JPS5890197A - Reactor water level meter - Google Patents

Reactor water level meter

Info

Publication number
JPS5890197A
JPS5890197A JP56188549A JP18854981A JPS5890197A JP S5890197 A JPS5890197 A JP S5890197A JP 56188549 A JP56188549 A JP 56188549A JP 18854981 A JP18854981 A JP 18854981A JP S5890197 A JPS5890197 A JP S5890197A
Authority
JP
Japan
Prior art keywords
pressure
water level
reactor
vessel
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56188549A
Other languages
Japanese (ja)
Inventor
道雄 村瀬
松本 知行
良之 片岡
久道 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56188549A priority Critical patent/JPS5890197A/en
Publication of JPS5890197A publication Critical patent/JPS5890197A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 不発明は、原子炉の水位計に関するものである。[Detailed description of the invention] The non-invention relates to a water level gauge for a nuclear reactor.

一般に沸騰水型原子炉は第1図に示されるように、格納
容器21の内部に原子炉圧力容器1が設置されている。
Generally, in a boiling water reactor, as shown in FIG. 1, a reactor pressure vessel 1 is installed inside a containment vessel 21.

原子炉の通常運転時に、原子炉圧力容器1内は圧カフ0
気圧、温f&285Uに保たれ原子炉圧力容器1を収納
する格納容器21内は圧力1気圧、温度60C以下に保
たれている。
During normal operation of the reactor, the pressure cuff inside the reactor pressure vessel 1 is 0.
The inside of the containment vessel 21 which houses the reactor pressure vessel 1 is maintained at an atmospheric pressure and a temperature of f&285U, and a pressure of 1 atmosphere and a temperature of 60C or less.

ところで、原子炉安全設備の評価に際して1、鹸も厳し
い知音とし7て再循増系6の吸込側配管の破断を想定す
ることになっている。例えrf1再循環系6内の位置2
6で配管が破断すると、原子炉圧力容器1内の高温、高
圧(285r、70気圧)の冷却材が流:I(−1シ、
ドライウェル22内の温度、圧力が上昇する。ドライウ
ェル22内に浦、出した蒸気はサブレッショノブール2
3に充填されている大量の冷却水及び事故時に作H(J
+する格納容器スゲレイ24から散水により凝縮する。
By the way, when evaluating reactor safety equipment, it is assumed that the suction side piping of the recirculation/increase system 6 will break as 1. and 7. Location 2 in e.g. rf1 recirculation system 6
When the pipe ruptures at 6, the high temperature, high pressure (285r, 70atm) coolant inside the reactor pressure vessel 1 flows:
The temperature and pressure inside the dry well 22 rise. There is a ura in the dry well 22, and the steam released is subrection no boule 2.
The large amount of cooling water filled in the
It is condensed by water sprinkling from the containment vessel Sergei 24.

このようにしてドライウェル22内の温度、FF力に、
設削A直以下に保持される。捷だ、このような事故時に
は、非常用炉心冷却系5より大量の冷却水が原子炉圧力
容器]内に(kl−給され、炉心7の冷却が維持される
In this way, the temperature inside the dry well 22, the FF force,
It is maintained below cutting A straight. In the event of such an accident, a large amount of cooling water is supplied from the emergency core cooling system 5 into the reactor pressure vessel to maintain cooling of the reactor core 7.

そして、原子炉圧力容器1には、原子炉の通常運転時に
は原子炉圧力容器l内の水位を一定に保つように給水系
9の流量全制御するために、′!、た坤子炉の事故時に
け原子炉圧力容器1内の水位低Tk検出して非常用炉心
冷却系5を作動させるために、水位計10が設置されて
いる。
In order to fully control the flow rate of the water supply system 9 so as to keep the water level in the reactor pressure vessel 1 constant during normal operation of the reactor, the reactor pressure vessel 1 is provided with ``!''! A water level gauge 10 is installed in order to detect a low water level Tk in the reactor pressure vessel 1 and activate the emergency core cooling system 5 in the event of an accident in the Takonshi reactor.

