JPS5835370A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPS5835370A
JPS5835370A JP56133764A JP13376481A JPS5835370A JP S5835370 A JPS5835370 A JP S5835370A JP 56133764 A JP56133764 A JP 56133764A JP 13376481 A JP13376481 A JP 13376481A JP S5835370 A JPS5835370 A JP S5835370A
Authority
JP
Japan
Prior art keywords
refrigerant
injection chamber
main body
injection
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56133764A
Other languages
Japanese (ja)
Inventor
塩見 直正
広畑 治
憲治 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP56133764A priority Critical patent/JPS5835370A/en
Publication of JPS5835370A publication Critical patent/JPS5835370A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/14Power generation using energy from the expansion of the refrigerant
    • F25B2400/141Power generation using energy from the expansion of the refrigerant the extracted power is not recycled back in the refrigerant circuit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Hydraulic Turbines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は冷媒循環用密閉流路を具えた冷凍装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a refrigeration system equipped with a closed channel for circulating refrigerant.

一般シこ、密閉流路内に圧縮機、凝縮器、蒸発器等を具
えてなる冷凍装置において、凝縮器から蒸発器の間で液
状冷媒を膨張させる膨張弁又はキャピラリーチューブか
らなる絞り装置の機能の一部又は全部をタービンで代替
させ、このタービンで得られた動力を利用することは従
来周知である。
In general, in a refrigeration system that is equipped with a compressor, condenser, evaporator, etc. in a closed flow path, the function of a throttle device consisting of an expansion valve or capillary tube that expands liquid refrigerant between the condenser and the evaporator. It is conventionally known to replace part or all of the engine with a turbine and utilize the power obtained by the turbine.

しかし、タービンは高速回転での運転には適しているが
、送風機の使用回転数である500〜20o ”o r
 p m程度の低速回転数では実用に供し得ない。また
液状冷媒の膨張時の圧力降下による往復動膨張エンジン
を用いたものは往復動を回転動へ変換する変換機構が複
雑高価となり、回転ベーン型膨張エンジンを用いたもの
も変換機構が複雑高価になると共に精密加工が必要とな
り、何れも実用化に到っていない。なお、上記従来のタ
ービン及び両エンジンとも液状冷媒の断熱膨張時の圧力
降下によるエネルギーを利用している。
However, although turbines are suitable for operation at high speeds, the speed at which the blower is used is 500 to 20 degrees.
It cannot be put to practical use at a low rotation speed of about pm. In addition, the conversion mechanism for converting reciprocating motion into rotational motion is complicated and expensive for those that use a reciprocating expansion engine that uses pressure drop during expansion of liquid refrigerant, and the conversion mechanism for those that use a rotating vane type expansion engine is also complicated and expensive. At the same time, precision machining is required, and none of these methods have been put into practical use. Note that both the conventional turbine and both engines utilize the energy resulting from the pressure drop during adiabatic expansion of the liquid refrigerant.

そこで、本願出願人は、先の特許出願(特願昭56−3
4284号)で、液状冷媒を断熱膨張噴射させる噴射ノ
ズルと、その噴射冷媒に衝突されて回転する翼車と、こ
の翼車の回転動力を・取出す装置とを設けて、低速回転
に適した動力を安価に利用できるようにした技術を提案
した。
Therefore, the applicant of this application filed an earlier patent application (Japanese Patent Application No. 56-3
No. 4284), an injection nozzle that injects liquid refrigerant through adiabatic expansion, an impeller that rotates when collided with the injected refrigerant, and a device that extracts the rotational power of this impeller are provided to generate power suitable for low-speed rotation. We proposed a technology that makes it possible to use it at low cost.

本発明は上記技術に、上記翼車を極めて安価に製造する
技術を結合したもので、該翼車は、円盤形本体の外周係
合部と該本体に固定された挟着板との間に多数の翼の足
部が挟着固定されて成るものである。
The present invention combines the above technology with a technology for manufacturing the impeller at an extremely low cost, and the impeller is arranged between the outer circumferential engaging portion of the disc-shaped main body and the clamping plate fixed to the main body. It consists of a number of wing legs that are clamped and fixed.

