JPS5888593A - Heat pipe type radiator - Google Patents

Heat pipe type radiator

Info

Publication number
JPS5888593A
JPS5888593A JP18665581A JP18665581A JPS5888593A JP S5888593 A JPS5888593 A JP S5888593A JP 18665581 A JP18665581 A JP 18665581A JP 18665581 A JP18665581 A JP 18665581A JP S5888593 A JPS5888593 A JP S5888593A
Authority
JP
Japan
Prior art keywords
heat
bellows
heat pipe
container
radiator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18665581A
Other languages
Japanese (ja)
Inventor
Hisateru Akachi
赤地 久輝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP18665581A priority Critical patent/JPS5888593A/en
Publication of JPS5888593A publication Critical patent/JPS5888593A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

PURPOSE:To permit sufficient heat dissipation by small sized fins by a method wherein a bellows is utilized as the container of the heat pipe and a cord-like wick is intersected with the group of grooves orthogonally, in the small sized radiator for the substrate of a semi-conductor circuit. CONSTITUTION:The container 11 is consists of the bellows utilized for the heat dissipating fins in combination and will never buckle by a high vacuum even through the thickness thereof is made very thin. Accordingly, heat exchange between airstream and operating vapor may be effected in a very short period of time since it is effected through a thin container wall having 0.08-0.18mm.. The wick 14 is intersected with the grooves of the bellows by an elastic wick supporting body 16 and is pressingly supported along the transversal direction of the bellows, therefore, it maintains heat exchanging capacity. Further, the thicknesses of a heat absorbing surface 13 and a heat dissipating surface 12 are permitted to make them thin, since the container 11 is the bellows and the bellows itself can resist a high pressure. Thus, the thickness of the wall of the heat transmitting surface may be made thin, therefore, a sufficient heat dissipating effect and a sufficient interior volume may be obtained.

Description

【発明の詳細な説明】 本発明拡小表面積小容量発熱体冷却の為の放熱器の構造
に関するものである。本発明は特に電子機器等の筐体内
における多数枚平行に組込まれ九回路基板の夫々に高密
度に装着された半導体囲路チップの発熱を個々に吸収し
空気流中に放熱して基板の温度上昇を防ぎ、半導体チッ
プの偏執性及び長期寿命を保証する小臘放熱器として最
も適した小容量ヒートパイプとしての改善されたfre
e構造を提供せんとするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a structure of a heat radiator for cooling a heating element with an enlarged surface area and a small capacity. In particular, the present invention is designed to individually absorb the heat generated by a large number of semiconductor circuit chips that are assembled in parallel in a housing of an electronic device, etc. and are densely mounted on each of nine circuit boards, and dissipate the heat into the air flow to raise the temperature of the board. Improved frequency as a small capacity heat pipe, most suitable as a small heat radiator to prevent heat build-up and ensure the unreliability and long service life of semiconductor chips.
It is intended to provide an e-structure.

第1図は上述の如き放熱器の従来例の構造及び使用状態
を示す。図中1−1 、1−2.1−3は夫々放熱器で
あシ、2−1 、2−2 、2−3は夫々半導体回路チ
ップ等の発熱体、4はそれ等を搭載した基板である。基
板は更に該基板と平行近接して機器筐体内に多数枚組込
まれである。半導牛回路チップ及びその上に接着された
放熱器は各基板毎に縦横に数10箇以上も搭載されるの
が常である。放熱器の材料は銅、アル<ニウム等熱伝導
性の良好な金属が使用される。この様な放熱器として第
1図の如き金属熱伝導体が用いられ、極めて効率的な筈
のヒートパイプ放熱器が実用的に用いられない理由とし
て次のことがあけられる。
FIG. 1 shows the structure and usage of a conventional heat radiator as described above. In the figure, 1-1, 1-2, and 1-3 are heat sinks, 2-1, 2-2, and 2-3 are heating elements such as semiconductor circuit chips, and 4 is a board on which these are mounted. It is. A large number of substrates are further incorporated into the device housing in parallel with and adjacent to the substrates. Usually, several dozen or more semiconductor cow circuit chips and heat sinks bonded thereon are mounted vertically and horizontally on each board. The material used for the heat sink is a metal with good thermal conductivity, such as copper or aluminum. As such a heat radiator, a metal heat conductor as shown in FIG. 1 is used, and the reason why a heat pipe heat radiator, which should be extremely efficient, is not used practically is as follows.

ビ) 多数の放熱器が近接して設けられるので、直径に
制限がある。又近接する基板との距離を大きくすること
が出来ないので放熱器の高さに制限がある。従ってヒー
トパイプの容量を大きくすることができない。
B) Since many heat sinks are installed close to each other, there is a limit to the diameter. Furthermore, since the distance between the heatsink and the adjacent substrate cannot be increased, there is a limit to the height of the heatsink. Therefore, the capacity of the heat pipe cannot be increased.

(+:I)  前項と全く同勢の還自から個々のフィン
の高さ、若しく蝶直径に制限があシ、即ち個々のフィン
面積を大きくすることが出来ない。
(+:I) Due to the same reason as in the previous section, there is a limit to the height or butterfly diameter of each fin, that is, it is not possible to increase the area of each fin.

e→ 冷却風の風向に対し数多くの放熱器が整列してい
るので風下の放熱器に充分な冷風を送る為には前ビ)項
に依る制限よJ)j!に:mlい制@を加えて個々の放
熱器容積を小さくする必要があシ、又個々のフィンの間
隔も拡大せしめて、風圧に対する抵抗金小さくしてやる
必要がるる。
e→ Since many radiators are lined up in relation to the direction of the cooling air, in order to send enough cold air to the radiators on the leeward side, the restrictions set forth in the previous item B) are required J) j! It is necessary to reduce the volume of each heatsink by adding a ml limit, and it is also necessary to increase the spacing between individual fins to reduce the resistance to wind pressure.

上述の如き制限事項の下に従来構造のヒートパイプを放
熱器として使用する場合ヒートパイプの内容積が極めて
小さくな)熱移送特性が悪く、フィンの放熱性能も悪く
、ヒートパイプ製作費が高価で、性能に対するコストの
比率が低下し′C実用土使用に耐えないものとなる。第
2図は従来構造のヒートパイプを上述の如き放熱器とし
て使用した場合の形状を示しである。図中3は半導体回
路チップ、4は基板、5はヒートパイプコンテナ、6及
び7ri端面封止板、8Fiフイン、9はクイックであ
る。空気流を充分に通過させる為フィン8の装着ピッチ
は通常の2倍以上になって居シ、又同様の理由からヒー
トパイプ5は細径になっている。ヒートパイプコンテナ
は高真空に減圧されてあり、その為に小型ヒートパイプ
であっても座屈を防ぐ為厚さ0.5粍程になっている。
When a heat pipe with a conventional structure is used as a radiator under the above-mentioned limitations, the internal volume of the heat pipe is extremely small), the heat transfer characteristics are poor, the heat dissipation performance of the fins is poor, and the production cost of the heat pipe is high. However, the ratio of cost to performance decreases, making it unsuitable for practical use. FIG. 2 shows the shape of a heat pipe having a conventional structure when used as a heat radiator as described above. In the figure, 3 is a semiconductor circuit chip, 4 is a substrate, 5 is a heat pipe container, 6 and 7ri end face sealing plates, 8Fi fins, and 9 is a quick. In order to allow sufficient airflow to pass through, the mounting pitch of the fins 8 is more than twice the normal pitch, and for the same reason, the heat pipe 5 has a small diameter. Heat pipe containers are evacuated to a high vacuum, so even small heat pipes have a thickness of about 0.5 mm to prevent buckling.

