: @device op.

へ入力する。この演算項I陽6op、は入出力間に積分
コンデンサCおよび放電抵抗R1と第2のスイッチSW
、の直タリ回路を並列に接続している。そして第1のス
イッチSW!は抵抗R1を選択し、第2のスイッチ8W
!は開放して上記アナログ信号を積分し、積分終了後第
1のスイッチsw、#′i接地電位側を選択し、第2の
スイッチSW、を閉成して積分コンデンサCの光電電荷
を放電する。
Enter. This operational term I6op is an integral capacitor C, a discharge resistor R1, and a second switch SW between input and output.
, are connected in parallel. And the first switch SW! selects the resistor R1, and the second switch 8W
! is opened to integrate the above analog signal, and after the integration is completed, select the first switch sw, #'i ground potential side, and close the second switch sw, to discharge the photoelectric charge of the integrating capacitor C. .

また第10図は微小変位素子駆動回路22の一し1」を
示す回路図で、微小変位素子6に対する数百ボルトの印
加電圧を制御するために31(ロ)のトランジスタTr
l 、Try 、Try  のコレクタ、エミッタを縦
続接続にしたものである。すなわち入力端子TK与えら
れた信号Yσをバッファ増幅器OPlを介してトランジ
スタTrlのベースへ与える。一方トランジスタTrl
*Tr2 *Tryの工はツタ、コレクタを縦続接続し
、かつトランジスタTr3のコレクタ、ベース間、トラ
ンジスタTry 、Tr!のベース間およびトランジス
タTryのベーストトランジスタTr1のエミッタ間に
それぞれ抵抗R,,R,,R,を介挿している。そして
トランジスタTr1のエミッタとトランジスタTryの
コレクタとの間に数百ボルトの電源Pと微小変位素子6
の直列回路を接続している。このようにすれば各トラン
ジスタT r 1 1 T r ! l T r Hの
エミッタ、コ17クタ間に1:1]/Jllされる電圧
は略#L諒醒圧の1/3になりトランジスタTrl 、
Tr!eTrlのコレクタ耐圧に対する要求を緩和する
ことができる。
FIG. 10 is a circuit diagram showing the minute displacement element drive circuit 22, in which a transistor Tr 31 (b) is used to control the applied voltage of several hundred volts to the minute displacement element 6.
The collectors and emitters of l, Try, and Try are connected in cascade. That is, the signal Yσ applied to the input terminal TK is applied to the base of the transistor Trl via the buffer amplifier OPl. On the other hand, transistor Trl
The construction of *Tr2 *Try connects the ivy and collector in cascade, and connects the collector and base of transistor Tr3, transistors Try, Tr! Resistors R, , R, , R are inserted between the bases of the transistor Try and the emitter of the base transistor Tr1 of the transistor Try. A power supply P of several hundred volts and a minute displacement element 6 are connected between the emitter of the transistor Tr1 and the collector of the transistor Try.
A series circuit is connected. In this way, each transistor T r 1 1 T r ! The voltage applied between the emitter of lTrH and the transistor Trl is approximately 1/3 of the wake-up pressure of #L, and the voltage applied between the emitter of transistor Trl and the transistor Trl,
Tr! The requirement for the collector breakdown voltage of eTrl can be relaxed.

さらに上記実IM例ではf(幻演算回路15は加工原点
Y0に対する理論値Yを出力するようKしているが、こ
のようなものに限定されず前回のX軸方向の位置Xn−
5に対応する理−値yn−tと当該時点のX軸方向の位
置Xnに対応する理舖値Ynとの差分YH−Yn−1を
出力するようにしてもよい。
Furthermore, in the above actual IM example, f(phantom calculation circuit 15 is configured to output the theoretical value Y for the machining origin Y0, but the previous position in the X-axis direction
The difference YH-Yn-1 between the logical value yn-t corresponding to 5 and the logical value Yn corresponding to the current position Xn in the X-axis direction may be output.

