JPS62137590A - Water-level monitor device for nuclear reactor - Google Patents

Water-level monitor device for nuclear reactor

Info

Publication number
JPS62137590A
JPS62137590A JP60276811A JP27681185A JPS62137590A JP S62137590 A JPS62137590 A JP S62137590A JP 60276811 A JP60276811 A JP 60276811A JP 27681185 A JP27681185 A JP 27681185A JP S62137590 A JPS62137590 A JP S62137590A
Authority
JP
Japan
Prior art keywords
temperature
thermocouple
water level
pressure
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60276811A
Other languages
Japanese (ja)
Inventor
松本 知行
佳彦 石井
加藤 監治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60276811A priority Critical patent/JPS62137590A/en
Publication of JPS62137590A publication Critical patent/JPS62137590A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、原子炉の炉心監視装置に係り、特に冷却材が
喪失する事故時の炉心水位監視に好適な水位検出装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a core monitoring device for a nuclear reactor, and more particularly to a water level detection device suitable for monitoring the core water level in the event of an accident in which coolant is lost.

〔従来の技術〕[Conventional technology]

原子炉事故時における炉心ツユラウド内の水位を検出す
る手段としては、特開昭59−112290号に記載の
ように、原子炉中性子検出用配管などの長尺筒状体の内
部に熱電対を軸方向に複数個設貴し、熱電対間の出力差
によって水位を判定する方法がある。熱電対間の出力差
がほぼOなら炉水位は上側の熱電対より更に上方に存在
するという原理を用いて、炉心シュラウド内の水位を検
出する装置である。
As a means of detecting the water level in the reactor core tube during a nuclear reactor accident, as described in JP-A-59-112290, a thermocouple is mounted inside a long cylindrical body such as reactor neutron detection piping. There is a method of installing multiple thermocouples in different directions and determining the water level based on the output difference between the thermocouples. This device detects the water level in the reactor core shroud using the principle that if the output difference between the thermocouples is approximately O, the reactor water level is higher than the upper thermocouple.

[発明が解決しようとする問題点〕 上記従来技術は、機構が比較的簡単であるが。[Problem that the invention seeks to solve] The above-mentioned conventional technology has a relatively simple mechanism.

冷却材の温度が均一でないときには誤った判定をする恐
れがある。炉心シュラウド内の水位監視が重要となるの
は、冷却材喪失等の事故がおきたときであるが、この時
には緊急炉心冷却系が作動し。
If the temperature of the coolant is not uniform, there is a risk of incorrect determination. Monitoring the water level in the core shroud becomes important in the event of an accident such as loss of coolant, in which case the emergency core cooling system is activated.

炉心7ユラウド内、特に炉心バイパス部には、未飽和度
の大きな冷却水が供給され、冷却水に塩度分布が生じや
すい。この場合には水位の判定が困難となり、実際は2
つの熱電対よす上に水位があるのに、水位は2つの熱電
対の間にあると判断したり、逆の判断をしたりする。し
たがって、この装置では、事故発生時において、水位を
誤判断するという問題があった。
Cooling water with a large degree of unsaturation is supplied to the inside of the reactor core 7, particularly to the core bypass section, and a salinity distribution is likely to occur in the cooling water. In this case, it becomes difficult to judge the water level, and in reality, 2
Even though the water level is above two thermocouples, it may be determined that the water level is between the two thermocouples, or vice versa. Therefore, this device has the problem of misjudging the water level when an accident occurs.

本発明は、冷却材喪失事故時において、冷却水の温度が
一様でなくなった場合においても、誤判断をすることな
く水位を監視できる装置を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a device that can monitor the water level without making erroneous judgments even if the temperature of the cooling water becomes uneven during a coolant loss accident.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、炉内に1庁かれた温度測定部が示す温度と
炉内圧力に対応する飽和湛jドとの大小関係を利用する
ことにより達成される。
The above object is achieved by utilizing the magnitude relationship between the temperature indicated by one temperature measuring section installed in the furnace and the saturation temperature corresponding to the pressure inside the furnace.