又同様に高真空に耐える為端末封止板も1.5粍〜2.
0粍程になっている。作動液還流用ウィック8の厚さは
1.5粍〜2粍は必要である。従ってフィン外径が13
粍に制限された場合フ・イン鳥さを5粍にした場合、ヒ
ートパイプコンテナ外径は3粍となり、コンテナ厚さ、
ウィック厚さを差引いた場合蒸気通路を設けることが不
可能とな)最早ヒートパイプとしての性能は発揮出来な
いものである。ヒートパイプとしての特性を出す為蒸気
通路直径を4粍にした場合のヒートパイプ厘径唸8粍と
表シフイン高さII′13粍となる。フィン為さ3粍の
場合Lフィンの冷却効果が期待出来なくな9放熱器とし
てのヒートパイプ拡殆んど無意味なものとなシ、高価な
ヒートパイプ製作費は全く無駄なものとなって了うもの
である。
Similarly, in order to withstand high vacuum, the terminal sealing plate is also 1.5mm to 2mm thick.
It's about 0 millimeters. The thickness of the working fluid reflux wick 8 is required to be 1.5 mm to 2 mm. Therefore, the fin outer diameter is 13
If the width is limited to 5mm, the outer diameter of the heat pipe container will be 3mm, and the container thickness,
(If the wick thickness is subtracted, it is impossible to provide a steam passage) It is no longer possible to demonstrate its performance as a heat pipe. When the steam passage diameter is set to 4 mm in order to obtain the characteristics as a heat pipe, the heat pipe diameter is 8 mm and the surface height is 13 mm. If the fin size is 3 mm, the cooling effect of the L fin cannot be expected, and the expansion of the heat pipe as a radiator becomes meaningless, and the expensive heat pipe production costs are completely wasted. I understand.

本発明に係るヒートパイプ放熱器状小型フィンでも充分
な放熱効果を発揮し、小型ヒートパイプでも充分な内容
積を有し充分なヒートパイプ特性を発揮する放熱器を構
成することを可能にするものである。以下園内に依って
鋏ヒートパイプ放熱器について詳述する。第5Itri
本発明に係るヒートパイプ放熱器の基本構造を示す断面
図で第3図及び第4図はその応用実施例である。第3図
社縦断面図第4図は第3図のムーム′ 断面図である。
The heat pipe radiator according to the present invention exhibits a sufficient heat dissipation effect even with small fins, and makes it possible to configure a radiator that has sufficient internal volume and exhibits sufficient heat pipe characteristics even with a small heat pipe. It is. The scissors heat pipe radiator will be explained in detail below depending on the garden. 5th Itri
FIGS. 3 and 4 are cross-sectional views showing the basic structure of the heat pipe radiator according to the present invention, and show examples of its application. FIG. 3 is a longitudinal cross-sectional view of the shaft. FIG. 4 is a cross-sectional view of the Moom' in FIG. 3.

