JPS588955A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPS588955A
JPS588955A JP10635981A JP10635981A JPS588955A JP S588955 A JPS588955 A JP S588955A JP 10635981 A JP10635981 A JP 10635981A JP 10635981 A JP10635981 A JP 10635981A JP S588955 A JPS588955 A JP S588955A
Authority
JP
Japan
Prior art keywords
refrigerant
injection
nozzle
small
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10635981A
Other languages
Japanese (ja)
Inventor
塩見 直正
横藤田 光正
広畑 治
乾 嘉雄
憲治 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP10635981A priority Critical patent/JPS588955A/en
Publication of JPS588955A publication Critical patent/JPS588955A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/14Power generation using energy from the expansion of the refrigerant
    • F25B2400/141Power generation using energy from the expansion of the refrigerant the extracted power is not recycled back in the refrigerant circuit

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は冷媒循環用密閉流通路を具えた冷凍装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a refrigeration system equipped with a closed flow passage for refrigerant circulation.

一般に第1図のごとく密閉流路内に圧縮機1゜凝縮機2
.蒸発器4等を具えている冷凍装置においては、凝縮器
2から蒸発器4の間で液状冷媒を等温膨張させる膨張弁
又はキャビラ、リーチュープ3からなる絞シ装置を設け
ているが、この機能の一部又は全部を第2図の如く冷媒
タービン6で代替させ、この冷媒タービン6で得られた
動力を従来電動ファンモータ5によって行なっていた凝
縮機及び蒸発機での熱交換促進に利用することが開発さ
れつつある。しかし、上記冷媒タービン6は高速回転で
は適するが最も効率の良い送風機の使用回転数である5
00〜2000 r、 p、m程度の低速回転域では実
用に適さない。また液状冷媒の等温膨張時の圧力降下に
よる往復動膨張エンジンを用いたものは往復動を回転動
へ変換する変換機構が複雑高価となり、実用化に到って
いない。
Generally, as shown in Figure 1, a compressor 1 and a condenser 2 are installed in a closed channel.
.. A refrigeration system equipped with an evaporator 4, etc. is equipped with a throttling device consisting of an expansion valve or a cavity and a re-tube 3 that expands the liquid refrigerant isothermally between the condenser 2 and the evaporator 4. A part or all of it is replaced by a refrigerant turbine 6 as shown in FIG. 2, and the power obtained by the refrigerant turbine 6 is used to promote heat exchange in the condenser and evaporator, which was conventionally performed by the electric fan motor 5. is being developed. However, although the refrigerant turbine 6 is suitable for high-speed rotation, the rotation speed of the most efficient blower is 5.
It is not suitable for practical use in the low speed rotation range of 00 to 2000 r, p, m. In addition, a reciprocating expansion engine using a pressure drop during isothermal expansion of a liquid refrigerant has not been put into practical use because the conversion mechanism for converting reciprocating motion into rotational motion is complicated and expensive.

本発明は上記0点を改良するもので液状冷媒を断熱膨張
させる噴射ノズルと、その噴射冷媒に衝突されて回転す
る翼車とこの翼車の回転動力を取シ出す装置とを設は冷
媒タービン6を構成し、送風機の実用回転である低速回
転(500〜2000’r、p、m)に適した動力を利
用できるようにしたものである。
The present invention improves the above point 0, and includes an injection nozzle that adiabatically expands liquid refrigerant, a blade wheel that rotates when collided with the injection refrigerant, and a device that extracts the rotational power of the blade wheel. 6, so that power suitable for low-speed rotation (500 to 2000'r, p, m), which is the practical rotation of the blower, can be used.

以下、本発明の実施例を図面に従って説明する〇第2図
において、冷媒循環用密閉路に圧縮機1゜凝縮器2及び
蒸発器4を設け、特に凝縮器2から蒸発器4へ冷媒を送
る密閉流路の途中に第4図(a)。
Embodiments of the present invention will be described below with reference to the drawings. In Fig. 2, a compressor 1, a condenser 2, and an evaporator 4 are provided in a closed path for refrigerant circulation, and in particular, refrigerant is sent from the condenser 2 to the evaporator 4. Figure 4(a) in the middle of the sealed channel.