以下、本発明を図面の実施例に基いて説明する。Hereinafter, the present invention will be explained based on embodiments shown in the drawings.

第1図の全体構成図!4おいて、冷媒循環用密閉流路A
lに、電動モーフ内蔵型圧縮機l、凝縮器2及び蒸発器
3が設けられ、特に凝縮器2から蒸発器3へ冷媒を送る
密閉流路A2の途中には第8゜4図の横断面図と縦断面
図の如く密閉型式の噴射室4と、該噴射室4内へ液状冷
媒を断熱膨張噴射させるための噴射ノズル5とが設けら
れる。前記噴射室4は、有底円筒形室部6と、該室部6
にシール材7を介して固定された室蓋8とからなり、該
室蓋8の中央には小径円筒状の中央凹部8aが形成され
る。また前記ノズル5はその小径噴射口5aを室部6.
の室内側上部に開口するよう室部6に固定される。そし
て噴射室4内には、前記噴射ノズル5からの噴射冷媒に
衝突されることにより回転する翼車9が内装され、該翼
車9は、次の如く構成される。即ち、室部6の中央と室
蓋凹部8aの中央とに前後方向両端部がそれぞれ軸受i
o。
Figure 1 is the overall configuration diagram! 4, a closed channel A for refrigerant circulation
A compressor l with a built-in electric morph, a condenser 2, and an evaporator 3 are installed, and in particular, in the middle of a closed channel A2 that sends refrigerant from the condenser 2 to the evaporator 3, there is a cross section shown in Fig. 8.4. As shown in the figure and the vertical sectional view, a closed type injection chamber 4 and an injection nozzle 5 for adiabatic expansion injection of liquid refrigerant into the injection chamber 4 are provided. The injection chamber 4 includes a bottomed cylindrical chamber portion 6 and a bottomed cylindrical chamber portion 6.
A chamber lid 8 is fixed to the chamber lid 8 via a sealing material 7, and a small diameter cylindrical central recess 8a is formed in the center of the chamber lid 8. Further, the nozzle 5 has its small diameter injection port 5a in the chamber 6.
It is fixed to the chamber part 6 so as to open at the upper part of the indoor side. Inside the injection chamber 4 is a blade wheel 9 that rotates when it is struck by the refrigerant injected from the injection nozzle 5, and the blade wheel 9 is constructed as follows. That is, both ends in the front and back direction are provided with bearings i at the center of the chamber 6 and the center of the chamber lid recess 8a.
o.

11で回転自在に支承された翼車軸12と、該軸に固定
された円盤形本体18ど、該本体13の力局部に凹設さ
れた多数の係合部13aと、前記本体に固定された円盤
形挟着板15と、該挟着板15の外周部に凹設された多
数の係合部15aと、これら両係合部13a、15aの
間に係合挟着された多数のパケット形翼14とから構成
されている。そして第5,6図の如く、本体13及び挟
着板15は同一形状のもので、互に対向して配置されて
おり、これらは、金属薄板プレス加工により外周部に角
溝13b、15bと半球溝130115Cとからなる係
合部13a、15aが形成され、また翼14は、パケッ
ト形翼部1 =1 aと、これに連らなる角棒14b及
び球体140からなる足部14(lとから形成されてい
る。そして、容具14は第7図の如くその足部11が本
体13の係合部13aと挟着板15の係合部15aに両
側から挾まれた状態で係合され、この状態で本体18と
挟着板15とは適宜の数個所Cでスポット溶接されるこ
とにより固定され、これにより翼14は足部14dを軸
とする回転と本体18からの抜出しを防止される。即ち
多数の翼14は本体13に数個所の溶接により一度に固
定される。なお、本体13と挟着板15との固定手段は
溶接に限らずリベット、ビス等も利用できる。
A blade axle shaft 12 rotatably supported by a blade axle shaft 11, a disc-shaped main body 18 fixed to the shaft, a large number of engaging parts 13a recessed in force local parts of the main body 13, and a plurality of engaging parts 13a fixed to the main body. A disc-shaped clamping plate 15, a large number of engaging parts 15a recessed in the outer periphery of the clamping plate 15, and a large number of packet-shaped parts engaged and sandwiched between these engaging parts 13a, 15a. It is composed of wings 14. As shown in FIGS. 5 and 6, the main body 13 and the clamping plate 15 have the same shape and are placed opposite each other, and are formed with square grooves 13b and 15b on the outer periphery by pressing a thin metal plate. Engagement parts 13a and 15a are formed with hemispherical grooves 130115C, and the blade 14 has a leg part 14 (l and As shown in FIG. 7, the container 14 is engaged with its foot portion 11 between the engaging portion 13a of the main body 13 and the engaging portion 15a of the clamping plate 15 from both sides. In this state, the main body 18 and the clamping plate 15 are fixed by spot welding at several appropriate locations C, thereby preventing the blade 14 from rotating around the foot portion 14d and from being pulled out from the main body 18. That is, a large number of blades 14 are fixed to the main body 13 at one time by welding at several locations.The means for fixing the main body 13 and the clamping plate 15 is not limited to welding, but rivets, screws, etc. can also be used.