水位計10は、3つの圧力導管1.1..12及び13
、基準面器14及び差圧計15より構成されており、原
子炉圧力容器1とシュラウド2で囲まれたアニユラス部
3の水位27を測定しつるようになっている。基憩面器
14内には、圧力導管11金浦じて蒸気ドーム(原子炉
圧力容器1内の液面上方の空間)4内の蒸気が流入する
。この蒸気は、基準面器14内で凝縮し、その凝縮水は
圧力導管11を逆流して原子炉圧力容器1内に流入する
。したがって、基準面器14内には常に一定レベルの基
準面28が形成されている。水位計10は、この基準面
28に基づいて次の原理によって原子炉圧力容器1内の
水位を検出する。すなわち、圧力導管11の連結部にお
ける原子炉圧力容器1内の圧力kP。、差圧計15に作
用する圧力導管12側の圧力をPl及び第3の圧力導管
側の圧力をP2とするとき、圧力P、及びPtは次式の
ようになる、 P、 =Po +(h2h+ lρ1+h、ρ、+h3
ρs  −−−−−−−旧−<1)p、=po+h2ρ
2+h、ρ、    、−、−・・・・−・(2)差圧
計15に作用する差圧ΔPfl、 ΔI)=P、−P。
The water level gauge 10 consists of three pressure conduits 1.1. .. 12 and 13
, a reference plane 14 and a differential pressure gauge 15, and is adapted to measure the water level 27 in the annulus section 3 surrounded by the reactor pressure vessel 1 and the shroud 2. Steam in the steam dome (space above the liquid level in the reactor pressure vessel 1) 4 flows into the base diverter 14 through the pressure conduit 11. This steam condenses in the reference vessel 14, and the condensed water flows back through the pressure conduit 11 and into the reactor pressure vessel 1. Therefore, a reference surface 28 of a constant level is always formed within the reference surface device 14. The water level gauge 10 detects the water level in the reactor pressure vessel 1 based on this reference surface 28 according to the following principle. That is, the pressure kP in the reactor pressure vessel 1 at the connection part of the pressure conduit 11. , when the pressure on the pressure conduit 12 side acting on the differential pressure gauge 15 is Pl and the pressure on the third pressure conduit side is P2, the pressures P and Pt are as follows, P, =Po + (h2h+ lρ1+h, ρ, +h3
ρs −−−−−−old −<1) p, = po + h2ρ
2+h, ρ, , -, -...- (2) Differential pressure ΔPfl, ΔI) acting on the differential pressure gauge 15 = P, -P.

=h、(ρ2−ρ、)−h、(ρ1−ρ1) ・・・・
・・・・・・・・(3)となる。その結果、水位計10
で測定される水位h1に、 h、−[ρ2−ρ1)h2−ΔP)/(ρ1−ρ1)・
・・・・・・・・(4)となる。ただし、上式において
、 h、は圧力導管12ケ基単とした原子炉圧力容器1内の
水位、h2は圧力導管12と基準面器14内の基準面2
8との間の高さ、h、l−1:圧力導管12と差圧計1
5との間の高さ、ρ1は原子炉圧力容器1内の蒸気密度
、ρ1は原子炉圧力容器1内の水の密度、ρ2は圧力導
管13上部の水の密度、ρ、は圧力導管12及び13下
部の水の密度である。
=h, (ρ2-ρ,)-h, (ρ1-ρ1)...
......(3). As a result, water level gauge 10
For the water level h1 measured at h, -[ρ2-ρ1)h2-ΔP)/(ρ1-ρ1)・
......(4). However, in the above equation, h is the water level in the reactor pressure vessel 1 consisting of 12 pressure conduits, and h2 is the reference plane 2 in the pressure conduit 12 and the reference plane 14.
8, h, l-1: pressure conduit 12 and differential pressure gauge 1
5, ρ1 is the vapor density in the reactor pressure vessel 1, ρ1 is the density of water in the reactor pressure vessel 1, ρ2 is the density of water in the upper part of the pressure conduit 13, and ρ is the density of water in the pressure conduit 12. and 13 is the density of water at the bottom.