第4図(b)に示す如く密閉式の噴射室8と該噴射室す
る。前記噴射室8は有底円筒型室筒11と該室部11に
シール材13を介して固定された室蓋12から成り、該
室蓋12の中央には小径円筒状の中央凹部12aが形成
される。また上記ノズル1゜はその小径噴射口10aを
室部11の室内側上部に開口するよう室部11に固定さ
れる。そして噴射室8内には、前記噴射ノズル10から
の噴射冷媒が衝突することによシ回転する翼車14が内
装され、該翼車14は次の如く構成される。翼車14を
支持する翼車軸15は軸受16.17によって支持され
、翼車14は該軸に固定され九円盤形本体18と、該本
体18の外周部に等ピッチで放射状に固着された多数の
パケット形翼19とから構成される。また動力を取〕出
す装置は次の如く構成される。翼車本体18に固定され
た円筒形支持体20には上記中央凹部12aに小間隙を
有して外嵌されかつ上記支持体20に内嵌固定された円
筒形駆動側磁石21があシ軸受22.23を介して支承
されたファン軸24の端部には上記凹部12aに小間隙
を有して内嵌固定された円筒形従動側磁石25がある。
As shown in FIG. 4(b), there is a closed type injection chamber 8 and the injection chamber. The injection chamber 8 consists of a bottomed cylindrical chamber cylinder 11 and a chamber lid 12 fixed to the chamber portion 11 via a sealing material 13, and a small diameter cylindrical central recess 12a is formed in the center of the chamber lid 12. be done. Further, the nozzle 1° is fixed to the chamber 11 so that its small-diameter injection port 10a opens at the upper part of the indoor side of the chamber 11. Inside the injection chamber 8 is a blade wheel 14 which rotates when the refrigerant injected from the injection nozzle 10 collides with it, and the blade wheel 14 is constructed as follows. A blade axle shaft 15 supporting the impeller 14 is supported by bearings 16 and 17, and the impeller 14 is fixed to the shaft and has a nine disc-shaped main body 18, and a number of radially fixed to the outer circumference of the main body 18 at equal pitches. It consists of packet-shaped wings 19. The device for extracting power is constructed as follows. A cylindrical drive-side magnet 21 is externally fitted into the central recess 12a with a small gap in the cylindrical support 20 fixed to the impeller body 18, and a cylindrical drive-side magnet 21 is internally fixed to the support 20. At the end of the fan shaft 24 supported via 22 and 23, there is a cylindrical driven magnet 25 that is fixedly fitted into the recess 12a with a small gap.

該従動側磁石25と上記駆動側磁石21は無接点継手を
構成しており、冷媒の漏れを防ぐと共に軸封装置を不要
としたために構成が簡単となり、ひいてはコストダウン
を計れた。又、第3図のモリエル線図に示すように凝縮
器2によシ高圧液状冷媒は従来の絞シ弁、キャピラリチ
ューブであればb−4pC−4eへと等エンタルピ変化
するが、本発明では短時間に膨張し、断熱膨張となるの
で、等エントロピー変化をする。その結果、b−+c−
+dと変化してdとeの差、つま1  ;・ シ△I=Ie−Idのエンタルピが増加して、冷媒の循
環量をGとするとG・ΔIのエネルギだけ多く利用可能
となる。
The driven side magnet 25 and the driving side magnet 21 constitute a non-contact joint, which prevents refrigerant leakage and eliminates the need for a shaft sealing device, which simplifies the structure and reduces costs. Furthermore, as shown in the Mollier diagram of FIG. 3, the high-pressure liquid refrigerant entering the condenser 2 undergoes an isenthalpic change to b-4pC-4e in the conventional throttle valve and capillary tube, but in the present invention, It expands in a short time and becomes an adiabatic expansion, resulting in an isentropic change. As a result, b-+c-
+d, the difference between d and e, 1; - The enthalpy of △I = Ie - Id increases, and if the amount of refrigerant circulation is G, then more energy by G·∆I can be used.

