JPS5887875A - Twin-gate type mis semiconductor device - Google Patents

Twin-gate type mis semiconductor device

Info

Publication number
JPS5887875A
JPS5887875A JP18543881A JP18543881A JPS5887875A JP S5887875 A JPS5887875 A JP S5887875A JP 18543881 A JP18543881 A JP 18543881A JP 18543881 A JP18543881 A JP 18543881A JP S5887875 A JPS5887875 A JP S5887875A
Authority
JP
Japan
Prior art keywords
gate
substrate
drain
source
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18543881A
Other languages
Japanese (ja)
Inventor
Kazumichi Sakamoto
坂本 和道
Yasuo Taira
平 保夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP18543881A priority Critical patent/JPS5887875A/en
Publication of JPS5887875A publication Critical patent/JPS5887875A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7831Field effect transistors with field effect produced by an insulated gate with multiple gate structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)

Abstract

PURPOSE:To make a device fit for amplification of a high frequency such as VHF, by a method wherein a P type layer having impurities in a little higher density than those of a substrate is formed deeper than an N<-> layer of high voltage resistance, on the surface of a P<->Si substrate between a source and a drain, including some parts of first and second gates in a twin-gate type MISFET. CONSTITUTION:N<+> region 2 and 3 serving as a source and a drain respectively are formed on the surface of a low-density P<->Si substrate 1 by the high-density deposit and diffusion of P (phosphorus), for instance. Then, a mask 8 of a photoresist film is formed on the surface of the Si substrate on the drain side. This mask 8 is formed in a position including a part of a portion to serve as a second gate. Next, by the implantation of B ions, a P layer 6 having somewhat higher density than the substrate is formed sufficiently deep (e.g. 1mum) on the surface of the Si substrate whereon the mask 8 is not formed. Then, with an Mo gate and a thick oxide film used as masks, P ions are implanted in low density and in a self-alignment manner (N: 10<18> atoms/cm<3>, approx.), and thereby N<-> layers 5a-5c to serve as high voltage resistance layers are formed on the surface of the Si substrate in the regions between the source and a gate G1, between gates G1 and G2, and between G2 and the drain.

Description

【発明の詳細な説明】 本発明は双(チーアル)ゲート型MIS半導体装置に関
する。以下、MIS半導体装置をM■SF E Tと言
う。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a dual gate type MIS semiconductor device. Hereinafter, the MIS semiconductor device will be referred to as MSFET.

テレビジョンチューナ用高周波増幅用に使用される双ゲ
ート型MISFETにおいては高性能化すなわち低雑音
化、低電圧動作化が要求されており、そのためにこのM
 I S F 12 Tの低容1″化ど高順伝達アドミ
ッタンス化が必要となっている。
Twin-gate MISFETs used for high-frequency amplification in television tuners are required to have higher performance, that is, lower noise and lower voltage operation.
It is necessary to lower the capacity of ISF 12T to 1" and increase the forward transfer admittance.

本願出願人において提案されているNチャンネル双ゲー
ト型M I S F E Tは第1図に示すように、高
抵抗P型Si(シリコン)基体1の主表面にN 4−型
ソース領域2及びN1型ドレイン領域3を形成し、ソー
ス・ドレイン間Si 基体表面上にゲート絶縁膜(Si
O,膜)4を介して第1MO(モリブデン)ゲートG1
及び第2Moゲート(矛、を形成し、ゲートの形成され
ないソース・ドレイン間81基体表面に高耐圧部となる
N一層5a、5b、5cを形成した構造を有する。とこ
ろで、このような構造のMISFETにおいて、低容1
化のために例えば第1ゲートG1のチャネル長β1を小
さくするとC15s(入力容量)を小さくできるが、そ
のためパンチスルーを起しやすくなることがわかった。
As shown in FIG. 1, the N-channel dual-gate MISFET proposed by the applicant of the present invention has an N 4-type source region 2 and An N1 type drain region 3 is formed, and a gate insulating film (Si
first MO (molybdenum) gate G1 via O, film) 4
It has a structure in which a second Mo gate (spear) is formed, and N single layers 5a, 5b, and 5c, which serve as high breakdown voltage parts, are formed on the surface of the substrate 81 between the source and drain where no gate is formed.By the way, a MISFET with such a structure In, low volume 1
For example, C15s (input capacitance) can be made smaller by reducing the channel length β1 of the first gate G1, but it has been found that this makes punch-through more likely to occur.

