JPS5889760A - Insulation defect detecting method at frit sealing section of cathode ray tube - Google Patents
Insulation defect detecting method at frit sealing section of cathode ray tubeInfo
- Publication number
- JPS5889760A JPS5889760A JP18788881A JP18788881A JPS5889760A JP S5889760 A JPS5889760 A JP S5889760A JP 18788881 A JP18788881 A JP 18788881A JP 18788881 A JP18788881 A JP 18788881A JP S5889760 A JPS5889760 A JP S5889760A
- Authority
- JP
- Japan
- Prior art keywords
- current
- frit sealing
- sealing section
- electrode
- level
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J9/00—Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
- H01J9/42—Measurement or testing during manufacture
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、内部に気泡を生じたり、表面汚染が残留した
りして、絶縁欠陥が比較的生じ易いフリット封着部に基
因する陰極線管の、内装導電膜と外表面間の絶縁欠陥を
簡単かつ確実に検出する方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention aims to improve the internal conductive film and the external conductive film of cathode ray tubes, which are caused by frit sealing parts that are relatively prone to insulation defects due to internal air bubbles or residual surface contamination. This invention relates to a method for easily and reliably detecting insulation defects between surfaces.
陰ti、is管とくに螢光面形成のために大きなマスク
をかけて露光する工程のあるカラー管は、バルブのパネ
ル内面への螢光面形成工程を終了したパネルをファンネ
ルの大径開口端にフリット(低融点ガラス粉末)を用い
て封着しなければならない。For negative TI and IS tubes, especially color tubes that require a process of exposure using a large mask to form a fluorescent surface, the panel that has undergone the process of forming a fluorescent surface on the inner surface of the bulb panel is placed at the large-diameter opening end of the funnel. It must be sealed using a frit (low melting point glass powder).
フリット封着部は、内部KjL泡が生じたり、パネルや
ファンネルの端面に汚染が残留していたり、7リツトを
ペーストにして塗布する工程で汚染物質が混入したりす
るので、陰極線管実用時に、−極線管バルブのガラス壁
の内、外表面間に、陰極線を^連に加速する直流高電圧
を印加すると、このフリット封着部が電気絶縁上の弱点
となって、ここの絶縁が破壊されたり、ここを通じてか
なりの電流が流れたりする不良が比較的高率に発生する
。そのため従来から、鉗1図に示すように、ファンネル
ガラスi!2を貫通し管内壁面上の内装導電膜4に導通
する陽極端子3に、フンタクト電極5を接触させ、スイ
ッチ8を介して直流高圧電源7の陽極を接続し、一方フ
リット封着部1の外周に電流検出電極6を密着させ、フ
リット封着部を通って流れる電流j(の値を電流検出器
6aで測定し、フリット封着部の絶縁検査を行なってい
た。In the frit sealing part, internal KjL bubbles may occur, contamination may remain on the end faces of the panel or funnel, and contaminants may be mixed in during the process of applying 7-lit as a paste, so when the cathode ray tube is put into use, - When a high DC voltage that continuously accelerates the cathode rays is applied between the inner and outer surfaces of the glass wall of the cathode ray tube bulb, this frit seal becomes a weak point in electrical insulation and the insulation breaks down. There is a relatively high rate of failures in which a large amount of current flows through the capacitor. Therefore, as shown in Figure 1, funnel glass i! An anode terminal 3 that passes through the tube 2 and is electrically connected to the internal conductive film 4 on the inner wall surface of the tube is brought into contact with the anode terminal 3, and the anode of the DC high voltage power source 7 is connected via the switch 8. A current detection electrode 6 is brought into close contact with the frit-sealed portion, and the value of the current j (flowing through the frit-sealed portion is measured by a current detector 6a, thereby testing the insulation of the frit-sealed portion.
しかし、第1図に示すような検査法では、ファンネルガ
ラス112の外表面が汚染していると、この外表面上を
直接コンタクト電極5から検出電極6へ流れる比較的大
きい漏洩電流i1が混入するはか、慣性モーメントの大
きい可動コイル形検流計などを用いると電圧印加直後の
充電電流波形ヰ、フリット封着部の絶縁欠陥による前記
電流波形の乱れなども測定できず、製品の7リツト封着
部絶縁欠陥の有無を的確に判別し難いとい5問題があっ
た。However, in the inspection method shown in FIG. 1, if the outer surface of the funnel glass 112 is contaminated, a relatively large leakage current i1 flows directly on the outer surface from the contact electrode 5 to the detection electrode 6. However, if a moving coil type galvanometer with a large moment of inertia is used, it will not be possible to measure the charging current waveform immediately after voltage application, or any disturbances in the current waveform due to insulation defects in the frit sealing part. There were five problems in that it was difficult to accurately determine whether there was an insulation defect in the bonded area.