上記の如くノズル1oから噴射され念低圧液状冷媒は2
5になりの流速を有するので、これが翼車14のパケッ
ト型R19に衝突し、その際に冷媒の運動のエネルギを
受けるので翼車14は500〜2000r、p、m程度
に低速回転する。そしてパケット翼19に衝突し念後の
低圧液状冷媒は噴射室8内から吐出管26へと吐出され
る。
As mentioned above, the extremely low pressure liquid refrigerant injected from the nozzle 1o is
Since it has a flow velocity of 5, it collides with the packet type R19 of the impeller 14, and at that time receives the energy of the movement of the refrigerant, so the impeller 14 rotates at a low speed of about 500 to 2000 r, p, m. The low-pressure liquid refrigerant that collides with the packet blade 19 is then discharged from the injection chamber 8 into the discharge pipe 26 .

一方、翼車14の低速回転にょシ駆動側磁石21が回転
するから、室蓋12の凹部12aを透過する磁力の回転
によシ大気中に位置する従動側磁石25も回転し、ファ
ン軸24及びその先端に取シ付けられた凝縮器77ン7
が低速回転し、凝縮器2の熱交換を促進する。即ち従来
の凝縮器2用の電動モータの機能が冷媒タービン6によ
り代替できる。
On the other hand, since the drive side magnet 21 rotates during low speed rotation of the impeller 14, the driven side magnet 25 located in the atmosphere also rotates due to the rotation of the magnetic force transmitted through the recess 12a of the chamber cover 12, and the fan shaft 24 rotates. and a condenser 77 attached to its tip.
rotates at low speed to promote heat exchange in the condenser 2. That is, the function of the conventional electric motor for the condenser 2 can be replaced by the refrigerant turbine 6.

上記の冷媒タービン6の噴射ノズル9としては第5図に
示す如く、1個の丸棒を切角11.研摩して、極めて小
径の噴射部9aとテーパを有するノにル部9bを形成し
たものを用いることができるが、これは噴射部9aが極
めて小径である等製作上の精度が要求される上、加工が
困難であるという欠点がある。そこで本発明においては
第6図に示すようにノズル9に代り入手容易な小径パイ
プを噴射ノズルの噴射部10aとして、又小径パイプよ
シ大径の鋼管をノズル部10bとして成る噴射ノズル1
0を用いている。該ノズル10は入手容易な市販の小径
パイプを適宜長さに切断して、鋼管の先端を小径パイプ
が内嵌するように加工し、小径パイプと該鋼管を固着す
ることにょシ形成される。この噴射ノズル10は、加工
困難で高価なノズル9に代わシ安価で加工容易である。
As shown in FIG. 5, the injection nozzle 9 of the refrigerant turbine 6 is a round rod with a cut angle 11. It is possible to use a product in which a jet part 9a with an extremely small diameter and a groove part 9b with a taper are formed by polishing, but this requires precision in manufacturing such as the jet part 9a having an extremely small diameter. However, it has the disadvantage of being difficult to process. Therefore, in the present invention, as shown in FIG. 6, in place of the nozzle 9, an easily available small-diameter pipe is used as the injection part 10a of the injection nozzle, and a large-diameter steel pipe is used as the nozzle part 10b instead of the small-diameter pipe.
0 is used. The nozzle 10 is formed by cutting an easily available commercially available small-diameter pipe to an appropriate length, processing the tip of the steel pipe so that the small-diameter pipe fits therein, and fixing the small-diameter pipe and the steel pipe. This injection nozzle 10 is inexpensive and easy to process in place of the nozzle 9, which is difficult to process and expensive.