これを防ぐためにチャネル部の不純物濃度を全体的に上
げるとCo55(出力容量)が大きくなることがわかっ
た。さらに、上記構造によれば順伝達アドミタンス(g
m)(ゲートの電圧変化分に対するドレイン電流の変化
分)が低くなり、低電圧(■D8:6■)では雑音指数
が大きくなり前記用途に使用で超ないことがわかり、又
Cr5s(帰還容量)を小さくするためにゲートG、の
チャネル長p、を大きくとると低性能化し、チャネル濃
度を高くするとドレイン側でCo55が大きくなるなど
の問題があることがわかった。
It has been found that if the impurity concentration in the channel portion is increased overall to prevent this, Co55 (output capacitance) increases. Furthermore, according to the above structure, the forward transfer admittance (g
m) (change in drain current with respect to gate voltage change) becomes lower, and at low voltage (■D8:6■), the noise figure increases and it is found that it cannot be exceeded when used for the above purpose. ), it was found that increasing the channel length p of the gate G leads to lower performance, and increasing the channel concentration causes problems such as an increase in Co55 on the drain side.

本発明は上記した諸問題を解決するためσ)もσ)で、
その目的は高周波増幅用のM I S F E1’の高
性能化、腐信順性化にある。
In order to solve the above-mentioned problems, the present invention has σ) and σ),
The purpose is to improve the performance and compliance of MISF E1' for high frequency amplification.

第2図は本発明によるNチャネル双ゲート型MISFE
Tの原理的構造を示すものである。このMISFETが
第1図で示したこれまでのMISF E Tと鷲なる点
は、第1ゲートG、と第2ゲート〔)2の一部を含むソ
ース・ドし・71ン間のPsi基体の表面に基体の不純
物濃度よりもX)\′高い濃度のl〕型層6を高耐圧部
N−A:15 a 、 5 bよりも深く形成したこと
に、゛し)る。
Figure 2 shows an N-channel double-gate MISFE according to the present invention.
This shows the basic structure of T. The difference between this MISFET and the previous MISFET shown in FIG. The reason for this is that the 1] type layer 6 with a concentration X)\' higher than the impurity concentration of the substrate is formed on the surface deeper than the high breakdown voltage portions NA: 15a, 5b.

第3図(a l〜ld)は上記第2図でyJ<(、た”
−fr 不ルベゲー 1、Mi s t;’ ト〕’r
の製清ゾ■コlニスなノ1り[2、以ド各−L程ごとに
具体的に説明する。
Figure 3 (a l~ld) is yJ<(,ta''
-fr Furubegame 1, Mis t;'ト]'r
[2, each step will be explained in detail below.

fal  低損lWの1)−Si基体1(不純物mJi
N:lo”atoms/c++!程度)を用意し、図示
されないが保護ダイオードを形成後、表面に形成した厚
い酸化膜(Sin2膜)7をホトエッチ処理17てこれ
をマスクとし、例えばP(リン)の高濃度Tポジット・
拡散によりソース及びドし・インとなるNF領域2゜3
を形成する0、 (bl  次いでソース・ドレインを含めてその間のS
i基体表面の酸化膜7を取り除き、ドレイン側の8s基
体表面にホトレジスト膜によるマスク8を形成する。こ
のマスク8は同図(C)を診照し第2ゲートとなるべき
部分の一部を含む位置に形成する。こノ後、B(ボロン
)イオン打込み(N、10atoms/ci程度)を行
ない、上記マスク8の形成されないSi基体表面に基板
よりやや高い濃度の2層6を充分な深さく例えば1μm
)に形成する。この1層6形成は第1ゲー1−G、θ)
ノくンチスルー防止及び帰還容量Cr5s低減のために
行なうものであり、この工程(b)はこれまでのプロセ
スに対して新たに付加されたものである。
fal Low loss lW 1)-Si substrate 1 (impurity mJi
After forming a protective diode (not shown), a thick oxide film (Sin2 film) 7 formed on the surface is photoetched 17, and this is used as a mask. High concentration T-posit
NF region 2゜3 which becomes source and drain/in due to diffusion
0, (bl then S between including the source and drain)
The oxide film 7 on the surface of the i-substrate is removed, and a mask 8 made of a photoresist film is formed on the surface of the 8s-substrate on the drain side. This mask 8 is formed at a position that includes a part of the portion to become the second gate, referring to FIG. After this, B (boron) ion implantation (N, about 10 atoms/ci) is performed to form a second layer 6 with a slightly higher concentration than the substrate on the surface of the Si substrate where the mask 8 is not formed, to a sufficient depth of, for example, 1 μm.
) to form. This one layer 6 formation is the first game 1-G, θ)
This step (b) is performed to prevent chip-through and reduce feedback capacitance Cr5s, and this step (b) is newly added to the previous process.

