JPS5889858A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS5889858A
JPS5889858A JP56188095A JP18809581A JPS5889858A JP S5889858 A JPS5889858 A JP S5889858A JP 56188095 A JP56188095 A JP 56188095A JP 18809581 A JP18809581 A JP 18809581A JP S5889858 A JPS5889858 A JP S5889858A
Authority
JP
Japan
Prior art keywords
silicon layer
polycrystal silicon
oxide film
polycrystalline silicon
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56188095A
Other languages
Japanese (ja)
Inventor
Kazuhito Misu
三須 一仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP56188095A priority Critical patent/JPS5889858A/en
Publication of JPS5889858A publication Critical patent/JPS5889858A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/525Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body with adaptable interconnections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To form the width of a polycrystal silicon fuse with high accuracy through a process shaping a stage difference section onto a substrate, a process forming a polycrystal silicon layer onto the substrate containing the stage difference section and a process removing the polycrystal silicon layer through anisotropic etching only by approximately the film thickness section. CONSTITUTION:A CVD oxide film 4 is grown onto a field oxide film 1, and the CVD oxide film 4 is obtained through selective ethcing. The polycrystal silicon layer 2 is grown onto the whole surface, and only by the film thickness section t2 is etched lest the polycrystal silicon layer 2 should remain on the whole surface of the polycrystal silicon layer 2 by a dry etcher having anisotropy in the whole surface. Since the actual film thickness t of the polycrystal silicon layer 2 is the sum of the thickness t2 of the grown film and the thickness of the CVD oxide film 4, stage difference t4, in the stage difference section of the CVD oxide film 4, the polycrystal silicon layer 2 remains in the film thickness of t4 along the stage difference of the CVD oxide film 4 when the polycrystal silicon layer 2 is ethced only by t2.

Description

【発明の詳細な説明】 本発明は半導体装置の製造方法に係シ、特に絶縁ゲート
電界効果型(以下、M2S型)メモリ回路装置の冗長ビ
ットに接続されている多結晶シ“リコンヒューズの製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device, and particularly to a method for manufacturing a polycrystalline silicon fuse connected to a redundant bit of an insulated gate field effect type (hereinafter referred to as M2S type) memory circuit device. Regarding the method.

最近のメモリ製品の大容量化に伴い、メモリセ゛ル占有
率もしだいに多くなりチップサイズも大きくなってきて
いる。したがって拡散中のゴミなどの影響を受けやすく
メモリプレイ部に欠陥が生じ全ビット良品をとることが
困難になってきている状況にある。そこでそのような欠
陥の含まれている行又は列に置きかえるための冗長又は
冗長列を設けることは有効である。
As the capacity of recent memory products increases, the memory cell occupancy rate also increases and the chip size also increases. Therefore, the memory play section is susceptible to the influence of dust during diffusion, and defects occur in the memory play section, making it difficult to obtain all bits of good quality. Therefore, it is effective to provide redundant or redundant columns to replace rows or columns containing such defects.

ここで第1図(al 4C多結晶シリコンヒ、−スノ1
例を示す。すなわち2−.2’間に電圧を印加し、電流
を流してヒ鳳−ズを切る。その時、ヒユーズが切れる時
の消費電力Pは一定である拳が知られている。そしてヒ
ユーズ内を流れる電流は%WK比例し、2−2’間に印
加する電圧はLに比例する事ビなる。
Here, Fig. 1 (al 4C polycrystalline silicon
Give an example. That is, 2-. A voltage is applied between 2' and a current is applied to cut the fuse. At that time, it is known that the power consumption P when the fuse blows is constant. The current flowing through the fuse is proportional to %WK, and the voltage applied between 2 and 2' is proportional to L.

したがうて次式が成り立つ。Therefore, the following formula holds.

P=VIocWL=一定 ゆえl1cWとLのば−らつきが消費電力を決定する事
がわかる。ここで一般にLはWK比べ長いので光無光法
による条件及びレジスト膜厚等のバ2ツキ〇−囲(土1
μm)が無視できる。ところがwFi短かいため上述の
パラ゛ツキが無視できなく、またwVi寛流Iに比例し
ている。すなわちWのバラツキが消費電力Pに大きく影
響を与えるということがわかる。
Since P=VIocWL=constant, it can be seen that the variation in l1cW and L determines the power consumption. Here, L is generally longer than WK, so the conditions for the optical achromatic method and the resist film thickness, etc.
μm) can be ignored. However, since wFi is short, the above-mentioned variation cannot be ignored, and it is proportional to wVi relaxation I. In other words, it can be seen that the variation in W greatly affects the power consumption P.

したがって精度良くヒユーズのWとL(4Iに微小寸法
であるW)をコントロールする必要がある。
Therefore, it is necessary to precisely control the fuse W and L (W, which is minute in size to 4I).