以上、本発明によれば、冷媒噴射室外へ取シ出した動力
を何ら変速することなくそのまま用いて凝縮積用ファン
を回転させ名ことができるので従来の電導式の凝縮積用
ファンモータを廃止するととができるエネルギ効率の良
い冷凍装置を提供できる。しかも冷媒タービン6−のノ
ズルは、小径パイプを噴射部として用いこれを大径のノ
ズル部に固着しただけであるから、構成が簡単で創作が
容易であシ、安価に製作することができ、ひいては冷媒
タービンのコストダウンが計れる。
As described above, according to the present invention, the power extracted outside the refrigerant injection chamber can be used as is to rotate the condensing product fan without any speed change, so the conventional conductive type condensing product fan motor is abolished. As a result, it is possible to provide an energy-efficient refrigeration system that can achieve high energy efficiency. Moreover, the nozzle of the refrigerant turbine 6- uses a small-diameter pipe as the injection part and simply fixes it to the large-diameter nozzle part, so the structure is simple and easy to create, and it can be manufactured at low cost. In turn, the cost of refrigerant turbines can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の冷凍サイクルの説明図、第2図は冷媒噴
射装置を備えた冷凍サイクルの説明図、第3図は冷凍サ
イクルを説明するためのモリエル線図、第4図(ロ))
は本発明における冷媒タービンの断面図、第4図(b)
は第4図(a)におけるA−A断面図、第5図は噴射ノ
ズルの一例を示す断面図、第6図は本発明に用いる噴射
ノズルの断面図である。 2:凝縮機、6:冷媒噴射装置、7:凝縮横用ファン、
lO:噴射ノズル、14:翼車、19:パケット型翼。 代理人 弁理士 福 士 愛 彦 第1図              第2図IdIe 
               If    x>り4
1;’  1第3図 第6図 手続補正書 昭和st年2 月2≦日 特許庁長官      殿 1、事f1の表示 特願昭 jt−101359 2、発明の名称 冷凍装置 3、補正をする者 事件との関係 特許出願人 4、代 理 人 6、補正命令の日付 自発 6、補正の対象 11)  明細書の発明の詳細な説明の欄2 補正の内
容 +11  明細書の一頁/行目の「等温膨張」を、「膨
張」 と訂正いたします。 (2)明細書のコ頁10行目から//行目の「等i膨張
」を、 「膨張」 と訂正いたします。 以  上
Fig. 1 is an explanatory diagram of a conventional refrigeration cycle, Fig. 2 is an explanatory diagram of a refrigeration cycle equipped with a refrigerant injection device, Fig. 3 is a Mollier diagram for explaining the refrigeration cycle, and Fig. 4 (b))
is a sectional view of the refrigerant turbine in the present invention, FIG. 4(b)
4(a), FIG. 5 is a sectional view showing an example of an injection nozzle, and FIG. 6 is a sectional view of an injection nozzle used in the present invention. 2: Condenser, 6: Refrigerant injection device, 7: Condensing horizontal fan,
lO: injection nozzle, 14: impeller, 19: packet type blade. Agent Patent Attorney Aihiko Fuku Figure 1 Figure 2 IdIe
If x>ri4
1;' 1 Figure 3 Figure 6 Procedural Amendment Document February 2, 1999 ≦ Date Commissioner of the Japan Patent Office 1. Indication of matter f1 Patent Application Showa jt-101359 2. Name of the invention Refrigeration device 3. Person making the amendment Relationship to the case Patent applicant 4, agent 6, date of amendment order 6, subject of amendment 11) Column 2 for detailed explanation of the invention in the specification Contents of the amendment + 11 First page/line of the specification "Isothermal expansion" has been corrected to "expansion." (2) "Equal i expansion" from line 10 to line // on page 1 of the specification will be corrected to "expansion."that's all

Claims (1)