本発明では、炉内構造物に温度測定部を取りつけるとと
も(で、圧力容器内の圧力を計?llJする装置と圧力
からその圧力に対応した飽和温度を算出する演算装置、
および、熱電対温度と飽和温度を比較する装置を設けて
おき、大小関係から液面の位置を求める。
In the present invention, a temperature measuring section is attached to the reactor internals (and a device for measuring the pressure inside the pressure vessel and an arithmetic device for calculating the saturation temperature corresponding to the pressure from the pressure,
A device is provided to compare the thermocouple temperature and the saturation temperature, and the position of the liquid level is determined from the magnitude relationship.

〔作用〕[Effect]

本発明では、炉内構造物に取りつけた熱電対は、液面下
にある場合、その熱電対が接触している冷却材の温度を
示す。しかし、熱電対が蒸気中に露出している場合は、
熱電対の温度は通常飽和温度より高くなる。これは放射
線による熱輻射を受けるためと、熱伝導により構造物の
温度の影響を受けるためである。圧力から求めた飽和温
度と熱電対温度を比較し、熱雷対温度が飽和温度より高
い場合は、液面は熱電対位置より下にあると判断し、逆
に飽和温度に等しいか低い場合には、液面は熱電対位置
よフ上にあると判断する。
In the present invention, a thermocouple attached to the reactor internals indicates the temperature of the coolant it is in contact with when it is below the liquid level. However, if the thermocouple is exposed to steam,
The temperature of the thermocouple is usually higher than the saturation temperature. This is because it receives heat radiation due to radiation and is affected by the temperature of the structure due to heat conduction. Compare the saturation temperature obtained from the pressure with the thermocouple temperature, and if the thermocouple temperature is higher than the saturation temperature, it is determined that the liquid level is below the thermocouple position, and conversely, if it is equal to or lower than the saturation temperature, determines that the liquid level is above the thermocouple position.

第4図は、原子炉の冷却材喪失事故を模擬した実験での
、炉心バイパス内にとりつけた熱電対の温度計測値の一
例を示す。この図によシ本発明の詳細な説明する。熱電
対は、高さ方向に5個設置しである。冷却材が流出する
に従って、圧力が低下し飽和温度も低下する。炉心バイ
パスの温度は、定常状態では未飽和であるが、飽和温度
が低下するため約10秒で飽和になった。約60秒で1
番上に設置され比熱電対■の温度が飽和温度を越え、8
0秒では3番目の熱電対■の温度も飽和温度を越えてい
る。この実験では比較のため差圧計を使用して炉心バイ
パス部の水位分計側しているが、差圧計による炉心バイ
パス水位計測値と熱電対の測定温度が飽和温度を越える
ことで判定した水位とは対応している。また150秒以
降は。
Figure 4 shows an example of temperature measurements from a thermocouple installed in the reactor core bypass in an experiment simulating a loss of coolant accident in a nuclear reactor. The present invention will be explained in detail with reference to this figure. Five thermocouples were installed in the height direction. As the coolant flows out, the pressure decreases and the saturation temperature also decreases. The core bypass temperature was unsaturated in steady state, but became saturated in about 10 seconds as the saturation temperature decreased. 1 in about 60 seconds
The temperature of the specific thermocouple ■ installed at the top exceeds the saturation temperature, and the
At 0 seconds, the temperature of the third thermocouple ■ also exceeds the saturation temperature. In this experiment, a differential pressure gauge was used to measure the water level in the core bypass section for comparison, but the water level determined by the core bypass water level measurement value by the differential pressure gauge and the temperature measured by the thermocouple exceeding the saturation temperature. is compatible. Also after 150 seconds.

未飽和の緊急炉心冷却水を注入しているため、測定点の
温度はばらつくが、液に浸っている部分■〜■はすべで
飽和温度以下となる。このように冷却材の温度が一様で
ないときにも、飽和温度と測定値とを比較することで、
測定点か液より上にあるか下にあるかを判断することが
できる。
Since unsaturated emergency core cooling water is being injected, the temperature at the measurement points will vary, but all parts immersed in the liquid will be below the saturation temperature. Even when the temperature of the coolant is not uniform, by comparing the saturation temperature and the measured value,
It can be determined whether the measurement point is above or below the liquid.