次に、Bは前記噴射室4内の翼車9の回転動力を噴射室
外へ取出すための動力取出装置であり、。
Next, B is a power extraction device for extracting the rotational power of the impeller 9 in the injection chamber 4 to the outside of the injection chamber.

これは、翼車9の本体18に突設された円筒形支体16
と、前記中央凹部8aに小間隙を有して外嵌されかつ前
記支体16に内嵌固定された円筒形駆動側磁石17と、
室蓋8の中央凹部8aを閉鎖するように室蓋8に一定さ
れた軸支板18と、該軸支板18に軸受19を介して貫
通状態で支承されかつ中央凹部8aの室外側中央に軸受
20を介して支承された取出軸21と、中央凹部8aに
小間隙を有して内嵌されかつ取出軸21の内端部に外嵌
固定された円筒形従動側磁石22とから構成されている
。なお、翼車9、両磁石17.22等は同心とされ、ま
た両磁石等からなる無接点型継手は公知である。23は
取出軸21の外端部に固定された凝縮器用ファン、24
は噴射室4の中央下部に接続された冷媒吐出管、第1〕
こお0て、25は蒸発器用ファン、26は該ファン駆動
用電動モータである。
This is a cylindrical support 16 protruding from the main body 18 of the impeller 9.
and a cylindrical drive-side magnet 17 externally fitted into the central recess 8a with a small gap and internally fixed to the support body 16;
A shaft supporting plate 18 fixed to the chamber lid 8 so as to close the central recess 8a of the chamber lid 8; It is composed of a take-out shaft 21 supported via a bearing 20, and a cylindrical driven-side magnet 22 that is fitted into the central recess 8a with a small gap and externally fixed to the inner end of the take-out shaft 21. ing. The impeller 9, both magnets 17, 22, etc. are concentric, and a non-contact type joint consisting of both magnets, etc. is well known. 23 is a condenser fan fixed to the outer end of the extraction shaft 21; 24
is a refrigerant discharge pipe connected to the lower center of the injection chamber 4;
Here, 25 is an evaporator fan, and 26 is an electric motor for driving the fan.

次に第2図の% IJエル線図を参照しながら作用を説
明する。なお、第1図の密閉流路Al中のa〜f点^第
2図中のa−f点とはそれぞれ対応している。圧縮機l
より吐出された高圧ガス状冷媒Ca点)は凝縮器2に入
り、ここで放熱して高圧液状冷媒Cb点)となり、次い
で噴射ノズル5に入いり、ここで飽和液線上の0点より
断熱膨張を始めd点に到り、噴射室4内へ噴射される。
Next, the action will be explained with reference to the % IJ El diagram in FIG. Note that points a to f in the sealed channel Al in FIG. 1 correspond to points a to f in FIG. 2, respectively. compressor l
The high-pressure gaseous refrigerant (point Ca) discharged from the saturated liquid line enters the condenser 2, where it radiates heat and becomes a high-pressure liquid refrigerant (point Cb), and then enters the injection nozzle 5, where it undergoes adiabatic expansion from the 0 point on the saturated liquid line. , and reaches point d, where it is injected into the injection chamber 4.