【特許請求の範囲】[Claims] 1、凝縮器から蒸発器へ冷媒を送る密閉流路の途中に、
噴射室と該噴射室内へ液状冷媒を断熱膨張噴射させるた
めの噴射ノズルと、該噴射ノズルから噴射冷媒に衝突さ
れることべよシ冷却用7アンを回転させる翼車とから成
る冷媒タービンを設けた冷凍装置において、該タービン
の上記噴射ノズルを小径パイプから成る噴射部とこの小
径パイプを先端に保持するこのパイプよシ大径のノズル
部とから構成したことを特徴とする冷凍装置。
1. In the middle of the sealed channel that sends refrigerant from the condenser to the evaporator,
A refrigerant turbine is provided, which includes an injection chamber, an injection nozzle for adiabatically expanding and injecting liquid refrigerant into the injection chamber, and a blade wheel for rotating a cooling roller that is collided with the injection refrigerant from the injection nozzle. A refrigeration system characterized in that the injection nozzle of the turbine is constituted by an injection part made of a small-diameter pipe and a nozzle part having a larger diameter than the pipe and holding the small-diameter pipe at its tip.
JP10635981A 1981-07-07 1981-07-07 Refrigerator Pending JPS588955A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10635981A JPS588955A (en) 1981-07-07 1981-07-07 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10635981A JPS588955A (en) 1981-07-07 1981-07-07 Refrigerator

Publications (1)

Publication Number Publication Date
JPS588955A true JPS588955A (en) 1983-01-19

Family

ID=14431547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10635981A Pending JPS588955A (en) 1981-07-07 1981-07-07 Refrigerator

Country Status (1)

Country Link
JP (1) JPS588955A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004023049A1 (en) * 2002-08-13 2004-03-18 BSH Bosch und Siemens Hausgeräte GmbH Heat exchanger-turbine assembly
FR2913755A1 (en) * 2007-03-14 2008-09-19 Jose Breard Ventilation device for heat regulation system of e.g. dwelling, has turbine mounted in cylindrical case and comprising rotation shaft integrated to ventilation unit, where turbine is rotated by circulation of heat transfer fluid in case

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004023049A1 (en) * 2002-08-13 2004-03-18 BSH Bosch und Siemens Hausgeräte GmbH Heat exchanger-turbine assembly
FR2913755A1 (en) * 2007-03-14 2008-09-19 Jose Breard Ventilation device for heat regulation system of e.g. dwelling, has turbine mounted in cylindrical case and comprising rotation shaft integrated to ventilation unit, where turbine is rotated by circulation of heat transfer fluid in case

Similar Documents

Publication Publication Date Title
US4235079A (en) Vapor compression refrigeration and heat pump apparatus
US5467613A (en) Two phase flow turbine
US3934424A (en) Refrigerant expander compressor
US5647221A (en) Pressure exchanging ejector and refrigeration apparatus and method
RU2155279C1 (en) Turbocompressor engine cooler
US4304104A (en) Pitot heat pump
US4218891A (en) Cooling and heat pump systems and methods
US4770606A (en) Centrifugal compressor
US3332253A (en) Centrifugal-vortex refrigeration system
JPH10512643A (en) Liquid annular compressor and turbine and air conditioning system using them
JPS588955A (en) Refrigerator
US3932159A (en) Refrigerant expander compressor
JP4191863B2 (en) Turbine expander with variable nozzle mechanism
CN108678810A (en) Plane rotation formula expanding machine
JPS6179955A (en) Refrigeration circuit with turbine
KR102330526B1 (en) Turbo compressor
JPS6238625B2 (en)
US5572882A (en) Low pressure air cycle cooling device
JPS5835369A (en) Refrigerator
JPS5835370A (en) Refrigerator
CN208502849U (en) Plane rotation formula expanding machine
EP0599545A1 (en) Liquid ring compressor/turbine and air conditioning systems utilizing same
KR940001035B1 (en) Scroll type compressor
US3864065A (en) Refrigerant expander compressor
Roebuck A novel form of refrigerator