(4)弐において、ρ、及びρ1に原子炉圧力容器1内
の圧力P。の関数であるが、圧力P。は独立に測定され
ているため既知であり、h、は水位計10の測定時に決
定され既知である。また、ρ2にドライウェル22内の
温1]160trとして、60Cでの水の密度を使用す
る。したがって、差圧計15に作用する差圧ΔPを測定
すれば、式(4)より圧力容器1内の水位り、  2知
ることができる。
(4) In 2, ρ and ρ1 are the pressures P in the reactor pressure vessel 1. is a function of pressure P. is known because it is measured independently, and h is determined and known when the water level gauge 10 measures it. Further, the temperature inside the dry well 22 is set to 1]160tr, and the density of water at 60C is used as ρ2. Therefore, by measuring the differential pressure ΔP acting on the differential pressure gauge 15, the water level in the pressure vessel 1 can be determined from equation (4).

したがって、水位測定において重要なことは、基準面器
14内の基準面28が一定レベルに保持され、かつ、圧
力導管13上部の水温が60C一定で水の密度ρ2が変
化しないことである。
Therefore, what is important in water level measurement is that the reference surface 28 in the reference surface device 14 is maintained at a constant level, that the water temperature above the pressure conduit 13 is constant at 60C, and that the water density ρ2 does not change.

原子炉の通常運転時には、水位は±3%以内の精度で測
定できることが確認されている。しかし、原子炉圧力容
器1内の冷却水が流出する冷却材喪失事故時には次のよ
うが問題が生ずる。
It has been confirmed that during normal operation of a nuclear reactor, the water level can be measured with an accuracy of within ±3%. However, in the event of a loss of coolant accident in which the cooling water in the reactor pressure vessel 1 flows out, the following problem occurs.

すなわち、高温高圧の冷却材が流出すると原子炉圧力容
器1外(ドライウェル22内)の圧力及び温度は第2図
に示されるように上昇する。時間とともに冷却水の流出
流量は減少し、サプレッションプール23での蒸気凝縮
及び格納容器スプレィ24の作動によりドライウェル2
2の圧力及び温度は低下する。このドライウェル22の
温[変化により、圧力導管12及び13内の水温は第3
図に示されるように変化し、最高140Cに達すると予
想される。水の密度が温度により第4図に示されるよう
に変化して式(4)におけるρ2が変化するため、式(
4)で示される水位り、の誤差εに、温度上昇時の圧力
導管内の水の密度をρ2′とすると次のようになる。
That is, when the high-temperature, high-pressure coolant flows out, the pressure and temperature outside the reactor pressure vessel 1 (inside the dry well 22) rise as shown in FIG. The outflow flow rate of the cooling water decreases over time, and due to steam condensation in the suppression pool 23 and operation of the containment vessel spray 24, the dry well 2
The pressure and temperature of 2 decrease. Due to this temperature change in the dry well 22, the water temperature in the pressure conduits 12 and 13 is
It is expected that the temperature will change as shown in the figure and reach a maximum of 140C. Since the density of water changes with temperature as shown in Figure 4, and ρ2 in equation (4) changes, equation (
Letting the error ε of the water level shown in 4) and the density of water in the pressure conduit when the temperature rises be ρ2', the following equation is obtained.

ε=(ρ、−ρ、’l/(ρ1−ρ1)・・・・・・・
・・(5)式(5)で示される測定誤差εは第5図のよ
うになり、圧力導管内の水の温度が140Cに達すると
原子炉圧力容器1内の水位り、の測定誤差は6%に達す
る。
ε=(ρ, −ρ, 'l/(ρ1−ρ1)・・・・・・・
...(5) The measurement error ε shown in equation (5) is as shown in Figure 5, and when the temperature of the water in the pressure pipe reaches 140C, the measurement error of the water level in the reactor pressure vessel 1 is It reaches 6%.