以上詳述したように本発明にすれば&械的な駆動機構に
よって生じる切削工具の切込み方向の位置岨差を電気的
に変位量を制御される微小変位素子によって補正し、か
つこの微小変位素子へ与える電圧が適正範囲を越えると
上記駆動機構によって補正量を減少させるように切削工
具を駆動するようにしたものである。
As described in detail above, according to the present invention, the positional difference in the cutting direction of the cutting tool caused by the mechanical drive mechanism can be corrected by a micro-displacement element whose displacement is electrically controlled, and the micro-displacement element When the voltage applied to the cutting tool exceeds an appropriate range, the cutting tool is driven by the drive mechanism to reduce the amount of correction.

したがって極めて高精度に二次曲面を切削加工すること
ができしかも微小変位素子を常に適正範囲で動作させる
ことができる稽缶切削加ニジステムを提供することがで
きる。
Therefore, it is possible to provide a mechanical cutting system that is capable of cutting quadratic curved surfaces with extremely high precision and that allows the minute displacement element to always operate within an appropriate range.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実ahを示すブロック図、第2図、
第3図および第4図は上記実ai的の刃物台を示す平面
図、j11面図および第2図IY−mV線矢視図、第5
図は上記実m例の微小変位素子の一例を示す四面図、第
6図は上記微小変位素子の印加゛電圧と伸長量との関係
を示す図、vfJ7図は従来の装置の動作を説明する図
、第8図は本発明の装置の動作を説明する図、第9図t
ま本発明の他の実!M列の積分回路を示す図、第10は
本発明の微小変位素子駆動回路の一岡を示す図である。 l・・・切削工具、2・・・回転軸、3・・・〃ロエ物
、4・・・工具保持部、5・・・刃物台、6・・・微小
変位素子、7・・・X@駆動機構、10・・・ys駆動
機構、12・・・X軸測長器、13・・・Y@副長器、
15・・・f(幻演遵回路、17・・・第1の比較器、
18・・・第2の比II!!2器。 第1図 第2図 ?f!3!’1 第9vA 第10区・
FIG. 1 is a block diagram showing one embodiment of the present invention, FIG.
3 and 4 are a plan view showing the above-mentioned actual AI turret, a J11 side view, a view taken along the line IY-mV in FIG.
The figure is a four-sided view showing an example of the minute displacement element of the above-mentioned example, Figure 6 is a diagram showing the relationship between the applied voltage and the amount of extension of the minute displacement element, and Figure vfJ7 explains the operation of the conventional device. Fig. 8 is a diagram explaining the operation of the device of the present invention, Fig. 9 t
Another fruit of this invention! The 10th is a diagram showing an integration circuit of M columns, and the 10th diagram is a diagram showing one part of the micro-displacement element drive circuit of the present invention. l... Cutting tool, 2... Rotating shaft, 3... Loe object, 4... Tool holding part, 5... Tool rest, 6... Micro displacement element, 7... X @ drive mechanism, 10...ys drive mechanism, 12...X-axis length measuring device, 13...Y@sub length device,
15...f (phantom circuit, 17... first comparator,
18...Second Ratio II! ! 2 vessels. Figure 1 Figure 2? f! 3! '1 9th vA 10th Ward・

Claims (1)

【特許請求の範囲】 回転軸に保持され回転駆動される工作物と、この工作物
を切削加工する切削工具を保持する工具保持部と、この
工具保持部を保持する刃物台と、この刃物台を上記切削
工^の切込み方向へ駆動するYs躯励動機構、上記刃物
台を上記切削工具の切込み方向に対して直角な方向へ駆
動するX軸駆動機構と、上記工具保持部と刃物台との間
に介在し上記刃物台を上記工具保持部に対して切込み方
向へ駆動する微小変位素子と、上記刃物台のX軸および
Y軸方向の位置を非接や 触←く検出するX軸およびY@側長器と、X軸醐長器か
ら与えられる実測値に応じて所望の切削曲面のY軸方向
の論理値を出力するf(ト)演算回路と、このfに)演
算回路から与えられる理論値とY@側長器から与えられ
る実幽値との差分に応じて上記微小変位素子を切込み方
向へ変位させる微小及位素子駆動回路と、上に、差分が
所定値を越える毎にY軸駆動機構を駆動して上記微小変
位菓子におけるf位置を所定範囲にm持させる第2の比
較器とを具儂する梢密切削加ニジステム。
[Scope of Claims] A workpiece that is held and rotationally driven by a rotating shaft, a tool holder that holds a cutting tool for cutting this workpiece, a tool rest that holds this tool holder, and a tool rest that holds this tool holder. an X-axis drive mechanism that drives the tool rest in a direction perpendicular to the cutting direction of the cutting tool; and the tool holder and the tool rest. an X-axis and a micro-displacement element that is interposed between the tool rest and drives the tool rest in the cutting direction with respect to the tool holder, and an X-axis and a An f (g) arithmetic circuit that outputs a logical value in the Y-axis direction of a desired cutting surface according to the actual measured value given from the Y@ side lengthening device and the X-axis lengthening device; a micro-displacement element driving circuit that displaces the micro-displacement element in the cutting direction according to the difference between the theoretical value given by the Y@side length machine and the actual value given from the Y@side length machine; and a second comparator that drives a Y-axis drive mechanism to maintain the f position in the micro-displacement confectionery within a predetermined range.
JP18960181A 1981-11-26 1981-11-26 Precision machining system Granted JPS5890441A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP18960181A JPS5890441A (en) 1981-11-26 1981-11-26 Precision machining system
US06/701,811 US4602540A (en) 1981-11-26 1985-02-19 Precision machine system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18960181A JPS5890441A (en) 1981-11-26 1981-11-26 Precision machining system