このC〜d点間の冷媒の状態変化は、ノズル5に、より
短時間にて断熱膨張する等エントロピー変化である。な
お従来の絞り装置における冷媒の等温膨張は等エンタル
ピー変化である。従って本発明によル等エントロピー変
化では、利用可能なエンクル。
This state change of the refrigerant between points C and d is an isentropic change that causes the nozzle 5 to adiabatically expand in a shorter time. Note that the isothermal expansion of the refrigerant in conventional expansion devices is an isenthalpic change. Therefore, according to the present invention, an isentropic change is possible.

ピーはΔ工−工θ−工dだけ従来装置に比して増加する
ので、冷媒の循環量をGとすると、G・Δ工のエネルギ
ーだけ多く利用可能となり、翼車9の回転駆動にエネル
ギーを消費しても、冷凍能力が従来に比して劣ることは
ない。
P increases by ∆work - θ - work d compared to the conventional device, so if the amount of refrigerant circulation is G, more energy can be used by G・∆work, and energy is used to drive the rotation of the impeller 9. Even if you consume more, the refrigeration capacity will not be inferior to the conventional one.

上記の如くノズル5から噴射された低圧液状冷媒はかな
りの流速を有するので、これが翼車9のパケット型具1
4に衝突し、その際に冷媒の運動のエネルギーの一部を
受けるので翼車9は低速回転する。そして翼14に衝突
した後の低圧液状冷媒は噴射室4円から吐出管24へと
吐出される。
As described above, the low-pressure liquid refrigerant injected from the nozzle 5 has a considerable flow velocity, so this
4, and at that time, the impeller 9 receives part of the kinetic energy of the refrigerant, so the impeller 9 rotates at a low speed. After colliding with the blades 14, the low-pressure liquid refrigerant is discharged from the injection chamber 4 to the discharge pipe 24.

一方、翼車9の低速回転により駆動側磁石17が回転す
るから、室蓋8の凹部8aを透過する磁力の回転により
大気中に位置する従動側磁石22も回転し、取出軸21
及び凝縮器用ファン23が低速回転し、凝縮器2の熱交
換が促進される。即ち従来の凝縮器用ファンを駆動する
電動モータの機能が翼車9と動力取出装置Bにより代替
される。
On the other hand, since the drive-side magnet 17 rotates due to the low-speed rotation of the impeller 9, the rotation of the magnetic force transmitted through the recess 8a of the chamber cover 8 also rotates the driven-side magnet 22 located in the atmosphere.
The condenser fan 23 rotates at low speed, and heat exchange in the condenser 2 is promoted. That is, the function of the electric motor that drives the conventional condenser fan is replaced by the impeller 9 and the power extraction device B.

また冷媒吐出管24に入った低圧冷媒は蒸発器8に入い
り吸熱して低圧ガス状冷媒となり1点の状態で圧縮機l
に吸入される。そして冷媒は上記の循環を繰り返される
In addition, the low-pressure refrigerant that has entered the refrigerant discharge pipe 24 enters the evaporator 8 and absorbs heat to become a low-pressure gaseous refrigerant.
is inhaled. The refrigerant then repeats the above circulation.

なお、上記においては翼14はその足部14dが角棒1
4bと球体14Cからなるものを説明したが、これに限
らず例えば第8図の如く足部14dは角棒14k)と孔
140から構成することも可能であり、この場合も、既
述実施例とほぼ同様に、本体18または挟着板15の係
合部18a、15aに孔14Cに嵌入する突起15dを
付設することにより翼14を本体に固定できる。
In addition, in the above, the wing 14 has its leg portion 14d connected to the square rod 1.
4b and a sphere 14C, for example, as shown in FIG. In substantially the same way as above, the wings 14 can be fixed to the main body by attaching protrusions 15d to the engaging parts 18a, 15a of the main body 18 or the clamping plate 15, which fit into the holes 14C.