本発明の目的は、原子炉安全設備の評価上想定する最も
厳しい事故に際しても、水位計の圧力導管部での温度上
昇を防止でき、通常運転時と同程度の測定精度を有する
水位計を提供することにある。
The purpose of the present invention is to provide a water level gauge that can prevent temperature rise in the pressure conduit of the water level gauge even in the most severe accident assumed in the evaluation of nuclear safety equipment, and has measurement accuracy comparable to that during normal operation. It's about doing.

本発明は、前記目的を達成するため、(1)圧力導管の
垂直部分での全長の60%以上を格納容器外に設置し、
格納容器内に設置される圧力導管の垂直部分を全長の4
0%以下とする。
In order to achieve the above object, the present invention provides: (1) 60% or more of the total length of the vertical portion of the pressure conduit is installed outside the containment vessel;
The vertical section of the pressure conduit installed inside the containment vessel has a total length of 4
0% or less.

第6図は本発明の一実施例を示すもので、水位計10は
、基準面器14及び差圧計15とを備え圧力導Wll、
12及び13により原子炉圧力容器1と互いに連結され
ている。基準面器14と差圧計15を連結する圧力導管
13は基準面28よりhだけ下方で水平に配置され、圧
力導管13の垂直部分の大部分は格納容器21の外部に
設置されている。
FIG. 6 shows an embodiment of the present invention, in which a water level gauge 10 includes a reference level gauge 14 and a differential pressure gauge 15, and a pressure guide Wll,
The reactor pressure vessel 1 is connected to the reactor pressure vessel 1 by 12 and 13. The pressure conduit 13 connecting the reference plane 14 and the differential pressure gauge 15 is arranged horizontally at a distance h below the reference plane 28, and most of the vertical portion of the pressure conduit 13 is installed outside the containment vessel 21.

原子炉の通常運転時における水位計10の誤差3%の内
、05%は計器誤差であり、圧力導管内の温度変化によ
る誤差は2.5%である。したがって、事故時において
も通常運転時と同じ誤差範囲内にするには圧力導管13
内の水の密度変化による影響22.5%以下にすればよ
い。格納容器21の外部では事故時においても温度は変
化しないから、本実施例の水位計10では、事故時の測
定誤差ε′は、次式のようになる。
Of the 3% error of the water level gauge 10 during normal operation of the nuclear reactor, 0.5% is due to instrument error, and 2.5% is due to temperature change within the pressure conduit. Therefore, in order to maintain the same error range in the event of an accident as in normal operation, the pressure conduit 13
The effect due to the change in the density of water within the tank should be 22.5% or less. Since the temperature outside the containment vessel 21 does not change even in the event of an accident, in the water level gauge 10 of this embodiment, the measurement error ε' in the event of an accident is expressed by the following equation.

ε’ −(h/h21 ((ρ2−ρ2’)/(ρ、−
ρ1))・・・(6)式(6)に式(5)で示される従
来の水位計の測定誤差εを代入すると、(7)式のよう
になる。
ε' − (h/h21 ((ρ2−ρ2')/(ρ, −
ρ1))...(6) When the measurement error ε of the conventional water level gauge shown in equation (5) is substituted into equation (6), equation (7) is obtained.

ε’=(h/h、)  ・ε    ・・・・・・・・
・・・・(7)第3図及び第5図より事故時の最大誤差
ε青、は6%であるから、第6図に示した本実施例の水
位計10による最大誤差ε′□。を25%以下にするに
は、(8)式の条件が必要となる。
ε'=(h/h,) ・ε・・・・・・・・・
...(7) From FIGS. 3 and 5, the maximum error εBlue at the time of an accident is 6%, so the maximum error ε'□ by the water level gauge 10 of this embodiment shown in FIG. 6. In order to make 25% or less, the condition of equation (8) is required.