第6図は他の応用実施例である。図中の番号は総べて共
通番号で示してあfi、11itフインを兼ねてベロー
ズ状に形成し九コンテナである。ベローズ状であるので
コンテナの耐圧力は極めて強靭であり純銅コンテナで肉
厚0.15粍の場合でも2Dk/jの耐圧力を有し、又
高真空の負圧に耐してはベローズが収縮するのみで肉厚
0.1粍でもコンテナが座屈する恐れは全くない。該ベ
ローズフィンの最大の特徴は熱交換に際し0.1〜0.
5粍の如き極めて薄い肉厚の金属壁を介するのみで、フ
ィン内部で作動液の蒸気が放熱液化する。従ってフィン
外表面を流れる空気流に対して殆んど熱抵抗無く放熱す
ることが′出来る。従来型ヒートパイプフィンがフィン
の熱抵抗、フィンとコンテナ間の接触抵抗、ウィックの
熱抵抗等の総和として大きな熱抵抗損失が発生するのに
比較して、本発明に係るベローズフィンはその高さが3
粍程度の小型フィンであっても、又ピッチが従来の2倍
以上の粗いフィンであっても、その放熱能力ははるかに
勝るものである。これは本発明に係るベローズフィンの
最大の作用効果である。又従来のヒートパイプフィンが
フィン材料中の熱伝達時間、及び肉厚のコンテナ及びク
イックを熱伝導に依シ貫通する時間等で熱応答速度が遅
いのに対し、本発明に係るベローズフィンは0.08〜
0.18粍の薄いコンテナ肉厚を介するのみで空気流と
作動液蒸気は殆んど熱伝達時間1−*することなく熱を
交換することが出来るから熱応答時間は無視出来る程の
短時間となり極めて秀れた熱応答特性を発揮する。この
点も本発明に係るベローズフィンの大きな作用効果であ
る。又ベローズフィンが高さをそれ福必豐としない点及
び耐圧強度が大きいのでベローズコンテナの肉厚全極め
て薄くすることが出来る点から限られた大きさの範囲内
で最大の内容積を与えることが出来小っこれに依シヒー
トパイプとしての特性を光分に発揮することが出来る点
もベローズ臘コンテナを有する本発明に係るヒートパイ
プ放熱器の大きな作用効果である。この内容積について
の従来戴ヒートパイプとの比較Fi第2図と93図の対
照に依p容易に理解することが出来る。各図に於いて1
4はウィックで、金属細線束、金属細線束の機組紐、金
属メツシュを丸めた束、金属メツシュのテープ尋の如き
テープ状又は紐状のクイックである。クイック14は弾
性ウィック支持体16に依ってベローズ溝に交叉して、
ヒートパイプの縦方向に沿わせて押圧して支持されであ
る。クイックの使用本数はヒートパイプ放熱器のベロー
ズ内径に依って決められるが、ベローズ溝内に充分な作
動液蒸気が供給される様必簀な間隙を形成して沿わせら
れる。各ベローズフィンの内溝で多量に液化された作動
液がべは−ズ内溝轍の不特定な゛位置からコンテナ内を
滴下する場合は溝内に対する蒸気の供給が不順又は不可
能となり、更に蒸気流に依って作動液がベローズフィン
溝内に封じ込められて、ヒートパイプとしての熱交換能
力を低下せしめ九り、最急の場合はヒートパイプの作動
を停止せしめる恐れがある。この様な状態の発生を防止
し、連続的にベローズフィン溝内の作動液を吸収し、ヒ
ートパイプ放熱器の吸熱面に作動液を速流せしめるのが
該ウィックの役目でアシ、ベローズ状コンテナ構造と共
に本発明に係るヒートバイブ放熱器の構造の1簀な特徴
の一つである。図中12 、13はヒートパイプ放熱器
の端面で、各口糸13のみか吸熱面になって12は放熱
面になっている。
FIG. 6 shows another applied example. The numbers in the figure are all common numbers, and the 9th container is formed into a bellows shape and also serves as a fin. Because it has a bellows shape, the pressure resistance of the container is extremely strong, and even a pure copper container with a wall thickness of 0.15 mm can withstand pressure of 2Dk/j, and the bellows will shrink when withstanding the negative pressure of a high vacuum. There is no risk that the container will buckle even if the wall thickness is 0.1 mm. The biggest feature of this bellows fin is that it has a heat exchange rate of 0.1 to 0.
The vapor of the working fluid radiates heat and liquefies inside the fin only through an extremely thin metal wall such as 5 mm thick. Therefore, heat can be radiated with almost no thermal resistance against the airflow flowing on the outer surface of the fins. Compared to conventional heat pipe fins, where a large thermal resistance loss occurs as a sum of the thermal resistance of the fin, the contact resistance between the fin and the container, the thermal resistance of the wick, etc., the bellows fin according to the present invention has a large thermal resistance loss due to its height. is 3
Even if the fin is as small as a millimeter, or if the pitch is more than twice that of a conventional fin, its heat dissipation ability is far superior. This is the greatest effect of the bellows fin according to the present invention. In addition, while conventional heat pipe fins have a slow thermal response speed due to the heat transfer time in the fin material and the time to penetrate thick containers and quicks due to heat conduction, the bellows fin according to the present invention has a slow thermal response speed. .08~
Air flow and working fluid vapor can exchange heat with almost no heat transfer time 1-* only through the thin container wall thickness of 0.18 mm, so the thermal response time is so short that it can be ignored. It exhibits extremely excellent thermal response characteristics. This point is also a major effect of the bellows fin according to the present invention. In addition, the bellows fins do not have to change in height, and since they have high pressure resistance, the total wall thickness of the bellows container can be made extremely thin, giving the maximum internal volume within a limited size range. Another major effect of the heat pipe radiator of the present invention having a bellows container is that it can exhibit the characteristics of a heat pipe in light. This internal volume can be easily understood by comparing Figures 2 and 93 with a conventional heat pipe. 1 in each figure
4 is a wick, which is a tape-like or string-like quick such as a metal thin wire bundle, a braided cord of a metal thin wire bundle, a rolled metal mesh bundle, or a metal mesh tape thick. The quick 14 crosses the bellows groove by the elastic wick support 16,
It is supported by being pressed along the lengthwise direction of the heat pipe. The number of quicks used is determined by the inner diameter of the bellows of the heat pipe radiator, but they are placed along the bellows groove to form a necessary gap so that sufficient working liquid vapor can be supplied into the bellows groove. If a large amount of working fluid liquefied in the inner groove of each bellows fin drips into the container from an unspecified position in the bellows inner groove, the supply of steam to the groove becomes irregular or impossible. The working fluid is trapped in the bellows fin grooves by the steam flow, reducing the heat exchange ability of the heat pipe, and in the worst case, there is a risk that the heat pipe may stop operating. The role of the wick is to prevent this kind of situation from occurring, to continuously absorb the working fluid in the bellows fin grooves, and to make the working fluid flow quickly to the heat-absorbing surface of the heat pipe radiator. This is one of the main features of the structure of the heat vibrator according to the present invention. In the figure, reference numerals 12 and 13 are end faces of the heat pipe radiator, and only each thread 13 is a heat absorbing surface, and 12 is a heat radiating surface.

従来型のヒートパイプではコンテナの強度が低いので、
ヒートパイプ成型の減圧に依る負圧に耐える必要かTo
p1又ヒートパイプ使用時の外圧に耐える為にコンテナ
の強tを補強せしめる役目があるので端面封止板は光分
な肉厚にする必要があった。端面封止板社従来例として
は小型ヒートパイプで1粍、外径40粍程度のヒートパ
イプでII′i3〜5粍の肉厚が採用されている。本発
明に係るヒートパイプ放熱器に於いてコンテナがベロー
ズ状である為コンテナ自身が極めて耐圧力に冨むので端
面封止板はコンテナ補強力を必要とせず0.08〜0.
18粍の如く極めて薄肉にすることが出来る。
Conventional heat pipes have low container strength, so
Is it necessary to withstand the negative pressure caused by the reduced pressure of heat pipe molding?
Also, the end face sealing plate needed to be as thick as the thickness of the end sealing plate since it had the role of reinforcing the strength of the container in order to withstand the external pressure when using the heat pipe. As a conventional example of End Face Sealing Board Co., Ltd., a wall thickness of 1 mm is used for a small heat pipe, and a wall thickness of 3 to 5 mm is used for a heat pipe with an outer diameter of about 40 mm. In the heat pipe radiator according to the present invention, since the container has a bellows shape, the container itself has an extremely high pressure resistance, so the end sealing plate does not require a reinforcing force of 0.08 to 0.0.
It can be made extremely thin, such as 18 mm.