以上の説明から明らかな通り、本発明の冷凍装置は、凝
縮器から蒸発器へ冷媒を送る密閉流路の途中に噴射室が
設けられ、該噴射室内へ冷媒を断熱膨張噴射させるため
の噴射ノズルが設ケられ。
As is clear from the above description, the refrigeration system of the present invention includes an injection chamber provided in the middle of a sealed flow path that sends refrigerant from the condenser to the evaporator, and an injection nozzle for adiabatically expanding and injecting the refrigerant into the injection chamber. is established.

該ノズルからの噴射冷媒に衝突されることにより回転す
る翼車が噴射室に内装され、該噴射室内の翼車の回転動
力を噴射室外へ取出すための動力取出装置が設けられて
いるので、本発明によると、噴射室外へ取出した動力を
変速することなくそのまま用いて、例えば凝縮器用ファ
ンを低速回転させることが可能となり、このため、従来
の電動モータを廃止してその消費電力を節約でき、エネ
ルギー消費効率の良い冷凍装置を提供できる。また本発
明では、前記翼車は、円盤形本体の外周係合部と該本体
に固定された挟着板との間に多数の翼の足部が挟着固定
されて成っているので、本体と挟着板とを数個所で固定
するだけで、多数の翼を一度に本体に固定できて、翼車
を極めて能率良く安価に製造できる優れた効果がある。
A blade wheel that rotates when collided with the refrigerant injected from the nozzle is installed in the injection chamber, and a power extraction device is provided to take out the rotational power of the blade wheel in the injection chamber to the outside of the injection chamber. According to the invention, it is possible to use the power extracted outside the injection chamber as it is without changing the speed, for example, to rotate a condenser fan at a low speed. Therefore, it is possible to eliminate the conventional electric motor and save power consumption. A refrigeration system with high energy consumption efficiency can be provided. Further, in the present invention, the blade wheel is formed by clamping and fixing the leg portions of a large number of blades between the outer peripheral engaging portion of the disc-shaped main body and the clamping plate fixed to the main body. A large number of blades can be fixed to the main body at once by simply fixing the blade and the clamping plate at a few places, which has the excellent effect of allowing the blade wheel to be manufactured extremely efficiently and at low cost.

、4、図面の簡単な説明 図面は本発明の実施例を示すもので、第1図は全体構成
図、第2図は同モリエル線図、第3図は同噴射室部分の
横断面図、第4図は噴射室部分の縦断面図、第5図は翼
車の翼の斜視図、第6図は同衷車本体と挟着板の外周係
合部゛の分離状態の斜視図、第7図は翼車の正面図、第
8図は翼車要部の変形例の斜視図である。
, 4. Brief description of the drawings The drawings show an embodiment of the present invention, and FIG. 1 is an overall configuration diagram, FIG. 2 is a Mollier diagram, and FIG. 3 is a cross-sectional view of the injection chamber. FIG. 4 is a longitudinal cross-sectional view of the injection chamber, FIG. 5 is a perspective view of the blade of the impeller, FIG. FIG. 7 is a front view of the impeller, and FIG. 8 is a perspective view of a modification of the essential parts of the impeller.

A1:冷媒循環用密閉流路、A2:凝縮器から蒸発器へ
の密閉流路、1:圧縮機、゛2:凝縮器、3:蒸発器、
4:噴射室、5:噴射ノズル、9:翼車、12:衷車軸
、18:円盤形本体、13a:その外周係合部、14:
翼、14d:その足部、15:挟着板、15a:その外
周係合部、B:動力取出装置、17:駆動側磁石、21
:取出軸、22:従動側磁石、23:凝縮器用ファン。
A1: Sealed channel for refrigerant circulation, A2: Sealed channel from the condenser to the evaporator, 1: Compressor, 2: Condenser, 3: Evaporator,
4: Injection chamber, 5: Injection nozzle, 9: Impeller, 12: Side axle, 18: Disc-shaped main body, 13a: Its outer periphery engaging part, 14:
Wing, 14d: Foot portion thereof, 15: Clamping plate, 15a: Outer peripheral engagement portion thereof, B: Power take-off device, 17: Drive side magnet, 21
: Extraction shaft, 22: Driven side magnet, 23: Condenser fan.