また、実際の原子炉においては、蒸気中に露出した熱電
対は放射線による熱輻射を受けるため、飽和蒸気温度す
なわち飽和温度以上の温度を示す。
Furthermore, in an actual nuclear reactor, a thermocouple exposed in steam receives heat radiation from radiation, and thus exhibits a temperature higher than the saturated steam temperature, that is, the saturated temperature.

従って、圧力が上昇して飽和温度が上昇している時も、
熱電対の温度と飽和温度を比較することにより、/1!
面より上にあるか否かを判別することができる。
Therefore, even when the pressure increases and the saturation temperature increases,
By comparing the temperature of the thermocouple and the saturation temperature, /1!
It can be determined whether it is above the surface or not.

本発明によると、飽和温度は圧力のみによってきまり水
温の影響を受けないため、熱電対の温度が正確に測定で
きれば、冷却材の中に温度分布があっても、水位を誤判
断する問題はない。
According to the present invention, the saturation temperature is determined only by pressure and is not affected by water temperature, so if the thermocouple temperature can be measured accurately, there is no problem of misjudging the water level even if there is a temperature distribution in the coolant. .

〔実施例〕〔Example〕

以下1本発明の原子炉の水位監視装置を第1図に示す実
施例により説明する。第1図は1本発明をジェットポン
プ型沸騰水型原子炉に適用した時の縦断面図である。図
において、1は圧力容器、3は炉心シュラウド壁、4は
上部炉心支持板、5け下部炉心支持板であり、上部炉心
支持板4.下部炉心支持板5と炉心シュラウド壁3で囲
まれた部分け、炉心を構成する燃料集合体2と炉心バイ
パス15から成っている。燃料集合体2は独立な複数の
流路を構成しているので、その液面は各集合体により異
なる値をとりうるか、炉心バイパス15の液面12i−
t、半径方向に対しほぼ一定の値をとる。本発明では熱
電対20を温度計装管16の表面に複数個設置する。熱
電対20には補償導線21を接続し、温度補償回路22
に導き、測定点の温度を算出する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A water level monitoring device for a nuclear reactor according to the present invention will be explained below with reference to an embodiment shown in FIG. FIG. 1 is a longitudinal sectional view when the present invention is applied to a jet pump type boiling water reactor. In the figure, 1 is a pressure vessel, 3 is a core shroud wall, 4 is an upper core support plate, and 5 is a lower core support plate. It consists of a portion surrounded by a lower core support plate 5 and a core shroud wall 3, a fuel assembly 2 constituting the core, and a core bypass 15. Since the fuel assembly 2 constitutes a plurality of independent flow paths, the liquid level may take a different value depending on each assembly, or the liquid level 12i-
t takes a substantially constant value in the radial direction. In the present invention, a plurality of thermocouples 20 are installed on the surface of the temperature instrumentation tube 16. A compensation conductor 21 is connected to the thermocouple 20, and a temperature compensation circuit 22 is connected to the thermocouple 20.
to calculate the temperature at the measurement point.

一方、蒸気ドームlOの圧力を圧力計24で測定し、そ
の圧力に対応し念飽和温度を演算装置25で算出する。
On the other hand, the pressure in the steam dome 1O is measured by the pressure gauge 24, and the calculation device 25 calculates the saturation temperature corresponding to the pressure.

この飽和温度と測定点の温度を演算装置26にて比較し
7、飽和温度より1jllj定値が小ざいか又は同じ流
度なら、液面は温度測定点より上側にあると判定し、逆
に測定点の方が高ければ液面は温度測定点より下側にあ
ると判定する。高さ方向に複数点の測定点を設置してお
くことにより、炉心バイパス15の液面12の時間変化
を追うことができる。
This saturation temperature and the temperature at the measurement point are compared by the calculation device 7, and if the 1jllj constant value is smaller than the saturation temperature or the flow rate is the same, it is determined that the liquid level is above the temperature measurement point, and conversely, the measurement point is If the point is higher, it is determined that the liquid level is below the temperature measurement point. By installing a plurality of measurement points in the height direction, it is possible to track changes in the liquid level 12 of the core bypass 15 over time.