又本発明に係る放熱口に於いては両端面の111!?k
lは吸熱平面でおり、更に他の一面も放熱面であるから
熱交換特性向上の為には薄ければ薄い−良いものである
。又前述の如く放熱器の太き葛に散しい制限があるので
端面封止板状薄けれは薄い程放熱器内のヒートパイプと
して作動する内容at大きくすることが出来るので望ま
しいことである。この様な点からベローズ状コンテナの
採用に依って両面肉JIILt−薄くすることが出来る
ことは本発明ヒートパイプ放熱器の使用目的に合致する
望ましい効果であると云える。この橡に博い対土端面で
良いことになった為、本発明に係る構造に於いては封止
板をコンテナと一体として同時底盤することが可能とな
plこれ鉱性能上もコスト低減上も極めて有用な作用効
果である。即ち製造技術上ベローズ状コンテナと端面B
とは一枚の原料板から継目無しの一体同時成蓋加工が可
能であり、又端面12は後述する支持体中空管すと継目
無し一体成製加工が可能でめる。これは趨向肉厚が薄肉
であるから可能となるものであり、ベローズ状コンテナ
採用の作用効果である。従来構造のヒートパイプの製作
に於いては端面溶接封止作業は1喪で又コスト高な作業
であった。高真空であるヒートパイプコンテナは端面の
気密封止がヒートパイプの生命管法するもので製造ロス
発生の大きな要因となっていた。東に1債な問題として
端面封止板の溶接時変形及びロウ接に際してのロウ接材
のコンテナ内浸入の間社がある。本発明ヒートパイプ放
熱器の如<ili、415〜10粍の如き極めて小型で
あり且つ該端面を吸熱面として使用する場合熔接中ロウ
級温度に依る僅かな歪の発生でも接触熱抵抗の増大とし
て致命的欠陥となることがある。又ロク着時に熔融し九
ロウ材が熾面對止板内面に流れ込みその部分の厚みが増
大した場合太きp″性能低下の原因となる恐れがある。
Also, in the heat dissipation port according to the present invention, 111! on both end faces! ? k
1 is a heat absorbing plane, and the other surface is also a heat radiating plane, so in order to improve heat exchange characteristics, the thinner the better. Furthermore, as mentioned above, there are strict limitations on the thickness of the heat radiator, so the thinner the end face sealing plate is, the more desirable it is because the content that operates as a heat pipe within the radiator can be increased. From this point of view, it can be said that by employing a bellows-shaped container, the thickness on both sides can be made thinner, which is a desirable effect that meets the purpose of use of the heat pipe radiator of the present invention. Because of this advantage, the structure of the present invention allows the sealing plate to be integrated with the container and the bottom plate at the same time, which improves mineral performance and reduces costs. This is also an extremely useful effect. In other words, due to manufacturing technology, the bellows-shaped container and the end face B
It is possible to simultaneously form a lid in a seamless manner from a single raw material plate, and the end face 12 can be formed into a single piece without a joint by using a support hollow tube as will be described later. This is possible because the wall thickness in the direction is thin, and is an effect of adopting a bellows-shaped container. In the production of heat pipes of conventional structure, end face welding and sealing work is a laborious and costly work. High vacuum heat pipe containers require air-tight sealing of the ends, which is a major cause of manufacturing loss. One of the most notable problems is the deformation of the end sealing plate during welding and the infiltration of solder material into the container during soldering. When the heat pipe heat radiator of the present invention is extremely small, such as 415 to 10 mm, and the end surface is used as a heat absorption surface, even a slight distortion due to the low temperature during welding causes an increase in contact thermal resistance. This can be a fatal flaw. Furthermore, if the melted 90% metal flows into the inner surface of the surface stopper plate and the thickness of that part increases when the plate is attached, it may cause a decrease in the performance of thick P''.

ベローズ状;ンテナの採用に依シ端面肉厚が薄肉で喪い
ことになり、これに依シ一体成型が可能となったヒート
パイプ端面は上述の様な問題の発生は全く生じなくなる
ものである。図中巧は所定の長さ以下にベローズが収縮
して放熱器が短かくなるのを防ぐ為の中空管状支持体で
ある。第3図〜第6図の如く一端面のみが吸熱部でTo
シ他の端面が放熱面の一部としての役目が与えられる如
き場合、支持体15の中空管は端面12と一体化して成
製され、これ等は一体となってベローズ部とは独立した
ヒートパイプの如く構成される。端面12の外周縁はベ
ローズの一山の如く形成されであるので放熱器が収縮す
る場合支持体円柱は端面13の内面に弾性的に接触して
両端Iot−支えて、それ以上の収縮を防止する。本発
明の放熱器はヒートパイプであるから容器内は高真空に
減圧されであるので低温作動中は猟に強い収縮性を有し
て居シ、ベローズ自身の弾性が強く完全に収縮しない場
合でも小さな外圧て収縮する性質を有している。収縮率
が大きい場合は放熱器の内容積が減少し、容器内の真空
度が低下するに至る。真空度の低下は作動液の蒸発温度
が上昇し、作動液a流量が低下しヒートパイプとしての
性能が低下する。又放熱器の収縮はベローズフィン相互
の間隙を縮小せしめ冷却風の通過量が低下して放熱効率
が低下する。これを防ぎ放熱bt所定の高さに維持せし
めるのが支持体15の中空管の第1目的である。支持体
中空管の他の作用効果として鉱端面氏と一体化して独立
したヒートパイプとしての作用がある為、趨向Bとベロ
ーズコンテナの間で作動するヒートパイプの放熱作用の
為の作動液還流ナイクルを撹乱することが無い点である
Due to the adoption of a bellows-like antenna, the wall thickness of the end face becomes thinner and thinner, and the end face of the heat pipe, which can be integrally molded, does not have the above-mentioned problems at all. In the figure, a hollow tubular support is used to prevent the bellows from contracting below a predetermined length and shortening the radiator. As shown in Figures 3 to 6, only one end surface is a heat absorbing part and To
In the case where the other end surface is given a role as a part of the heat dissipation surface, the hollow tube of the support body 15 is formed integrally with the end surface 12, and these are integrated and are independent of the bellows part. It is constructed like a heat pipe. The outer periphery of the end surface 12 is formed like a single peak of a bellows, so when the radiator contracts, the support cylinder elastically contacts the inner surface of the end surface 13 to support both ends and prevent further contraction. do. Since the radiator of the present invention is a heat pipe, the inside of the container is depressurized to a high vacuum, so it has a strong contraction property during low temperature operation, and even if the bellows itself has strong elasticity and does not completely contract. It has the property of contracting under small external pressure. If the shrinkage rate is large, the internal volume of the radiator will decrease, leading to a decrease in the degree of vacuum within the container. When the degree of vacuum decreases, the evaporation temperature of the working fluid increases, the flow rate of the working fluid a decreases, and the performance as a heat pipe deteriorates. Furthermore, the contraction of the heat radiator reduces the gap between the bellows fins, reducing the amount of cooling air passing through and reducing the heat radiation efficiency. The first purpose of the hollow tube of the support body 15 is to prevent this and maintain the heat radiation b at a predetermined height. Another effect of the supporting hollow tube is that it functions as an independent heat pipe when integrated with the ore end surface, so the working fluid is returned for the heat dissipation effect of the heat pipe that operates between direction B and the bellows container. The point is that it does not disturb the Nykul.