出 願 人 シャープ株式会社 代理人 中村恒 久 23図  23 第17Applicant: Sharp Corporation Agent Tsunehisa Nakamura Figure 23 23 17th

Claims (1)

【特許請求の範囲】 凝縮器から蒸発器へ冷媒を送る密閉流路の癒中邊 に噴射室が設けられ、該噴射室内へl状冷媒を断熱膨張
噴射させるための噴射ノズルが設けられ。 該噴射ノズルからの噴射冷媒に衝突されることにより回
転する翼車が前記噴射室に内装され、該噴射室内の翼車
の回転動力を噴射室外へ取出すための動力取出装置が設
けられ、前記翼車は、円盤形本体の外周係合部と該本体
に固定された挾看板との間に多数の翼の足部が挟着固定
されて成ることを特徴とする冷凍装置。
[Scope of Claims] An injection chamber is provided at the center of a closed channel that sends refrigerant from the condenser to the evaporator, and an injection nozzle is provided for adiabatically expanding and injecting the l-shaped refrigerant into the injection chamber. A blade wheel that rotates when collided with the refrigerant injected from the injection nozzle is installed in the injection chamber, and a power extraction device for extracting the rotational power of the blade wheel in the injection chamber to the outside of the injection chamber is provided, and the blade A refrigeration system characterized in that the vehicle comprises a plurality of wing feet that are clamped and fixed between an outer circumferential engaging portion of a disc-shaped main body and a frame sign fixed to the main body.
JP56133764A 1981-08-25 1981-08-25 Refrigerator Pending JPS5835370A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56133764A JPS5835370A (en) 1981-08-25 1981-08-25 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56133764A JPS5835370A (en) 1981-08-25 1981-08-25 Refrigerator

Publications (1)

Publication Number Publication Date
JPS5835370A true JPS5835370A (en) 1983-03-02

Family

ID=15112403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56133764A Pending JPS5835370A (en) 1981-08-25 1981-08-25 Refrigerator

Country Status (1)

Country Link
JP (1) JPS5835370A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006316994A (en) * 2005-05-09 2006-11-24 Honda Motor Co Ltd Pressure operated cooling system for increasing refueling speed and on-board high pressure vehicle gas storage tank capacity

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006316994A (en) * 2005-05-09 2006-11-24 Honda Motor Co Ltd Pressure operated cooling system for increasing refueling speed and on-board high pressure vehicle gas storage tank capacity
JP2012017850A (en) * 2005-05-09 2012-01-26 Honda Motor Co Ltd Pressure powered cooling system for enhancing refueling speed and capacity of on board high pressure vehicle gas storage tank

Similar Documents

Publication Publication Date Title
US3934424A (en) Refrigerant expander compressor
JPH0842930A (en) Single fluid cooler
US2394109A (en) Cooling apparatus
JP2009216090A (en) Expansion turbine for refrigerating cycle
Hong et al. A novel thermally driven rotor-vane/pressure-exchange ejector refrigeration system with environmental benefits and energy efficiency
CN105135724A (en) Energy-saving refrigerating unit and compression expansion module
US3932159A (en) Refrigerant expander compressor
JPS6179955A (en) Refrigeration circuit with turbine
JPS5835370A (en) Refrigerator
US20130000328A1 (en) Centrifugal Air Cycle Air Conditioner
JPS5835369A (en) Refrigerator
CN201926221U (en) Ejector for ejection type refrigerating system
CN205663624U (en) Oil -free scroll compressor's cooling structure
JPS588955A (en) Refrigerator
CN202613598U (en) Vertical axis wind power air conditioner
CN206738125U (en) The linkage and compressor of compressor
CN215490030U (en) Indoor unit of air conditioner
US3864065A (en) Refrigerant expander compressor
CN218210165U (en) High-efficiency high-power magnetic refrigerator
CN206874455U (en) Excentric sleeve for the linkage of compressor
KR0154444B1 (en) Refrigeration cycle apparatus
CN2388351Y (en) Miniature turbine expansion engine
CN207123092U (en) Solar energy refrigerator compressor refrigeration system
CN206903876U (en) A kind of frequency conversion Rotary Compressor with oil baffle structure
JPS59194003A (en) Turbine for refrigerating cycle