本発明の目的は上記の如き問題のない、フリット封着部
の絶縁欠陥の有無を簡単かつ確実に検出できる方法を提
供することにある。SUMMARY OF THE INVENTION An object of the present invention is to provide a method for simply and reliably detecting the presence or absence of an insulation defect in a frit-sealed portion without the above-mentioned problems.
上記目的を達成するために本発明においては、陰極線管
の、内装導電膜とフリット封着部外周に密着した電極と
の間に、高電圧パルスを繰返し印加し、電圧印加に対応
して流れた電流波形を繰返し測定した値の蓄積結果を解
析して、フリット封着部絶縁欠陥を検出するようにした
。これは本発明者が電子式計測装置を用いてフリット封
着部に電圧を印加した直後からの電流波形を観測したと
ころ、フリット封着部に欠陥がある場合は、導電膜を電
極とする容量への充電電流のピークが高くなり、更にそ
のピークから指数間数的に低下して行く過程でも、指数
関数的経過が乱れて過渡的突出部が生ずる場合のあるこ
とがわかり、しかもこの当初のピークからの低下過程で
観測された不規則な変動による小ピークは、電圧印加直
後に現れる確率が高く、高電圧を比較的長く継続して印
加するよりも、高電圧パルスを繰返し印加する方が融着
に観測されたからである。絶縁欠陥検出装置を電子式に
して高速観測を可能にすると共に、観測結果をディジタ
ル変換して、繰返し観測値の蓄積や、解析のための演算
を容易に施せるようにした。なお精密な正しい観測結果
が得られるように、陰極線管の外表面上の漏洩電流が7
リツト封着部絶縁電流に混入するのを防止するガード電
極も用いることとした。In order to achieve the above object, in the present invention, high voltage pulses are repeatedly applied between the internal conductive film of the cathode ray tube and the electrode that is in close contact with the outer periphery of the frit sealing part. Insulation defects in the frit sealing area were detected by analyzing the accumulated results of repeated measurements of the current waveform. The present inventor used an electronic measuring device to observe the current waveform immediately after applying voltage to the frit-sealed part, and found that if there is a defect in the frit-sealed part, the capacitance using the conductive film as an electrode It has been found that even in the process where the peak of the charging current increases and then decreases exponentially from that peak, the exponential process may be disrupted and a transient protrusion may occur. Small peaks due to irregular fluctuations observed in the process of decreasing from the peak have a high probability of appearing immediately after voltage application, and it is better to repeatedly apply high voltage pulses than to apply high voltage continuously for a relatively long time. This is because it was observed during fusion. The insulation defect detection device was made electronic to enable high-speed observation, and the observation results were converted into digital data, making it easy to accumulate repeated observation values and perform calculations for analysis. In order to obtain accurate and accurate observation results, the leakage current on the outer surface of the cathode ray tube must be
A guard electrode was also used to prevent the insulating current from entering the lit sealing area.
まず第2図によって、測定対象となるフリット封着部や
、誤差の原因となる漏洩電流径路などを含む従来の(本
発明の場合も基本的には同じ)検出−路の大要を説明す
る。図かられかるように、コンタクト電極5と電流検出
電極6の間の電流はフリット封着部1を流れるi(と管
外表面(実効抵抗r s )を流れる漏洩電流i1 よ
りなる。i(の径路中には容量Cfを有する内装導電膜
4が含まれる。ilとj(との分離は前記の如く古くか
ら公知のガード電極を用いることによって容易に行なえ
るが、フリット封着部の絶縁特性には従来必ずしも明ら
かでない点があって良否の判別を量産工程で的確に行う
のは容易でなかったのである。i(の径路には容量Cf
が存在するから下記(1) 、 (21、(3)式が成
立する。ただし、tは時刻、qはCfに蓄積する電荷、
r(はフリット溶着部1の抵抗である。First, with reference to FIG. 2, we will explain the outline of the conventional detection path (which is basically the same in the case of the present invention), including the frit sealing part that is the object of measurement and the leakage current path that causes errors. . As can be seen from the figure, the current between the contact electrode 5 and the current detection electrode 6 consists of i flowing through the frit sealing part 1 and leakage current i1 flowing through the tube outer surface (effective resistance r s ). The internal conductive film 4 having a capacitance Cf is included in the path. Although il and j can be easily separated by using the well-known guard electrode as described above, the insulation properties of the frit sealing part In the past, there were some points that were not always clear, and it was not easy to accurately determine whether the product was good or bad in the mass production process.