ε′□ア=0.Q 6 (h/h2) <0.025、
’、h(0,4h2       ・・・・・・・・・
・・・(8)すなわち、圧力導管13の格納容器21内
に設置される垂直部分の高さh2圧力導管12と基準面
28間の高さh2の40%以下とする。hと水位計10
の測定誤差との関係を第7図に示す。Aは原子炉通常運
転時の最大誤差を、Bは計器誤差を示している。
ε′□a=0. Q 6 (h/h2) <0.025,
', h(0,4h2 ・・・・・・・・・
(8) That is, the height h2 of the vertical portion of the pressure conduit 13 installed in the containment vessel 21 is 40% or less of the height h2 between the pressure conduit 12 and the reference surface 28. h and water level gauge 10
Figure 7 shows the relationship between the measurement error and the measurement error. A shows the maximum error during normal reactor operation, and B shows the instrument error.

第8図に、第2図に示される事故時のドライウェル22
の温度、第5図に示される圧力導管内の温m゛変化によ
る水位計の測定誤差に基づく本発明の他の実施例ケ示す
ものである。水位計10は基準面器14及び差圧計15
を備え、第1.第2゜第3図の圧力導管11,12.1
3により圧力容器1と互いに連結されており、圧力導管
13の内絡納容器21内に設置されている部分には断熱
材16が設置されている。
Figure 8 shows the dry well 22 at the time of the accident shown in Figure 2.
5 shows another embodiment of the present invention based on the measurement error of the water level gauge due to the temperature change in the pressure conduit shown in FIG. The water level gauge 10 includes a reference level gauge 14 and a differential pressure gauge 15.
1. 2゜Pressure conduits 11, 12.1 in Fig. 3
3 to the pressure vessel 1, and a heat insulating material 16 is installed in the portion of the pressure conduit 13 that is installed in the internal containment container 21.

計器誤差0.5%ヲ者慮し、事故時における水位計10
の誤差全通常運転時の誤差3%の範囲とするには、第5
図より圧力導管13内部の温度を100C以下にすれば
よい。圧力導管13内部の温度Tは初期の温度をT。と
じ、ドライウェル22の温度ケT、とすると次のように
なる。
Considering the meter error of 0.5%, the water level gauge at the time of the accident was 10.
To keep the total error within 3% during normal operation, the fifth
As shown in the figure, the temperature inside the pressure conduit 13 should be set to 100C or less. The temperature T inside the pressure conduit 13 is the initial temperature T. When the temperature of the dry well 22 is T, it is as follows.

上式において、tは時間、Rhは断熱材16の熱抵抗、
Sは圧力導管13の表面積、C9は圧力導管13内部の
熱容量である。第2図よりT、=14 QC,To =
60C,t=300秒であるか 。
In the above formula, t is time, Rh is thermal resistance of the heat insulating material 16,
S is the surface area of the pressure conduit 13, and C9 is the heat capacity inside the pressure conduit 13. From Figure 2, T, = 14 QC, To =
Is 60C, t=300 seconds?

ら、T〈100Cのためには式(10)の条件を満足す
ればよい。
For T<100C, it is sufficient to satisfy the condition of equation (10).

式(10)ばh=h、の場合の条件であるが、式(10
)にhの効果を考慮すると第9図に示すようになり、(
9) この式を近似式で表わすと次のようになる。
Equation (10) is a condition when h=h, but Equation (10
), taking into account the effect of h, we get the result shown in Figure 9, (
9) This equation can be expressed as an approximate equation as follows.

このように、格納容器21内に設置された圧力導管13
を断熱材16で断熱することによりhl大きくすること
ができ圧力導管設置上の制限条件を緩和することができ
る。
In this way, the pressure conduit 13 installed inside the containment vessel 21
By insulating the pressure with the heat insulating material 16, hl can be increased, and the restrictive conditions for installing the pressure conduit can be relaxed.