(c)  この後、ホトレジスト8を取り除き、熱酸化
によりソース・ドレイン間の8s基体表面に薄い(50
0〜1000^程度)ゲート酸化膜4を形成する。この
ゲート酸化膜形成は同時に工程(b)でイオン打込みし
たBの拡散と結晶のアニールをかねることになる。次い
で全面にゲート電極のためのMo (モリブデン)を蒸
着又はスノくツタリングにより形成し、ホトエツチング
処理により、第1ゲートG1 、第2ゲートG、及び図
示されない配線の一部を残して不要のMoを取除く。か
くして得られたMOゲート及び厚い酸化膜をマスクとし
て自己整合的に低濃度KP(IJン)をイオン打込みし
く N : 10” atoms /CTI程度)、ソ
ースとゲートG1間・ゲートGl ・02間、J とド
レイン間のSi基板表面に高耐圧層とl「るN一層5a
(c) After this, the photoresist 8 is removed and a thin layer (50
0 to 1000^) A gate oxide film 4 is formed. This gate oxide film formation simultaneously serves to diffuse the B ions implanted in step (b) and to anneal the crystal. Next, Mo (molybdenum) for the gate electrode is formed on the entire surface by vapor deposition or slatting, and unnecessary Mo is removed by photoetching, leaving the first gate G1, the second gate G, and a part of the wiring (not shown). remove. Using the thus obtained MO gate and thick oxide film as a mask, low concentration KP (IJ) is ion-implanted in a self-aligned manner (N: about 10" atoms/CTI) between the source and the gate G1 and between the gates G1 and 02. A high breakdown voltage layer and a single N layer 5a are formed on the surface of the Si substrate between the J and the drain.
.

5b、5cを形成する。5b and 5c are formed.

(d)  全面に層間絶縁膜9として例えばCVD、S
in。
(d) For example, CVD, S
in.

又はPSG(リン・シリケート・ガラス)等を形成し、
アニール処理により工程(C)でイオン打込みしたPを
活性化した後、ソース・ドレイン部に対しコンタクトホ
トエッチを行ない、Ae(アルミニウム)を蒸着、パタ
ーニングに」゛す、第2層目の配線となるA、6電極1
0を形成する。
Or form PSG (phosphorus silicate glass) etc.
After activating the P ion-implanted in step (C) by annealing, contact photoetching is performed on the source and drain regions, and Ae (aluminum) is evaporated and patterned to form the second layer wiring. A, 6 electrodes 1
form 0.

上記プロセスで工程(b)でBイオン打込みを行なうこ
とにより、このB打込みを行わない場合はゲート長を少
なくとも2.2μmを必要と[、だのに対し1.6μm
以下に短縮することになった。
By implanting B ions in step (b) of the above process, the gate length needs to be at least 2.2 μm [, whereas it is 1.6 μm if B implant is not performed].
It has been shortened to the following.

以上実施例で説明した本発明によれば下記の理由で前記
発明の目的が達成できるとともに諸効果が得られる。
According to the present invention described in the embodiments above, the object of the invention can be achieved and various effects can be obtained for the following reasons.

(1)ショートチャネル化(2,2fim−+ 1.6
 μm )ができ、しかもパンチスルーが起ら1.「い
ことで、lm伝達アドミッタンスが例えば40%向−ヒ
する。
(1) Short channelization (2,2fim-+ 1.6
μm), and punch-through occurs.1. ``As a result, the lm transfer admittance is increased by, for example, 40%.