#IIfrJ12で放熱する為の作動液蒸気筺は支持体
中空管内管移動するのでベローズフィンに肉う作m箪蒸
気流管乱すことが無い。又端面nで放熱I!筐化された
作動液は支持体中空管内at通って吸熱部13に還流す
るので、べp−ズフィンに向う蒸気流中管滴下してその
流れを乱し効率を低下せしめる橡なことがない。支持体
中空管塾の他の効用としては第6a11fll示の如く
クイック紐14の直径を大きく形成することに依9該中
空管にウィック支持体としての役目を兼ねさせることが
出来る。この場合社弾性クイック支持体16を省略する
ことが出来るメリットがある。この場合ウィック@14
の本数を減らす必要かある。
In #IIfrJ12, the working liquid vapor chamber for heat dissipation moves within the support hollow tube, so there is no interference with the bellows fin and the steam flow tube. Also, heat dissipation I at the end surface n! Since the cased working fluid passes through the support hollow tube and flows back to the heat absorbing section 13, there is no possibility that the liquid will drip into the vapor flow toward the vapor flow tube and disturb the flow and reduce efficiency. Another advantage of the support hollow tube is that by forming the quick string 14 with a large diameter as shown in No. 6a11fl1, the hollow tube can also serve as a wick support. In this case, there is an advantage that the elastic quick support 16 can be omitted. In this case Wick @14
Is there a need to reduce the number of books?

更に支持体中空管の他の作用効果として、第31ilで
明らかな如く、本発明に係る放熱器としてヒートパイプ
コンテナを組み立てる際の溶接箇所18が端面n、13
及びヒートパイプ作動時の作動液蒸気流1作動液還流路
と全く関係の無い位置で且つ溶接作業性の良い位置にあ
る点である。この爆接の位置に依って本発明放熱器の如
春小型ヒートパイプにとって#il大な影譬があること
は前に述べた如くである。
Further, as another effect of the support hollow tube, as is clear from No. 31il, when assembling the heat pipe container as a radiator according to the present invention, the welding point 18 is the end face n, 13
And, it is located at a position that has no relation to the working fluid return path for the working fluid vapor flow 1 during heat pipe operation, and is located at a location that facilitates welding workability. As mentioned above, the position of this explosive contact has a great influence on the small-sized heat pipe of the heat sink of the present invention.

第5図例示の如くウィック支持体15′を張力な弾性ク
イック支持体として形成する場合扛これにベローズの必
要限度を越えた収縮を防止する役目を兼ねさせることが
可能となる。この場合線支持体中空管15を4i11す
ることが可能となる。支持体15を省略する場合Fi、
端面ルのコンテナ内面で液化した作動tlLが不特定の
箇所から滴下する恐れが生ずる。
When the wick support 15' is formed as a tensile elastic quick support as illustrated in FIG. 5, it is possible to have the wick support 15' also serve to prevent the bellows from contracting beyond the necessary limit. In this case, it is possible to make the line support hollow tube 15 4i11. When the support body 15 is omitted, Fi,
There is a risk that the operating TLL that has liquefied on the inner surface of the container at the end surface may drip from an unspecified location.

これを防ぐ対策としてはクイック紐の端末t−鶴長せし
め、端面12の内面に分散せしめて作動液t−吸収する
か、端面12の内壁面を曲面に形成すると^い。本発明
に係るヒートパイプ放熱器拡りイックヲ有するヒートパ
イプであるから放熱器が傾斜したシ水平になったシする
使用条件にも充分にその性能を発揮する。この様な小型
ヒートパイプ嬬作動液移送距離が短かいのでウィックの
効果は極めて大きく、水平使用では全く通常のヒートパ
イプ特性を発揮するだけでなく場合に依っては倒立使用
でトップヒート条件で使用しても若干の性能低下だけで
冷却効果としては効果を発揮する。但し倒立使用の場合
祉端面臆はドライアウトして放熱効果は失なわれる。即
ち端面ルと支持中空管15で1形成される独立し丸糸の
ヒートパイプはクイックレス蓋又蝶と一トサイフォン型
のヒートパイプで作動液造流紘重力のみに依るものでト
ップヒート使用条件では全く作動しないからである。本
発明し−トパイプ放熱器の性能線両端面内匈にウィック
17t−形成することにより更に向上せしめることが出
来るこのクイック17は本放熱器の水平使用時に吸熱面
に均−且つ急速に作動液を分散せしめ蒸発気化能力を促
進する上で効果がある。以上の如く一端面を吸熱面とす
るヒートパイプ放熱器として本発明に係る構造の数多く
の作用効果について詳述し良。上述した作用効果は個々
の放〆器としての作用効果について述べたのであるが、
第1図に一部例示の如き用途で極めて多数の放熱器を使
用し九システムとして本発明に係るヒートバイブ鉱卓越
し九作用効果を示す。本発明に係るベローズコンテナを
有するヒートパイプ放熱器はその長さ形状はその時点の
温度状況で常に変化する構造になっている。前述の如く
低温度では収縮し、収縮防止用の支持体中空管で支持し
ているのであるが、機器が使用状、態で発熱した場合、
放熱器内の作動液は放熱器が与えられる温度に応じた蒸
気圧を発生し、これに依り放熱器の長さはその冷却を分
担する半導体回路チップの温度に対応して変化すること
になる。高温チップに対しては伸長して容器内圧を低下
せしめヒートパイプ内の作動サイクルを活発化せしめる
。又高温チップに依シ伸長させられたベローズフィンの
ピッチは拡大されてより多くの冷却空気を通過せしめよ
シ多くの熱量を放熱する。又それ程冷却を心象としない
チップを分担している放熱器は収縮して容器内の熱移送
サイクルを減速させ、ベローズ間隔を動小せしめて空気
取入れ量を減じ、又長さが縮小し全体の体積が小さくな
るので不要の空気流は風下の放熱器に余分に流れる様に
なるものである。坤ち基板上でその時点時点で活発に活
動して、発熱量の多り発熱体の冷却を分担している放熱
器はより多量の空気を取入れて多量の放熱がなされる様
自動的に1#整する機能を有するものである。これは単
一の放熱器としてはそれ程間亀とならないことであるが
同一機器の同一筐体内で数百側に及ぶ放熱器を使用する
場合は効率的な筐体内冷却を実施する上で効果のめる卓
越した作用効果であると云える。
To prevent this, the end of the quick string can be made long, and the working fluid can be absorbed by dispersing it on the inner surface of the end surface 12, or the inner wall surface of the end surface 12 can be formed into a curved surface. Since the heat pipe radiator according to the present invention has a quick expansion, it can sufficiently exhibit its performance even under usage conditions where the radiator is inclined or horizontal. Since the working fluid transfer distance for such small heat pipes is short, the wicking effect is extremely large, and when used horizontally, it not only exhibits normal heat pipe characteristics, but also in some cases, when used upside down, it can be used under top heat conditions. However, the cooling effect is still effective with only a slight decrease in performance. However, when used upside down, the front surface will dry out and the heat dissipation effect will be lost. That is, the independent round heat pipe formed by the end face and the supporting hollow tube 15 is a siphon type heat pipe with a quickless lid or a butterfly, and relies only on the flow of the working fluid and gravity, and uses top heat. This is because it does not work at all under these conditions. The performance curve of the pipe radiator according to the present invention can be further improved by forming wicks 17t on both end faces of the pipe radiator.When the radiator is used horizontally, the working fluid is uniformly and rapidly distributed on the heat absorbing surface. It is effective in promoting dispersion and evaporation ability. As described above, a number of functions and effects of the structure according to the present invention as a heat pipe radiator having one end surface as a heat absorption surface will be described in detail. The above-mentioned effects were described as individual releasers, but
FIG. 1 shows the outstanding effects of the heat vibrator according to the present invention as a system in which a large number of heat sinks are used in an application as partially exemplified. The heat pipe radiator having a bellows container according to the present invention has a structure in which its length and shape always change depending on the temperature situation at that time. As mentioned above, it shrinks at low temperatures and is supported by a support hollow tube to prevent shrinkage, but if the device generates heat while in use,
The working fluid inside the heatsink generates a vapor pressure that corresponds to the temperature to which the heatsink is applied, and the length of the heatsink changes in response to the temperature of the semiconductor circuit chip that it cools. . For high-temperature chips, it expands to reduce the internal pressure of the container and activate the operating cycle within the heat pipe. Also, the pitch of the bellows fins, which are elongated due to the hot tip, is enlarged to allow more cooling air to pass through and dissipate more heat. Also, heatsinks serving chips that do not require much cooling will shrink, slowing down the heat transfer cycle within the container, reducing the bellows spacing, reducing air intake, and reducing length, reducing the overall Since the volume is smaller, unnecessary air flows to the radiator on the leeward side. The radiator that is currently active on the board and is responsible for cooling the heating element that produces a large amount of heat will automatically be turned on so that more air can be taken in and more heat can be dissipated. #It has the function of adjusting. This is not a problem for a single radiator, but when using hundreds of radiators in the same housing of the same device, it becomes effective for efficient cooling inside the housing. It can be said that the effect is outstanding.