本発明け、以上説明した構成1作用のもので、水位計の
基準面器と差圧計とを連通させる圧力導管の垂直配管部
分の60%以上を格納容器外に設置するか、もしくハ、
格納容器内に設置した前記圧力導管を断熱することによ
り、事故時においても通常運転時と同じn度で原子炉容
器内の水位を検出しつる効果がある。
The present invention has the above-described configuration 1, and 60% or more of the vertical piping portion of the pressure conduit that communicates the reference plane of the water level gauge and the differential pressure gauge is installed outside the containment vessel, or c.
By insulating the pressure conduit installed in the containment vessel, there is an effect that even in the event of an accident, the water level in the reactor vessel can be detected at the same n degree as during normal operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の原子炉の水位計の構造図、第2図は最も
厳しい事故を想定した時のドライウェル圧力及び温度の
変化を示す特性図、第3図は従来(10) 従来の水位計の測定誤差慣性を示す特性図、第6図は本
発明の好適な一実施例である水位計の縦断面図、第7図
は第6図に示す水位計の最大誤差特性を示す特性図、第
8図汀本発明の他の実施例の縦断面図、第9図は第8図
に示す実施例における圧力導管13の断熱材の熱抵抗ヶ
示す特性図である。 1・・・原子炉圧力容器、3・・・アニユラス部、4・
・・蒸気ドーム、10・・・水位計、11,12.13
・・・圧力導管、14・・・基準面器、15・・・差圧
計、16・・・断熱材。 代理人 弁理士 高橋明夫 (11) 図面の1・多シニ(向7ぶ(二寸≧更なし)第 / 菌 ()、フ 41kツ4イ(丁≦ k4 」欧     
  ミ       ・ 〜               \ (nctu)  U 54(x乙pl;、A(〕・ン 
あンμ! 留鰺1Δ4晦ムj11()7$4 ロ ー 永め温浸(°C) 7に偽@漬(°C) 第 6  日 (わ 第 8 図 4 7 ′ 4 /422 // 八M23 つl711111−1 第  タ    巨コ (”? H71′z 手続補正書(方式) 昭和57年 4月 19日 特許庁長官 島田春樹殿 事件の表示 昭和56年特許願第 188549 号発明ノ名称  
原子炉の水位計 補正をする者 事件との関係  特許出願人 f王   所 東京都千代田区丸の内−丁目5番1号名
  称・51O)株式会社 日 立 製 イ乍 所代表
者 三 1)勝 茂 代   理   人 居  所 東京都千代田区丸の内−丁目5番1号補JX
E′)7寸象願書、明細書9図面、委任状補正の内容 (1)願書、明細書および図面の浄書(内容に変更なし
)。 (2)別紙の委任状を提出する。
Figure 1 is a structural diagram of a conventional nuclear reactor water level gauge, Figure 2 is a characteristic diagram showing changes in dry well pressure and temperature assuming the most severe accident, and Figure 3 is a conventional water level gauge (10). FIG. 6 is a longitudinal sectional view of a water level meter according to a preferred embodiment of the present invention, and FIG. 7 is a characteristic diagram showing the maximum error characteristics of the water level meter shown in FIG. 6. , FIG. 8 is a vertical sectional view of another embodiment of the present invention, and FIG. 9 is a characteristic diagram showing the thermal resistance of the heat insulating material of the pressure conduit 13 in the embodiment shown in FIG. 1... Reactor pressure vessel, 3... Annulus section, 4...
...Steam dome, 10...Water level gauge, 11, 12.13
...Pressure conduit, 14...Reference plane device, 15...Differential pressure gauge, 16...Insulating material. Agent Patent Attorney Akio Takahashi (11) Drawings 1 and 7 (2 dimensions ≧ no changes) / Bacteria (), Fu 41k Tsu 4 I (D ≦ k4) Europe
Mi ・ ~ \ (nctu) U 54(x pl;, A()・n
Anμ! Tomoe 1Δ4 晦ムj11()7$4 Low-temperature soaking (°C) 7 and false pickling (°C) 6th day 1. H71'z Procedural amendment (method) April 19, 1980 Commissioner of the Japan Patent Office Haruki Shimada Case Indication 1982 Patent Application No. 188549 Title of the invention
Relationship with the Case of Person Who Corrects Water Level Gauges in Nuclear Reactors Patent Applicant: 5-1 Marunouchi-chome, Chiyoda-ku, Tokyo Name: 51O) Manufactured by Hitachi Co., Ltd. Representative: 3 1) Shigeyo Katsu Address: Marunouchi-5-1, Chiyoda-ku, Tokyo Supplementary JX
E') Contents of the 7-dimensional application, 9 drawings of the specification, and amendment to the power of attorney (1) Engraving of the application, specification, and drawings (no changes to the contents). (2) Submit a separate power of attorney.