(2)入力容ii Ci s sは同等であるが、ゲー
トG2のチャネルのソース側寄りの一部へBを打込んだ
ことにより帰還谷址crssが20%低減できた。
(2) Although the input capacitance ii Ci s s is the same, the feedback valley crss can be reduced by 20% by implanting B into a part of the channel of the gate G2 near the source side.

(3)低容緻化により■D8−6Vでの雑音指数(f=
900MH□)が4.2(IBから3.2 d Bと大
幅に改善された。
(3) Due to low volume density ■Noise figure at D8-6V (f=
900MH□) was significantly improved to 4.2 (3.2 dB from IB).

本発明は低容量のPチャネル及びポリシリコンゲートを
含む双ゲー1型M I S F 121”一般に適用す
ることができ、・−?レビジョンチーーす用(VHF高
周波増幅用)のトランジスタに利用して極めて有効であ
る。
The present invention can be generally applied to dual-game 1 type MISF 121'' including low capacitance P-channel and polysilicon gates, and is extremely useful for use in transistors for revision cheese (VHF high frequency amplification). It is valid.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこれまでのタイプの双ゲートMISFE i’
の断面図、第2図は本発明による双ゲートMI S F
 ETの断面図、第3図1a)〜fdlは本発明による
ヘチャネル双ゲ−) M I S F E ’l”の製
造プロセスを下す要部工程断面図である。 I P−型Si 基板、2・・N′ ソース、3− N
 ”ドレイン、4 ゲート絶縁膜、5 N一層、6・・
・P層、7・・酸化膜、8 ホトレジストマスク、9・
・層間絶縁膜、10・・Ae電極。 1.、、Q 、、: 第  1  図 第  2  図 ? ’?    ?fz  ?D
Figure 1 shows the conventional type of twin-gate MISFE i'
FIG. 2 is a cross-sectional view of the twin-gate MISF according to the present invention.
The cross-sectional views of ET and FIGS. 3(a) to 3(fdl) are cross-sectional views of the main parts of the manufacturing process of the hechannel double-gauge according to the present invention.IP-type Si substrate, 2 ...N' sauce, 3-N
``Drain, 4 Gate insulating film, 5 N single layer, 6...
・P layer, 7.・Oxide film, 8 Photoresist mask, 9・
-Interlayer insulating film, 10...Ae electrode. 1. ,,Q,,: Figure 1 Figure 2? '? ? fz? D

Claims (1)

【特許請求の範囲】 1、第1導電型半導体基体表面に互に離隔された第2導
電型高濃度領域を形成してそれぞれをソース及びドレイ
ンとし、ソース・ドレイン間の半導体表面上に絶縁膜を
介して導体層からなる第1ゲート及び第2ゲートを形成
し、これら導体層の形成されないソース・ドレイン間の
半導体表面に第2導電型低濃度層を形成した双ゲート型
MIS半導体装置において、ソースから第2ゲートにか
けて第2ゲート下の一部を含み半導体表面に基体の不純
物濃度よりもやや高い濃度の第1導電型層を前第2導電
型低濃度層よりも深く形成して成る双ゲート型MIS半
導体装置。 2、第2導電型半導体基体はP型シリコン基体であり、
ソース・ドレインとなる上記第2導電型高濃度領域はN
型である特許請求の範囲第1項に記載の双ゲート型MI
S半導体装置。
[Claims] 1. High concentration regions of a second conductivity type spaced apart from each other are formed on the surface of a semiconductor substrate of a first conductivity type to serve as a source and a drain, respectively, and an insulating film is formed on the semiconductor surface between the source and drain. In a double-gate MIS semiconductor device in which a first gate and a second gate made of a conductor layer are formed via a conductor layer, and a second conductivity type low concentration layer is formed on the semiconductor surface between the source and drain where these conductor layers are not formed, A double layer formed by forming a first conductivity type layer with a slightly higher concentration than the impurity concentration of the substrate on the semiconductor surface from the source to the second gate, including a part under the second gate, and deeper than the second conductivity type low concentration layer. Gate type MIS semiconductor device. 2. The second conductivity type semiconductor substrate is a P-type silicon substrate,
The second conductivity type high concentration region which becomes the source/drain is N
The dual-gate type MI according to claim 1, which is a type
S semiconductor device.
JP18543881A 1981-11-20 1981-11-20 Twin-gate type mis semiconductor device Pending JPS5887875A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18543881A JPS5887875A (en) 1981-11-20 1981-11-20 Twin-gate type mis semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18543881A JPS5887875A (en) 1981-11-20 1981-11-20 Twin-gate type mis semiconductor device