この様に吸熱部温度に依り伸輻して放熱効率を自動駒部
するヒートパイプ放熱器に於いては作動液の選択がその
特性を左右する。′例えは発熱体である半導体素子を業
界で最も一般的な使用範囲である40℃〜100℃以内
に腕節する場合、作動液としてはメタノールか最も適切
なコンテナ内圧を発生する。メタノールの一ヒートパイ
プコンテナ内圧ヰ切℃に於いて0.4 j!#/j 、
70℃に於いて1に/−1100℃に於いて3麺/−で
あり大気圧に対し”/2.5から3倍の範囲で適切に変
化してベローズを伸縮せしめ、温J[111節範囲の中
間温度で大気圧とバツ/ス會保つことが出来る。着しこ
の橡な使用範囲の本発明に係るヒートパイプ放熱器に作
動液として純水を使用する場合、純水がコンテナ内で発
生する内圧は切℃に於いて0.09 T4/d 、70
℃に於いて0.3 Kr/aj 、  100℃に於い
てI Kg/−であり総べての範囲で大気圧に対し負圧
状態で作動させる必要がありベローズの伸縮可能範囲の
中の収縮側のみを使用することにな多ベローズ設計上無
理が生ずる。即ち同一金属材料の場合ベローズ山数を2
倍にする必費が生ずると共に強い負圧に充分耐える為ベ
ロー′ズ肉厚を増加させる必要がある。これは放熱器の
ベローズフィンの風圧抵抗の増大を意味するもので好ま
しくないものである。これに対し70℃で大気圧とバラ
ンスするメタノール作動液ヒートパイプは伸張と収縮の
比率がほぼ−等であるからベローズの伸1M特性の全範
囲を利用することが出来る。又発熱体温度の−節軛四の
中間点とべp−ズの伸張収縮範囲の中間点が合致してい
ることはベローズの最も無理のない所と使用頻度の高い
一嵐状急が合致していることでTo9ヒートパイプ放熱
器の寿命艦長の点からも極めてmtLいものである。本
発明に係る作動液としてはエタノールを用いてもは埋同
等の性能を発揮させることができる。
In this way, in a heat pipe heat radiator that automatically adjusts heat radiation efficiency by expanding and radiating depending on the temperature of the heat absorption part, the selection of the working fluid influences its characteristics. 'For example, when a semiconductor device, which is a heating element, is heated within the range of 40°C to 100°C, which is the most common operating range in the industry, methanol is used as the working fluid, or the most appropriate pressure inside the container is generated. The internal pressure of a heat pipe container of methanol is 0.4 J at ℃! #/j、
1 at 70℃/-3 noodles at 1100℃, and the bellows expands and contracts by changing appropriately in the range of 2.5 to 3 times the atmospheric pressure. It is possible to maintain a balance with atmospheric pressure at a temperature in the middle of the range.If pure water is used as the working fluid in the heat pipe radiator of the present invention, which is used in a range of extremes, The internal pressure generated is 0.09 T4/d at 70°C.
It is 0.3 Kr/aj at ℃ and I Kg/- at 100℃, and it is necessary to operate under negative pressure relative to atmospheric pressure in all ranges, and contraction within the range where the bellows can expand and contract. Using only the side makes it difficult to design multiple bellows. In other words, in the case of the same metal material, the number of bellows threads is 2.
In addition to doubling the cost, it is also necessary to increase the thickness of the bellows in order to sufficiently withstand strong negative pressure. This means an increase in the wind pressure resistance of the bellows fins of the radiator, which is undesirable. On the other hand, a methanol working fluid heat pipe balanced with atmospheric pressure at 70° C. has a ratio of expansion and contraction of approximately -, so the full range of the 1M expansion characteristic of the bellows can be utilized. Also, the fact that the middle point of the heating element temperature and the middle point of the expansion/contraction range of the bellows coincides means that the most natural point of the bellows matches the most frequently used one. This makes the To9 heat pipe radiator extremely short in terms of life span. Even if ethanol is used as the working fluid according to the present invention, performance equivalent to that of the hydraulic fluid can be exhibited.