第2図は、温度計装管に増付けた熱電対の断面図を示す
。熱電対はシース型熱電対を使用している。7−ス31
は筒状をなしており、この中に熱電対素線が1対入って
いる。熱電対素線としては、たとえばクロメル32とア
ルメル33が使用できる。
FIG. 2 shows a cross-sectional view of a thermocouple added to the temperature instrumentation tube. A sheath type thermocouple is used as the thermocouple. 7-su31
has a cylindrical shape, and a pair of thermocouple wires is placed inside it. As the thermocouple wire, for example, chromel 32 and alumel 33 can be used.

クロメル32とアルメル33ぽシース31の先端付近で
熱接点34を形成しており、この熱接点で温度を測定す
る。シース31と熱電対素線間は絶縁材35で絶縁され
ている。
A thermal junction 34 is formed near the tip of the chromel 32 and alumel 33 sheath 31, and the temperature is measured at this thermal junction. The sheath 31 and the thermocouple wire are insulated with an insulating material 35.

熱電対は温度計装管16の壁から外の炉心バイパス温度
が計前」できるように突出しである。また熱電対の上方
から注水される緊急炉心冷却水が直接接触しないように
覆い37が設けである。
The thermocouple protrudes from the wall of the temperature instrumentation tube 16 so that the outer core bypass temperature can be measured. In addition, a cover 37 is provided to prevent direct contact with emergency core cooling water injected from above the thermocouple.

第3図には1本発明をインターナルポンプを用いた沸騰
水型原子炉に適用した他の実施例である。
FIG. 3 shows another embodiment in which the present invention is applied to a boiling water reactor using an internal pump.

本実施例では、熱電対を炉心シュラウド壁3の内側に高
さ方向に複数個設電した。圧力は蒸気ドームの圧力を測
定し、その圧力に対する飽和温度を算出し、温度測定点
の温度と比較装置26で比較する。結果は、第4図のよ
うKff1度のグラフの形や液面よジ上伸にある針掛′
j位費等の形で表示装置27に表示する。
In this embodiment, a plurality of thermocouples were installed inside the core shroud wall 3 in the height direction. The pressure in the steam dome is measured, the saturation temperature for the pressure is calculated, and the comparator 26 compares it with the temperature at the temperature measurement point. The results are as shown in Figure 4, the shape of the graph of Kff 1 degree and the needle hanging above the liquid level.
It is displayed on the display device 27 in the form of 1st cost, etc.

本発明では、熱電対が常に放射線にざらされているため
、測定値がシフトするなどの劣化が生じてくる。しかし
、圧力群」定にもとづく飽和温度は変動することがない
ため、この温度に対して熱電対温度を通常運転時に修正
しておくことにより、事故時において正確に作動させる
ことができる。
In the present invention, since the thermocouple is constantly exposed to radiation, deterioration such as a shift in measured values occurs. However, since the saturation temperature based on the pressure group constant does not change, by correcting the thermocouple temperature during normal operation with respect to this temperature, it is possible to operate accurately in the event of an accident.

また1本発明は加圧水型原子炉にも適用可能である。The present invention is also applicable to pressurized water reactors.

〔発明の効果〕〔Effect of the invention〕

以上記載した如く1本発明の水位計測装置は。 As described above, one of the water level measuring devices of the present invention is as follows.