Publications (1)

Publication Number Publication Date
JPS5887875A true JPS5887875A (en) 1983-05-25

Family

ID=16170785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18543881A Pending JPS5887875A (en) 1981-11-20 1981-11-20 Twin-gate type mis semiconductor device

Country Status (1)

Country Link
JP (1) JPS5887875A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5250835A (en) * 1991-01-16 1993-10-05 Casio Computer Co., Ltd. Field effect type thin film transistor having a plurality of gate electrodes
US5272369A (en) * 1990-03-28 1993-12-21 Interuniversitair Micro-Elektronica Centrum Vzw Circuit element with elimination of kink effect
EP0585942A1 (en) * 1992-09-03 1994-03-09 Sumitomo Electric Industries, Ltd. Dual gate MESFET
US5602501A (en) * 1992-09-03 1997-02-11 Sumitomo Electric Industries, Ltd. Mixer circuit using a dual gate field effect transistor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50154074A (en) * 1974-05-31 1975-12-11
JPS50154075A (en) * 1974-05-31 1975-12-11
JPS5367373A (en) * 1976-11-29 1978-06-15 Hitachi Ltd Semiconductor device
JPS5660060A (en) * 1979-10-22 1981-05-23 Hitachi Ltd Mos semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50154074A (en) * 1974-05-31 1975-12-11
JPS50154075A (en) * 1974-05-31 1975-12-11
JPS5367373A (en) * 1976-11-29 1978-06-15 Hitachi Ltd Semiconductor device
JPS5660060A (en) * 1979-10-22 1981-05-23 Hitachi Ltd Mos semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5272369A (en) * 1990-03-28 1993-12-21 Interuniversitair Micro-Elektronica Centrum Vzw Circuit element with elimination of kink effect
US5250835A (en) * 1991-01-16 1993-10-05 Casio Computer Co., Ltd. Field effect type thin film transistor having a plurality of gate electrodes
EP0585942A1 (en) * 1992-09-03 1994-03-09 Sumitomo Electric Industries, Ltd. Dual gate MESFET
US5389807A (en) * 1992-09-03 1995-02-14 Sumitomo Electric Industries, Ltd. Field effect transistor
US5602501A (en) * 1992-09-03 1997-02-11 Sumitomo Electric Industries, Ltd. Mixer circuit using a dual gate field effect transistor

Similar Documents

Publication Publication Date Title
US5548143A (en) Metal oxide semiconductor transistor and a method for manufacturing the same
US5426062A (en) Method for forming a silicon on insulator device
US5595919A (en) Method of making self-aligned halo process for reducing junction capacitance
JPH0629532A (en) Mosfet and its manufacture
JPH0693494B2 (en) Method for manufacturing semiconductor integrated circuit device
US5940710A (en) Method for fabricating metal oxide semiconductor field effect transistor
US7247919B1 (en) Method and device to reduce gate-induced drain leakage (GIDL) current in thin gate oxides MOSFETs
CA1191973A (en) Process for making complementary transistors
JPS5887875A (en) Twin-gate type mis semiconductor device
JPH05102480A (en) Semiconductor device and manufacture thereof
JPH01259560A (en) Semiconductor integrated circuit device
JPH01283956A (en) Semiconductor device and preparation thereof
JPH07263693A (en) Preparation of fet and integration structure
JPH06177376A (en) Manufacture of mos field-effect semiconductor device
JPH0612826B2 (en) Method of manufacturing thin film transistor
JP2845934B2 (en) Method for manufacturing semiconductor integrated circuit device
JPS6225457A (en) Manufacture of vertical semiconductor device
JPS62285468A (en) Manufacture of ldd field-effect transistor
JP2513634B2 (en) Method for manufacturing semiconductor device
JPS63161660A (en) Semiconductor device
JPS6173380A (en) Manufacture of semiconductor device
JPH01208869A (en) Semiconductor device and manufacture thereof
JPS61139070A (en) Semiconductor device
JPS6329588A (en) Insulated-gate semiconductor device and manufacture thereof
JPS59138377A (en) Metal insulator semiconductor transistor and manufacture thereof