以上本発明に係るヒートパイプ放熱器の構造及び作用効
果について詳述したのであるが本発明に係るヒートパイ
プの基本構造としてはベローズ管をヒートパイプコンテ
ナの放熱部として使用し、ベローズの山をフィンとして
用いる点、及び腋ベローズフィンの内部に液化蓄積され
る作動液が滞留するのを防ぎ、ベローズフィンの放熱能
力を増加させ、作動液の還流路として紐状又はテープ状
のウィック會べ四−ズの溝に交叉して縦沿えした構造に
ある。この縦沿えの紐状ウィックは作動液の還流路であ
るがそのウィック間に充分な広さで設けられた間隙は充
分な作動液蒸気をベローズフィンに送入する蒸気通路と
なって居シ、この紐状ウィックとベローズフィンの組合
わせが従来のヒートパイプに社なかった新規な構造であ
シ本発明に係るヒートパイプ放熱器の基本構造である。
The structure and function and effect of the heat pipe radiator according to the present invention have been described in detail above.The basic structure of the heat pipe according to the present invention is that a bellows tube is used as a heat radiating part of a heat pipe container, and the peaks of the bellows are used as fins. In addition, it prevents the working fluid that is liquefied and accumulated inside the armpit bellows fins from staying, increases the heat dissipation ability of the bellows fins, and uses a string-like or tape-like wick as a return path for the working fluid. It has a vertical structure that intersects with the groove of the groove. This vertical string-like wick is a return path for the working fluid, but the gap provided between the wicks with a sufficient width serves as a steam passage that sends sufficient working fluid vapor to the bellows fin. This combination of string-like wick and bellows fins is a new structure not found in conventional heat pipes, and is the basic structure of the heat pipe radiator according to the present invention.

本発明を実施する上でのベローズの形状社蛇腹状ベロー
ズニta定される。ベローズとしては他の形状としてヘ
リカル状の出及び*を有するへりカルベローズが他の用
途のヒートパイプに対する応用として提案されている。
The shape of the bellows in carrying out the present invention is defined as a bellows shape. As another shape of the bellows, a helical bellows having a helical protrusion and * has been proposed for use in heat pipes for other uses.

然し本発明の用途の場合へりカルベローズをフィンとし
た場合は空気流の通過を妨け、風圧抵抗を増加させ、第
1図で説明し九如く数多くの放熱器f:使用する場合の
風下側放熱−に対して冷却風量を低下せしめ、全体的に
大巾に機能を低下せQめる。この橡なへりカルベローズ
フィン祉それ自身作動液流路として作動液が良好に流れ
る利点はあるが本発明に係るヒートノ曵イブ放熱器には
上記理由から全く使用不可能である。
However, in the case of the application of the present invention, if the edge carbelose is used as a fin, it will prevent the passage of airflow and increase the wind pressure resistance. - The cooling air volume is reduced compared to -, and the overall function is significantly reduced. Although this curved edge fin structure itself has the advantage that the working fluid can flow smoothly as a working fluid flow path, it cannot be used at all in the heat sink radiator according to the present invention for the above-mentioned reasons.

本発明に係るヒートパイプ放熱器に於いてベローズ用金
属が適当に選dれ、又拡適歯な肉厚、山数、山の形状が
選ばれた場合はベローズ自身の弾性ニ依って、ヒートパ
イプコンテナ内の減圧に充分に耐えさせることが出来る
。然し特に高性能のヒートパイプとして本発明に係る放
%器tR作する場合、ヒートパイプ製作工程に於いて高
温熱処理を必要とし、これはベローズの弾性を大巾に低
下せしめる場合があり、又使用材質に依っては完全に焼
鈍され全く弾性を失なう場合がある。前に詳述した過収
縮防止用中空管支持体はこの橡な場合の対策を考慮した
応用実施例として本発明に係る放熱器の特性維持及び性
能改善の為に使用される。中空管支持体は放熱側端面の
作動液流路及び蒸気通路を兼ねているから、中空管支持
体を使用しない基本構造の場合は各図に示した如く放熱
端面の内面を球面・にし良りウィックを設け、たりして
紐状クイックへの作動液の流動を助けたり、作動液の不
特定位置からの滴下を防ぐ等の対策をする。
In the heat pipe heat radiator according to the present invention, if the metal for the bellows is appropriately selected, and if the wall thickness, number of ridges, and shape of the ridges are selected, the heat will depend on the elasticity of the bellows itself. It can sufficiently withstand reduced pressure inside the pipe container. However, when manufacturing the radiator tR according to the present invention as a particularly high-performance heat pipe, high-temperature heat treatment is required in the heat pipe manufacturing process, which may significantly reduce the elasticity of the bellows, and may also be difficult to use. Depending on the material, it may be completely annealed and lose its elasticity. The hollow tube support for preventing excessive shrinkage, which has been described in detail above, is used as an applied example that takes countermeasures against this difficult case into account, and is used to maintain the characteristics and improve the performance of the heat radiator according to the present invention. Since the hollow tube support also serves as a working fluid flow path and a steam passage on the heat dissipation side end surface, in the case of a basic structure that does not use the hollow tube support, the inner surface of the heat dissipation end surface should be made spherical as shown in each figure. Take measures such as installing a good wick to help the flow of the hydraulic fluid to the string-like quick, and to prevent the hydraulic fluid from dripping from unspecified positions.

又前述の放熱器の大巾な伸縮性を利用した放熱効率自動
調整機能を利用する場合紘過収縮防止用中空管支持体拡
省略することができる。この場合の過収纏防止拡べシー
ズ用金属材料の選定に依シ弾カ性及び耐圧性を増強して
実施する。本発明に係るヒートパイプ放熱器は極めて小
製なりイック製ヒートパイプであるから前に述べた如く
毛細管作用を大巾に活用して傾斜、水平、又必要な場−
合は倒立して使用することも可能であることは前述の通
りであるが、従って本発明に係るヒートパイプ放熱器は
両端面を吸熱面として使用することが出来る。両面使用
の場合は両面の基板が何れも垂直か水平であシ、前者の
場合放熱器は水平使用であ夛、後者では一端面がボトム
ヒート他面はトップヒートであり、本発明に係るヒート
パイプは何れの場合も確実に作動する。
Furthermore, when using the heat dissipation efficiency automatic adjustment function that utilizes the wide stretchability of the radiator described above, the hollow tube support for preventing overshrinkage can be expanded or omitted. In this case, it depends on the selection of the metal material for the expansion seeds to prevent overconcentration, and the elasticity and pressure resistance are enhanced. Since the heat pipe radiator according to the present invention is an extremely small and made heat pipe, as mentioned above, it makes full use of the capillary action so that it can be tilted, horizontally, or wherever necessary.
As mentioned above, the heat pipe radiator according to the present invention can be used upside down if the heat pipe is used upside down. Therefore, both end surfaces of the heat pipe radiator according to the present invention can be used as heat absorbing surfaces. In the case of double-sided use, both substrates are either vertical or horizontal; in the former case, the heat sink is used horizontally; in the latter case, one end side is bottom heat and the other side is top heat; The pipe works reliably in either case.