Publications (2)

Publication Number Publication Date
JPS5890441A true JPS5890441A (en) 1983-05-30
JPS6354508B2 JPS6354508B2 (en) 1988-10-28

Family

ID=16244036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18960181A Granted JPS5890441A (en) 1981-11-26 1981-11-26 Precision machining system

Country Status (1)

Country Link
JP (1) JPS5890441A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61288901A (en) * 1985-06-17 1986-12-19 バスフ アクチェン ゲゼルシャフト Method and device for surface-treating substrate for magnetic memory disk
JPH03282912A (en) * 1990-03-30 1991-12-13 Toshiba Corp Positioning device
JPH0435842U (en) * 1990-07-24 1992-03-25
CN103817561A (en) * 2014-01-08 2014-05-28 宁波大学 Precision noncircular surface turning two-dimensional control device and control method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61288901A (en) * 1985-06-17 1986-12-19 バスフ アクチェン ゲゼルシャフト Method and device for surface-treating substrate for magnetic memory disk
JPH03282912A (en) * 1990-03-30 1991-12-13 Toshiba Corp Positioning device
JPH0435842U (en) * 1990-07-24 1992-03-25
CN103817561A (en) * 2014-01-08 2014-05-28 宁波大学 Precision noncircular surface turning two-dimensional control device and control method thereof
CN103817561B (en) * 2014-01-08 2016-05-04 宁波大学 The two dimension controller of non-circular surfaces precision turning and control method

Also Published As

Publication number Publication date
JPS6354508B2 (en) 1988-10-28

Similar Documents

Publication Publication Date Title
US7571669B2 (en) Machining apparatus for noncircular shapes
US4602540A (en) Precision machine system
WO2002032620A1 (en) Measuring method and device, machine tool having such device, and work processing method
US5270627A (en) Machine tool control system
JPH03271813A (en) Nc device
EP0242869B1 (en) Numerical control equipment
JPS5890441A (en) Precision machining system
JPS6354509B2 (en)
US4811235A (en) Coordinate interpolation in numerical control apparatus
EP0072870A1 (en) Backlash compensation system for dual position-feedback control systems
JP3405744B2 (en) Measuring method of workpiece and time-dependent change in machine tool
JPH02160457A (en) Correcting device for straightness of machine tool
JPS6227945B2 (en)
JPS56159709A (en) Controller of industrial robot
JPH05169351A (en) Thermal displacement compensation method of machine tool
JPS62176739A (en) Straightness correction device for machine tool
JPS6147653B2 (en)
JPH01147608A (en) Correction system for positioning error
JPS626943B2 (en)
JP2001179621A (en) Displacement measurement device and grinding attachment
EP0312634A1 (en) Numerical control equipment
JPS63191552A (en) Numerically controlled (nc) machine tool equipped with measurement probe error compensation function
JP2001150304A (en) Tool length measuring device
JPH0811354B2 (en) Straightness correction device for feed unit
JPH052209U (en) Robot position teaching device