exists, so the following equations (1), (21, and (3) hold true. However, t is time, q is the charge accumulated in Cf,
r( is the resistance of the frit welded part 1.
q(t)=Cf−Es(1−e ’fCf) (2
1電圧印加時(t=o)のjf値i4、はi(1= B
o/ r((51
また時定数t、=r(C1経過後の+1の値工f、は”
”” ”/ e、r((61
となる。これらの式中rfとCfは定数とみなしたが、
実際にはフリット封着部1に絶縁欠陥がある場合はr(
は不規則に変動、低下し、Cfは太き目になる。従来は
慣性モーメントの大きい可動線輪形検流計6mを用い【
いたので電流波形の観測は困−であった。なお検流計を
流れる全電II・の値は勿論Io=i(+iBである。q(t)=Cf-Es(1-e'fCf) (2
The jf value i4 when one voltage is applied (t=o) is i(1=B
o/r((51 Also, the time constant t, = r(+1 value f after C1 has elapsed is "
"""/ e, r ((61). In these formulas, rf and Cf are considered constants, but
Actually, if there is an insulation defect in the frit sealing part 1, r(
fluctuates and decreases irregularly, and Cf becomes thicker. Conventionally, a 6m movable ring type galvanometer with a large moment of inertia was used.
Therefore, it was difficult to observe the current waveform. Note that the value of the total current II flowing through the galvanometer is, of course, Io=i(+iB).
第3図は本発明一実施例のブロック図である。FIG. 3 is a block diagram of one embodiment of the present invention.
処理装置18からパルス信号2oが与えられると、それ
に応じてスイッチ8が作動し、測定回路に電圧値Boの
高圧パルスが繰返し、例えば20m5オン、20m5オ
フで、合計10s 印加される。測定は処理装置から
、電圧印加後家もなく ’h抽出信号(パルス)9aを
与えられると信号期間中の電流のピーク髄な、電圧を印
加してから時走& 11経過後’fs抽出信号9bを与
えられるとその期間中の電流のピーク値を、更に時間が
経過してe−1tが十分小さくなった時点tで11抽出
信号9cが与えられるとその期間中の電流のピーク値を
、抽出する。この実施例では電極6に流入する電流はI
、=t、十盛lで、このうちi(は既述の如く、フリッ
ト封着部が正常ならば指数関数的に経時変化し【低下し
、封着部に絶縁欠陥があれば不規則に変動して正常時よ
りも大きくなる。この様子を第4図に示す。E、と示す
線は電圧印加状態を示しく20)と示す期間スイッチB
が閉じて高圧パルスEo (例えば常時陽極電圧28
kvの管に対し35kv@度)が繰返し印加される。っ
ぎのI・と示す線はI、=盛(+il を示し、10
gは7リツト封着部に欠陥のない場合の例を示す。次の
’fmと示した線は前記抽出信号9aによって抽出回路
15が抽出した、信号9aの期間中のIoのピーク値1
1 a岬を示し、轟fと冠してはいるがIl を含む。When the pulse signal 2o is applied from the processing device 18, the switch 8 is actuated in response, and a high voltage pulse of voltage value Bo is repeatedly applied to the measurement circuit, for example, 20m5 on and 20m5 off, for a total of 10 seconds. The measurement is performed from the processing device.When the 'h extraction signal (pulse) 9a is given after the voltage is applied, the peak current of the current during the signal period is measured.The 'fs extraction signal is measured after the voltage is applied and after 11 hours have elapsed. When 9b is given, the peak value of the current during that period is determined, and at time t when e-1t becomes sufficiently small as time passes, when 11 extraction signal 9c is given, the peak value of the current during that period is determined. Extract. In this embodiment, the current flowing into the electrode 6 is I
, = t, ten times l, of which i (as mentioned above, if the frit sealing part is normal, it will change exponentially with time, and if there is an insulation defect in the sealing part, it will change irregularly. The line marked E indicates the voltage application state.
closes and high voltage pulse Eo (for example, constant anode voltage 28
35 kv@degrees) is repeatedly applied to the tube of kv. The line indicated by I, indicates I, = Sheng(+il), and 10
g shows an example in which there is no defect in the 7-lit sealed portion. The next line marked 'fm' is the peak value 1 of Io during the period of the signal 9a, extracted by the extraction circuit 15 based on the extraction signal 9a.
It shows Cape 1a, and although it is named Todoroki f, it includes Il.