Claims (1)

【特許請求の範囲】[Claims] 1、格納容器内に設置された原子炉容器に接続された第
1および第2の圧力導管と、前記第1圧力導管に取付け
らi″した某漁面器と、前記基進面器に接続された第3
の圧力導管と、前記第2および第3圧力導管に取付けら
れて前記格納容器の外部に配置さi′した差圧計とから
なる原子炉の水位計において、前記第38Eカ導管の垂
直部の60%以上が前記格納容器外に設置されているこ
とを特徴とする原子炉の水位計。
1. First and second pressure conduits connected to the reactor vessel installed in the containment vessel, a certain fishing vessel attached to the first pressure conduit, and connected to the base vessel The third
and a differential pressure gauge attached to the second and third pressure conduits and disposed outside the containment vessel, in which % or more of the water level gauge for a nuclear reactor, wherein the water level gauge is installed outside the containment vessel.
JP56188549A 1981-11-25 1981-11-25 Reactor water level meter Pending JPS5890197A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56188549A JPS5890197A (en) 1981-11-25 1981-11-25 Reactor water level meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56188549A JPS5890197A (en) 1981-11-25 1981-11-25 Reactor water level meter

Publications (1)

Publication Number Publication Date
JPS5890197A true JPS5890197A (en) 1983-05-28

Family

ID=16225638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56188549A Pending JPS5890197A (en) 1981-11-25 1981-11-25 Reactor water level meter

Country Status (1)

Country Link
JP (1) JPS5890197A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016003955A (en) * 2014-06-17 2016-01-12 日立Geニュークリア・エナジー株式会社 Reactor water level measuring device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016003955A (en) * 2014-06-17 2016-01-12 日立Geニュークリア・エナジー株式会社 Reactor water level measuring device

Similar Documents

Publication Publication Date Title
US4765945A (en) Method and apparatus for measuring the filling level in a reactor pressure vessel of a boiling-water reactor
Kawakubo et al. An experimental study on the cooling characteristics of passive containment cooling systems
JP5291869B2 (en) Liquid level measuring system and method
CN107146644A (en) A kind of experimental rig of reactor pressure vessel level sensor functional verification
JPS5890197A (en) Reactor water level meter
TW416003B (en) Method and device for void fraction measurement and adverse output signal mitigation on pressure-base instruments
JP3742226B2 (en) Liquid tank equipment with liquid level measuring device
CN110388239A (en) Nuclear power station separator system
JP6905451B2 (en) Hydrogen concentration measurement system
JPS6123518B2 (en)
US3549494A (en) Flow measuring device for sodium-cooled reactors
CN218384513U (en) Closed passive containment heat exporting system
JPS62137590A (en) Water-level monitor device for nuclear reactor
CN114203315B (en) Pressurized water reactor cavity liquid level monitoring system
CN218822567U (en) Anti-freezing system of thermal control measuring equipment
CN109192347B (en) Liquid level judgment method for shortening response time of thermosensitive water level detector
JPS5895239A (en) Monitoring device for leakage of valve
Nei Evaluation of heat transfer tube failure propagation due to sodium-water reaction in steam generator
JPH0332037B2 (en)
JPH0646229B2 (en) Reactor water level measuring device
JPS60100091A (en) Water level indicator for nuclear reactor
Akimoto et al. System pressure effect on system and core cooling behavior during reflood phase of PWR LOCA
McKee et al. Use of in-sodium hydrogen detectors during steam generator tests in the SCTI
JPS5689020A (en) Water level indicator
JPS62217198A (en) Pressurizer connection structure of pressurized water type reactor