上述の如くベローズフィンを有する且つ紐状クイックを
有する本発明に係るヒートパイプ放熱器は従来型と一ド
パイブの欠点の総べてを解決し更に多くのより卓越した
作用効果を示すもので、従来の放熱器に代夛ヒートパイ
プの利点を活用し九効率的な放熱器を提供する。
As mentioned above, the heat pipe heat radiator according to the present invention having bellows fins and string-like quicks solves all of the drawbacks of the conventional type and the one-piece heat radiator, and exhibits many more excellent functions and effects than the conventional type. Utilizes the advantages of alternative heat pipes to provide nine efficient heat sinks.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の放熱器とその基板i載例を示す正面図、
第2図は従来型ヒートパイプを第1図の如き使用例に用
いる場合の設計例の断面図、第5図は本発明に係るヒー
トパイプ放、熱器の基本構造及びその応用実施例で、ウ
ィック支持体が太く強靭なものを用いである縦断面図、 第3図、第4図及び第6図は他の応用実施例を示すもの
で、第3図及び第6図は縦断面図、第4図は第3図のム
ーム断面図である。 1・−放熱器、3−・半導体回路チップ、4・・・基板
、11・・・ベローズフィン、臆・・・放熱端面、13
・・・吸熱端面、14−・・ウィックζ15−・・過収
縮防止用支持体、16・・・クイック支持体。
Figure 1 is a front view showing an example of a conventional heatsink and its mounting on a board.
FIG. 2 is a cross-sectional view of a design example when a conventional heat pipe is used in the usage example shown in FIG. 3, 4, and 6 show other application examples; FIGS. 3 and 6 are longitudinal sectional views; FIG. 4 is a sectional view of the Moom in FIG. 3. DESCRIPTION OF SYMBOLS 1--Radiator, 3--Semiconductor circuit chip, 4--Substrate, 11--Bellows fin, shank--Radiating end surface, 13
... Endothermic end surface, 14-- Wick ζ15-- Support for preventing excessive shrinkage, 16- Quick support.

Claims (3)

【特許請求の範囲】[Claims] (1)  円筒形ヒートパイプの端面の一つを吸熱面と
し、他の外表面を放熱面とする放熱器であって、ヒート
パイプのコンテナとして深溝多山の蛇腹状ベローズ管を
用いてあシ、ベローズの山が放熱用フィンとなって居夛
、各放熱用フィンの裏面即ちコンテナ内匈から見え場合
の溝の内表面が作動液蒸気の凝結面となって居シ、該溝
群と交叉し且つ内接して所定の本数の紐状ウィックがコ
ンテナ内面に縦沿え装着されであること?:%黴とする
ヒートパイプ放熱器。
(1) A radiator in which one end surface of a cylindrical heat pipe is used as a heat absorption surface and the other outer surface is used as a heat radiation surface, and a deep grooved bellows tube with many grooves is used as a container for the heat pipe. The peaks of the bellows act as heat radiating fins, and the back surface of each heat radiating fin, that is, the inner surface of the groove when visible from inside the container, serves as a condensation surface for the working fluid vapor, and intersects with the group of grooves. And a predetermined number of string-like wicks are inscribed and installed vertically along the inner surface of the container? : Heat pipe radiator with % mold.
(2)  放熱側端面の内面に所定の長さの中空管が設
けられてベローズコンテナが所定の長さ以下に収縮する
のを防止する支持体となっていることt−特徴とする特
許請求の範囲第1項に記載のと−トパイプ放熱器。
(2) A patent claim characterized in that a hollow tube of a predetermined length is provided on the inner surface of the heat dissipation side end face to serve as a support for preventing the bellows container from shrinking below a predetermined length. A top pipe radiator according to item 1.
(3)  ヒートパイプとしての作動液はメタノール又
鉱エタノールであることを特徴とする特許請求の範1i
jl!1項に記載のヒートパイプ放熱器。
(3) Claim 1i, characterized in that the working fluid for the heat pipe is methanol or mineral ethanol.
jl! The heat pipe radiator according to item 1.
JP18665581A 1981-11-20 1981-11-20 Heat pipe type radiator Pending JPS5888593A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18665581A JPS5888593A (en) 1981-11-20 1981-11-20 Heat pipe type radiator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18665581A JPS5888593A (en) 1981-11-20 1981-11-20 Heat pipe type radiator

Publications (1)

Publication Number Publication Date
JPS5888593A true JPS5888593A (en) 1983-05-26

Family

ID=16192366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18665581A Pending JPS5888593A (en) 1981-11-20 1981-11-20 Heat pipe type radiator

Country Status (1)

Country Link
JP (1) JPS5888593A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4836275A (en) * 1987-03-11 1989-06-06 Fujikura Ltd. Corrugated heat pipe
KR20170084023A (en) * 2014-11-17 2017-07-19 후루카와 덴끼고교 가부시키가이샤 Heat pipe

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4836275A (en) * 1987-03-11 1989-06-06 Fujikura Ltd. Corrugated heat pipe
US4854372A (en) * 1987-03-11 1989-08-08 Fujikura Ltd. Corrugated heat pipe
US4858679A (en) * 1987-03-11 1989-08-22 Fujikura Ltd. Corrugated heat pipe
US4917175A (en) * 1987-03-11 1990-04-17 Fujikura Ltd. Corrugated heat pipe
KR20170084023A (en) * 2014-11-17 2017-07-19 후루카와 덴끼고교 가부시키가이샤 Heat pipe
US10184729B2 (en) 2014-11-17 2019-01-22 Furukawa Electric Co., Ltd. Heat pipe

Similar Documents

Publication Publication Date Title
CN2696124Y (en) Heat sink
KR100442888B1 (en) Apparatus for dense chip packaging using heat pipes and thermoelectric coolers
US7621316B2 (en) Heat sink with heat pipes and method for manufacturing the same
CN100456461C (en) Heat sink of heat pipe
US6702003B2 (en) Three-phase heat transfer structure
CN100468707C (en) Heat radiator fin and circular heat tube radiator
US7120022B2 (en) Loop thermosyphon with wicking structure and semiconductor die as evaporator
CN100557367C (en) A kind of large power plate integral type phase change heat-radiation method and radiator
CN1913137B (en) Cooling mould set
TWI761817B (en) Heat-dissipating tube, cooling module and liquid cooling system
JP4278720B2 (en) Plate heat pipe
JP2009076622A (en) Heat sink and electronic apparatus using the same
JP3665508B2 (en) Heat sink with fins
US20230221078A1 (en) Heat dissipation device
JPS5888593A (en) Heat pipe type radiator
CN100433960C (en) Liquid-cooled column-shaped heat pipe radiator
TWI686130B (en) Cooling module
JP2001251079A (en) Method for producing heat sink using heat pipe and method for producing heat pipe
JP2685918B2 (en) Heat pipe cooler
KR200210927Y1 (en) Heat fin make of heat sink
CN101022714A (en) Radiating module
CN115424995B (en) Heat radiator
JP2000035294A (en) Plate type heat pipe and cooling structure using the same
JP2001320001A (en) Heat sink
US20240023281A1 (en) Heat spreader for transferring heat from an electronic heat source to a heat sink