事故時の原子炉内水位を簡単な構造で精度良く測定でき
る。その結果、原子炉事故時にも炉心シュラウド内の水
位に関する情報を運転員に知らせることができ、誤判断
や緊急炉心冷却系(ECC5)の誤操作を防ぐことかで
きる。この結果、原子炉の安全性が向上するという効果
がある。
The water level inside the reactor at the time of an accident can be accurately measured with a simple structure. As a result, even in the event of a nuclear reactor accident, information regarding the water level in the reactor core shroud can be provided to operators, thereby preventing erroneous judgments and erroneous operation of the emergency core cooling system (ECC5). As a result, the safety of the nuclear reactor is improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は水位監視装置の実施例を示す原子炉の説明図、
第2図は本発明で使用する。@電対の取付は図、第3図
は本発明による他の実施例の原子炉の説、明図、第4因
f′!、温度と時間の関係を示す図である。 1・・・圧力容器、2・・・炉心を構成する燃料集合体
、3・・・炉IL?シュラウド壁、4・・・上部炉心支
持板、5・・・下部炉心支持板、6・・・ジェットポン
プ、7・・・再循環系配管、8・・・再循環ポンプ、9
・・・下部プレナム、10・・・蒸気ドーム、11・・
・セパレータ、12・・・水面、13・・・ダウンカマ
、14・・・インターナルポンプ、15・・・炉心バイ
パス、16・・・中性子検出用配管、20・・・熱電対
、21・・・補償導線、22・・・温度補償回路、24
・・・圧力計、25・・・飽和温度演算装置、26・・
・比1!!2装置、27・・・表示装置、31・・・シ
ース、32・・・クロメル、33・・・アルメル、 3
4・・・熱接点、35・・・絶縁材、36・・・温度計
装管、37代理人 弁理士 小川置方  、−ニソ第1
図 16一−一温度計装管 20−−− S’Ah魔We静 24−一一圧力廿
Figure 1 is an explanatory diagram of a nuclear reactor showing an example of a water level monitoring device;
FIG. 2 is used in the present invention. @The installation of the electric couple is shown in the figure, and Figure 3 is an explanation of another embodiment of the nuclear reactor according to the present invention, a clear diagram, and the fourth factor f'! , is a diagram showing the relationship between temperature and time. 1... Pressure vessel, 2... Fuel assembly that constitutes the reactor core, 3... Reactor IL? Shroud wall, 4... Upper core support plate, 5... Lower core support plate, 6... Jet pump, 7... Recirculation system piping, 8... Recirculation pump, 9
...Lower plenum, 10...Steam dome, 11...
・Separator, 12... Water surface, 13... Downcomer, 14... Internal pump, 15... Core bypass, 16... Neutron detection piping, 20... Thermocouple, 21... Compensation conductor, 22...temperature compensation circuit, 24
...Pressure gauge, 25...Saturation temperature calculation device, 26...
・Ratio 1! ! 2 device, 27... display device, 31... sheath, 32... chromel, 33... alumel, 3
4...Thermal junction, 35...Insulating material, 36...Temperature measurement tube, 37 Agent: Patent attorney Okikata Ogawa, -Niso No. 1
Figure 16-1 Temperature instrumentation tube 20-- S'Ahma We static 24-11 Pressure pipe

Claims (1)

【特許請求の範囲】 1、原子炉容器内壁あるいは原子炉容器内の構造物に設
置した1個以上の温度測定部と、温度測定部からの信号
を受けて温度を算出する装置と、圧力容器内の圧力を計
測する装置と、圧力からその圧力に対応した飽和温度を
算出する演算装置を備え、温度測定部の温度が飽和温度
より高いことをもつて、その温度測定部が液面より上側
にあると判別することを特徴とする原子炉の水位監視装
置。 2、温度測定部を熱電対にて構成していることを特徴と
する特許請求の範囲第1項記載の原子炉の水位監視装置
[Scope of Claims] 1. One or more temperature measurement units installed on the inner wall of the reactor vessel or a structure within the reactor vessel, a device that receives a signal from the temperature measurement unit and calculates the temperature, and a pressure vessel. It is equipped with a device that measures the pressure inside the liquid and a calculation device that calculates the saturation temperature corresponding to the pressure from the pressure.If the temperature of the temperature measurement part is higher than the saturation temperature, the temperature measurement part is A water level monitoring device for a nuclear reactor, characterized in that it determines whether the water level is 2. The water level monitoring device for a nuclear reactor as set forth in claim 1, wherein the temperature measuring section is composed of a thermocouple.
JP60276811A 1985-12-11 1985-12-11 Water-level monitor device for nuclear reactor Pending JPS62137590A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60276811A JPS62137590A (en) 1985-12-11 1985-12-11 Water-level monitor device for nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60276811A JPS62137590A (en) 1985-12-11 1985-12-11 Water-level monitor device for nuclear reactor