従来のヒユーズの製法は、公知のように多結晶シリコン
ヒユーズを形成する工程において光露光法によって行わ
れ、その条件及び使用するフォトレジスト膜厚等のバラ
ツキなどにより、ヒ為−ズの特に微小パターンであるW
は% 0.2〜0.5μmのバラツキが生じ、2μm以
下のと島−ズを精度よくつくる事が難しいのが現状であ
る。 一本発明は、このような従来の欠点を除いた半導
体装置の製造方法を提供することを目的とする。
As is well known, the conventional process for manufacturing fuses is carried out by a light exposure method in the process of forming polycrystalline silicon fuses. is W
There is a variation of 0.2 to 0.5 .mu.m in percentage, and it is currently difficult to form islands of 2 .mu.m or less with high precision. One object of the present invention is to provide a method for manufacturing a semiconductor device that eliminates such conventional drawbacks.

本発明の特徴は、例えに多結晶シリコン層を形成する工
程においてC酸化膜を形成する工程と、酸化膜を選択的
に除去し、酸化膜の段差を形成する工程と1次に全面に
多結晶シリコン層を成長させ多結晶シリコン層を選択的
に除去する際、前記多結晶。シリコン層のほぼ膜厚分だ
け全異方性を有するエツチング技術にて除去する工程を
含み、前記酸化膜の段差にそって残った前記多結晶シリ
コン層をヒユーズとして用いる半導体メモリ回路装置の
製造方法にをる。
The features of the present invention include, for example, the step of forming a C oxide film in the step of forming a polycrystalline silicon layer, the step of selectively removing the oxide film and forming a step in the oxide film, and the step of firstly forming a polycrystalline silicon layer on the entire surface. When growing a crystalline silicon layer and selectively removing a polycrystalline silicon layer, the polycrystalline silicon layer is grown and the polycrystalline silicon layer is selectively removed. A method for manufacturing a semiconductor memory circuit device, which includes a step of removing approximately the thickness of a silicon layer by an etching technique having total anisotropy, and uses the polycrystalline silicon layer remaining along the steps of the oxide film as a fuse. Niworu.

すなわち、本発明は、冗長ビットに接続されている多結
晶シリコンヒユーズの幅Wを精度良く形成することを特
徴とするMO8型メモリ回路装置の製造方法を提供する
ものである。
That is, the present invention provides a method for manufacturing an MO8 type memory circuit device, characterized in that the width W of a polycrystalline silicon fuse connected to a redundant bit is formed with high precision.

次に本発明の実施例につき図を用いて説明する。Next, embodiments of the present invention will be described with reference to the drawings.

第2図(blのようにフィールド酸化膜lの上にCVD
酸化膜4を成長させ、ホトエツチング技術により選択的
にエツチングし、CVD酸化膜4を得る。
Figure 2 (CVD on field oxide film l as shown in bl)
The oxide film 4 is grown and selectively etched using a photoetching technique to obtain the CVD oxide film 4.

次に全面に多結晶シリコン層2を成長させ1次に全面を
異方性を有するドライエツチャー(平行平板型)で多結
晶シリコン層2の全表面上に多結晶シリコン層2が残ら
ないように膜厚分t2だけをエーッチングする。
Next, a polycrystalline silicon layer 2 is grown on the entire surface, and then the entire surface is etched using an anisotropic dry etcher (parallel plate type) so that no polycrystalline silicon layer 2 remains on the entire surface of the polycrystalline silicon layer 2. Only the film thickness t2 is etched.

ここでCVD酸化膜40段差部では、多結晶シリコン層
2の実際の膜厚tは、成長膜厚t2とCVD酸化811
4の膜厚すなわち段差t4との和になっているので、多
結晶シリコン層2をt2だけエツチングすると第2図(
dのようKCVD酸化膜4の段差に沿って多結晶シリコ
ン層2は%t4の膜厚で残留することに逐る。こ−の時
に注目すべきことはw−tlと膜厚t4は、エツチング
や成長膜厚のバラツキのみに依存している。したがって
エツチング峙に異方性を有するエツチングでは終止点判
定が容易なために成長膜厚のバラツキは、公知の方法に
て±0.1μm以下の精度でコントロールできる。
Here, in the stepped portion of the CVD oxide film 40, the actual film thickness t of the polycrystalline silicon layer 2 is the grown film thickness t2 and the CVD oxide film 811.
4, that is, the sum of the step t4, so if the polycrystalline silicon layer 2 is etched by t2, as shown in FIG.
As shown in d, the polycrystalline silicon layer 2 remains along the step of the KCVD oxide film 4 with a thickness of %t4. What should be noted at this time is that w-tl and film thickness t4 depend only on etching and variations in the grown film thickness. Therefore, in etching having anisotropy in the etching plane, it is easy to determine the end point, and thus variations in the thickness of the grown film can be controlled with an accuracy of ±0.1 μm or less using known methods.

それで多結晶シリコンヒユーズのWと膜厚は、±0.1
μm以下の精度でコントロールでき、再現性の良いヒユ
ーズが得られる。
Therefore, the W and film thickness of the polycrystalline silicon fuse are ±0.1
It can be controlled with an accuracy of less than μm and fuses with good reproducibility can be obtained.