次の’fmと示す線は時定数t1=rf−Cf経過後の
Ioのピーク値(前記パルス状のkf、抽出信号9bの
期間中最大値)128等を示し、l19Cが与えられた
時の1.の抽出値13all)を示し、Il と冠す
るが非常に減少したif も含んでいる。7リツト封
着部に欠陥があるとL* ’f1 e’fm #ゑ1等
はそれぞれ、10b、llb、12b。The next line marked 'fm' shows the peak value of Io after the time constant t1=rf-Cf (the maximum value during the period of the pulsed kf, extraction signal 9b), 128, etc., when l19C is given. 1. It shows an extracted value of 13all), which is labeled Il but also includes if which has been greatly reduced. If there is a defect in the 7-lit sealing part, L*'f1 e'fm #e1, etc. are 10b, llb, 12b, respectively.
13b等で示すようになる。すなわち指数関数的に10
が低下する過程で不規則な乱れ、小ピークが現われるこ
とがある。しかもこの様な小ピークは電圧印加後間もな
い時に現われることが多い。13b etc. i.e. exponentially 10
In the process of decreasing, irregular disturbances and small peaks may appear. Furthermore, such small peaks often appear shortly after voltage application.
これが高圧パルスを繰返し印加する方が、同じ高圧をた
だ継続的に印加するよりも、欠陥検出が容易となる理由
である。なお第4図では便宜上第1−目の電圧印加時に
は封着部が正常な場合の電流を、第2回目に封着部に欠
陥がある場合を示したが、封着部に欠陥がある場合の電
tは第1回目の高圧パルス印加時から10bで示す様に
なるのが一般的である。なお欠陥のある場合は、たとい
低下中に小ピークが現れなくても最初のピークすなわち
llbは正常時のllaより高くなるのが一般的である
。さて第3図に戻り、上記のように抽出回路15で抽出
された電流値はA/D変換鰺16でディジタル化されメ
モリ17に蓄積され、処理装置18による解析、演算に
用いられる。演算結果は表示4119に表示される。封
着部が正常なものと、欠陥のあるものの判別は、Ifl
、■f、の値を、既に多数のデータの蓄積されている正
常値と比較すればよい。r(4)ctの値についても勿
論計算でき、正常、異常の別、M*原因推定もできる。This is why it is easier to detect defects by repeatedly applying high voltage pulses than by simply continuously applying the same high voltage. For convenience, Figure 4 shows the current when the sealed part is normal during the first voltage application, and the current when there is a defect in the sealed part during the second voltage application. Generally, the electric current t becomes as shown by 10b from the first application of the high voltage pulse. Note that in the case of a defect, the first peak, ie, llb, is generally higher than the normal lla even if no small peak appears during the drop. Now, returning to FIG. 3, the current value extracted by the extraction circuit 15 as described above is digitized by the A/D converter 16, stored in the memory 17, and used for analysis and calculation by the processing device 18. The calculation results are displayed on display 4119. If the sealing part is normal and defective, if
, f, may be compared with normal values for which a large amount of data has already been stored. Of course, the value of r(4)ct can also be calculated, and the cause of M* can also be estimated as to whether it is normal or abnormal.
なお表面漏洩電流を分離するには、前記第4図について
述べた11値を、直接測定したI。蛸から差引いてI、
を算出してもよいが、第5図に示す様に、コンタクト電
極5の周囲にガード電極21を設けてもよく、こうした
方がメモリ容量が小さくてすみ、処理時間も一般に短縮
される。In order to separate the surface leakage current, the 11 values described in connection with FIG. 4 were directly measured. I, subtracted from octopus.
However, as shown in FIG. 5, a guard electrode 21 may be provided around the contact electrode 5. In this case, the memory capacity is smaller and the processing time is generally shortened.
以上説明したように本発明によれば、陰極線管フリット
封着部の絶縁欠陥を簡単かつ確実に検出できる。As described above, according to the present invention, insulation defects in the cathode ray tube frit sealing portion can be easily and reliably detected.
第1図は従来の検出法の説明図、第2図は検出回路概要
説明図、第3図は本発明一実施例のブロック図、第4図
は前記実施例の抽出電流m−図、第5図はガード電極説
明図である。
1・・・フリット封着部、2・・・ファンネルガラス嫌
、3・・・陽極端子、4・・・内装導電膜、9a・・・
IO抽出信号、9 b ・・’ tl、抽出信号、10
g 、10b”−I6波形、1117k + l l
b ”・’b抽出値、12a。
12b・・・’fm抽出値、14・・・レベル変換回路
、15・・・電流抽出−路、16・・・λ/D変換器、
17・・・メモリ、1B・・・処理装置、19・・・表
示器、21・・・ガード電極、11・・・フリット封着
部流通電流、il・・・表面漏洩電流、Eo・・・直流
高電圧、r(・・・フリット封着部抵抗、Cf・・’j
l径路中の容量。Fig. 1 is an explanatory diagram of the conventional detection method, Fig. 2 is a schematic explanatory diagram of the detection circuit, Fig. 3 is a block diagram of an embodiment of the present invention, and Fig. 4 is an extraction current m-diagram of the above embodiment. FIG. 5 is an explanatory diagram of the guard electrode. DESCRIPTION OF SYMBOLS 1...Frit sealing part, 2...Funnel glass attachment, 3...Anode terminal, 4...Interior conductive film, 9a...