Publications (1)

Publication Number Publication Date
JPS62137590A true JPS62137590A (en) 1987-06-20

Family

ID=17574714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60276811A Pending JPS62137590A (en) 1985-12-11 1985-12-11 Water-level monitor device for nuclear reactor

Country Status (1)

Country Link
JP (1) JPS62137590A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02184793A (en) * 1988-11-28 1990-07-19 Babcock & Wilcox Co:The Real time pressure/temperature limiting system for nuclear reactor cooling system
JP2013104750A (en) * 2011-11-11 2013-05-30 Toshiba Corp Alternative measurement device, alternative measurement system, and alternative measurement method
JP2013137236A (en) * 2011-12-28 2013-07-11 Toshiba Corp Water level measurement device
CN114203315A (en) * 2021-11-30 2022-03-18 中国核动力研究设计院 Pressurized water reactor cavity liquid level monitoring system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02184793A (en) * 1988-11-28 1990-07-19 Babcock & Wilcox Co:The Real time pressure/temperature limiting system for nuclear reactor cooling system
JP2013104750A (en) * 2011-11-11 2013-05-30 Toshiba Corp Alternative measurement device, alternative measurement system, and alternative measurement method
JP2013137236A (en) * 2011-12-28 2013-07-11 Toshiba Corp Water level measurement device
CN114203315A (en) * 2021-11-30 2022-03-18 中国核动力研究设计院 Pressurized water reactor cavity liquid level monitoring system
CN114203315B (en) * 2021-11-30 2024-01-30 中国核动力研究设计院 Pressurized water reactor cavity liquid level monitoring system

Similar Documents

Publication Publication Date Title
EP0074491B1 (en) Heated junction thermocouple level measurement apparatus
JP5829527B2 (en) Reactor water level and temperature measurement device
US7926345B2 (en) Apparatus for measuring a filling level
EP2784781B1 (en) Reactor water level measuring system
EP2053614B1 (en) System and method for determining coolant level and flow velocity in a nuclear reactor
US4406011A (en) Gamma thermometer based reactor core liquid level detector
JPS6093315A (en) Heat-sensitive measuring system of liquid level
JPS5764115A (en) Method and apparatus detecting liquid level
Chapman et al. Zirconium cladding deformation in a steam environment with transient heating
JPS62137590A (en) Water-level monitor device for nuclear reactor
JPH1039083A (en) In-furnace information monitoring apparatus
JPS61153555A (en) Method and device for detecting presence of substance or generation of change immediately before physical state change in fluid
JPS59112290A (en) Reactor core monitoring device
JPH10153681A (en) Water level measuring device for pressure suppression pool
US4521371A (en) Vessel liquid level indication
JPH09145449A (en) Level gauge
Neuschaefer et al. A Reactor Vessel Level Monitoring System, an Aid to the Operators in Assessing an Approach to Inadequate Core Cooling
JP2521683B2 (en) Reactor power distribution monitor
JPS58172540A (en) Void gauge
Hashemian et al. I&C System Sensors for Advanced Nuclear Reactors
JPS61102593A (en) Monitor device for coolant in nuclear reactor
JPH0650359B2 (en) Method and device for monitoring cooling status of light water reactor
Kolba et al. CARBON METER-EQUILIBRATION MODULE FOR LMFBR's: DESIGN AND OPERATION.
JP2003121290A (en) Leakage detector
JP3886664B2 (en) In-furnace process quantity measuring device