本発明によれは多結晶シリコンヒ為−ズの幅(W)と膜
厚が精1鼠〈コントルールで睡るので、多結晶シリコン
と、−ズでの消費電力Pは従来のホトエツチング法に比
較してバラツキを小さく抑える事ができる。
According to the present invention, since the width (W) and film thickness of the polycrystalline silicon wire are precisely controlled, the power consumption P of the polycrystalline silicon wire and wire is lower than that of the conventional photoetching method. It is possible to keep the variation small.

なお、本発明につきヒユーズ材料として多結晶シリコン
につき説明したが、他のヒユーズ材料。
Although polycrystalline silicon has been described as the fuse material in the present invention, other fuse materials may be used.

例えはW、Mo、Cr等についても同様の効果を得られ
る事は轟然である。
It is amazing that similar effects can be obtained with W, Mo, Cr, etc., for example.

【図面の簡単な説明】[Brief explanation of the drawing]

=第1図(111〜<O)は従来の多結晶シリコン層の
製造工程を宗す平面図と断面図であって、第1図(a)
は多結晶シリコンヒユーズの一例の平面図、第1図(b
) * (c%は各々第1図(a)のA−A’での断面
図である。 第2図(1)〜(0I鱒、本発明実施例の多結晶シリコ
ン層の製造工程の平面図と断面図であって、第2図−(
i)は一平面図、第2図(b) 、 (C)は各々第2
図(a)のB−B′での断面図である。 なお図において% 1・・・・・・フィールド酸化1m
、  2・・・・・・多結晶シリコン層、3・・・・・
・ホトレジスト、4・・・・・・CVD酸化膜、である
= Figure 1 (111~<O) is a plan view and a cross-sectional view of the conventional manufacturing process of a polycrystalline silicon layer, and Figure 1 (a)
Figure 1 (b) is a plan view of an example of a polycrystalline silicon fuse.
) * (c% is a cross-sectional view taken along line A-A' in FIG. 1(a). FIG. FIG. 2-(
i) is one plan view, and Fig. 2(b) and (C) are the second plan view.
FIG. 3 is a sectional view taken along line BB' in FIG. In the figure, %1...Field oxidation 1m
, 2...polycrystalline silicon layer, 3...
・Photoresist, 4...CVD oxide film.

Claims (1)

【特許請求の範囲】[Claims] 冗長行又は冗長列を含むメモリマトリクスを有する半導
体装置の製造方法にお−て、基板上に段差部を設ける工
程と、該段差部を誉んだ前記基板上に多結晶シリコン層
を設ける工程と、諌多結晶シリコン層をほぼその膜厚分
だけ異方性エツチングにより除去する工程とを含むこと
を特徴とする半導体装置の製造方法。
A method for manufacturing a semiconductor device having a memory matrix including redundant rows or columns, comprising: providing a stepped portion on a substrate; and providing a polycrystalline silicon layer on the substrate with the stepped portion. . A method for manufacturing a semiconductor device, comprising the steps of: removing the polycrystalline silicon layer by approximately the thickness of the polycrystalline silicon layer by anisotropic etching.
JP56188095A 1981-11-24 1981-11-24 Manufacture of semiconductor device Pending JPS5889858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56188095A JPS5889858A (en) 1981-11-24 1981-11-24 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56188095A JPS5889858A (en) 1981-11-24 1981-11-24 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS5889858A true JPS5889858A (en) 1983-05-28

Family

ID=16217607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56188095A Pending JPS5889858A (en) 1981-11-24 1981-11-24 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5889858A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63140550A (en) * 1986-12-01 1988-06-13 Mitsubishi Electric Corp Elecric fuse for redundant circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63140550A (en) * 1986-12-01 1988-06-13 Mitsubishi Electric Corp Elecric fuse for redundant circuit

Similar Documents

Publication Publication Date Title
KR920000227B1 (en) A retandant circuit in semiconductor device
JPS5889858A (en) Manufacture of semiconductor device
JP2958284B2 (en) Transfer mask, manufacturing method thereof, and pattern transfer method
JPH0613549A (en) Semiconductor device
JP2666393B2 (en) Semiconductor device
JPH07218929A (en) Array structure of thin-film transistor
JPH02181472A (en) Manufacture of semiconductor pressure sensor
JPS6050937A (en) Manufacture of semiconductor device
JP2001332597A (en) Method for inspecting epitaxial wafer for hbt
JPS6161436A (en) Method for dividing semiconductor substrate
JPS62124742A (en) Manufacture of device
KR0168020B1 (en) Semiconductor device with variable resistance and fabricating method thereof
KR20010040112A (en) X-ray mask having a lower stress in x-ray absorption pattern
JPS60227459A (en) Integrated circuit device
JPS6148708B2 (en)
JPH0370848B2 (en)
JPH0786560A (en) Manufacture of semiconductor element
JPS6240772A (en) Manufacture of semiconductor device
JPS63117428A (en) Manufacture of semiconductor device
JPH05218212A (en) Manufacture of semiconductor device
JPH04235051A (en) Preparation of ink jet head
JPS61107740A (en) Manufacture of semiconductor device
JPS62260341A (en) Forming method of multilayer interconnection layer
JPH01241868A (en) Semiconductor device
JPS60101707A (en) Manufacture of thin-film magnetic head