IO extraction signal, 9 b...' tl, extraction signal, 10
g, 10b”-I6 waveform, 1117k + l l
b"・'b extracted value, 12a. 12b...'fm extracted value, 14... Level conversion circuit, 15... Current extraction path, 16... λ/D converter,
17...Memory, 1B...Processing device, 19...Display device, 21...Guard electrode, 11...Frit sealing part current, il...Surface leakage current, Eo... DC high voltage, r (... frit sealing part resistance, Cf...'j
l Capacity in path.
Claims (1)
た電極とめ間に、高電圧パルスを繰返し印加し、電圧印
加に対応して流れた電流波形を繰返し測定した値の蓄積
結゛果を解析して、フリット封着部絶縁欠陥を検出する
ようにしたことを特徴とする陰極線管フリット封着部の
絶縁欠陥検出法。High-voltage pulses are repeatedly applied between the internal conductive film and the electrodes that are in close contact with the outer periphery of the frit sealing part of the cathode ray tube, and the accumulated values are obtained by repeatedly measuring the current waveform that flows in response to the voltage application. A method for detecting insulation defects in a cathode ray tube frit sealing part, characterized in that insulation defects in a frit sealing part are detected by analysis.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18788881A JPS5889760A (en) | 1981-11-25 | 1981-11-25 | Insulation defect detecting method at frit sealing section of cathode ray tube |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18788881A JPS5889760A (en) | 1981-11-25 | 1981-11-25 | Insulation defect detecting method at frit sealing section of cathode ray tube |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5889760A true JPS5889760A (en) | 1983-05-28 |
JPH0250580B2 JPH0250580B2 (en) | 1990-11-02 |
Family
ID=16213942
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18788881A Granted JPS5889760A (en) | 1981-11-25 | 1981-11-25 | Insulation defect detecting method at frit sealing section of cathode ray tube |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5889760A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0590070U (en) * | 1992-05-21 | 1993-12-07 | 東京焼結金属株式会社 | Solenoid valve device |
-
1981
- 1981-11-25 JP JP18788881A patent/JPS5889760A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPH0250580B2 (en) | 1990-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102198520B1 (en) | Sensor module for diagnosis of gas insulation apparatus | |
JPS61243375A (en) | Deterioration diagnosis for insulator of power cable | |
CN111167748B (en) | Battery screening method | |
CN111707910B (en) | Porcelain insulator inner insulation detection method and porcelain insulator detection circuit | |
CN110672704A (en) | Identification method for rapidly judging damage of soft package lithium ion battery aluminum plastic film | |
US3965415A (en) | Alternating voltage method of electrically detecting damage to an enamel layer having one or more tantalum plugs | |
JPS5889760A (en) | Insulation defect detecting method at frit sealing section of cathode ray tube | |
JP2008032595A (en) | Partial discharge part locating method of three-phase batch gas insulation equipment | |
CN111707909A (en) | Porcelain insulator detection method and porcelain insulator detection circuit | |
JP2871695B2 (en) | Insulation abnormality diagnosis device for gas insulation equipment | |
CN110554291A (en) | Partial discharge signal envelope detection device | |
JPH07128392A (en) | Nondestructive insulation tester | |
RU2201598C2 (en) | Procedure testing internal electric networks of electrodes of electronic devices | |
JP2011028931A (en) | Battery insulation testing device | |
JPS598225A (en) | Vacuum degree monitor for vacuum breaker | |
JPS6031152Y2 (en) | Gas ratio testing device for electron tube | |
JPS6237384Y2 (en) | ||
JPS6050461A (en) | Method of non-destructive insulation test | |
Porter | Failure analysis of electronic parts | |
JPH032574A (en) | Testing method for partial discharge of cable | |
JPH05164808A (en) | Detecting method for partial discharge from phase-segragated, sealed bus-bar | |
JPH06201755A (en) | Partial discharge detecting device | |
JPS5563835A (en) | Defect detector for insulation film | |
JPS6128305B2 (en) | ||
US3478260A (en) | Testing for the presence of a contaminant in an insulating or semiconducting medium |