JPS5887781A - Preparation of button-shaped air-zinc cell - Google Patents

Preparation of button-shaped air-zinc cell

Info

Publication number
JPS5887781A
JPS5887781A JP56186289A JP18628981A JPS5887781A JP S5887781 A JPS5887781 A JP S5887781A JP 56186289 A JP56186289 A JP 56186289A JP 18628981 A JP18628981 A JP 18628981A JP S5887781 A JPS5887781 A JP S5887781A
Authority
JP
Japan
Prior art keywords
volume
zinc
negative electrode
cell
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56186289A
Other languages
Japanese (ja)
Other versions
JPH0445938B2 (en
Inventor
Takao Yokoyama
孝男 横山
Nobuharu Koshiba
信晴 小柴
Akira Oota
璋 太田
Korenobu Morita
森田 是宣
Fumio Oo
大尾 文夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP56186289A priority Critical patent/JPS5887781A/en
Publication of JPS5887781A publication Critical patent/JPS5887781A/en
Publication of JPH0445938B2 publication Critical patent/JPH0445938B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To attempt both increased capacity and improved the preservation characteristic of a button-shaped air-zinc cell, by controlling the charging rate of negative-electrode activating substance and electrolytic solution within the range of 75-85%. CONSTITUTION:A cell in constitution of the charging rate of 80% possesses a higher discharge capacity index in comparison with the cells having some other charging rates. A cell which satisfies the condition of volume ratio; the volume of negative electrode activating substance/volume of electrolytic solution 1/2 holds a little charged amount of absolute zinc and a cell having the rate of 1/1 holds a little amount of electrolytic solution and possesses a low flat-voltage due to electrolytic solution rate controlling reaction, and a stable discharge curve can not be obtained. However, it was seen that the capacity reduction in a cell having a charging rate of 90% is not due to the causes in case of the cells having other charging rates but due to some other causes. Therefore, when the charging rate is 75-85% and the volume of charged zinc/volume of electrolytic solution is 1/1.3-1/1.7, can be achieved a high volume is permitted, and a superior liquid-leakproofness can be achieved.

Description

【発明の詳細な説明】 本発明は、ボタン型空気−亜鉛電池の改良にかかるもの
で、その目的とするところは、高容量化をはかると共に
保存特性の向上をはかるととにある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement of a button-type air-zinc battery, and its purpose is to increase the capacity and improve storage characteristics.

即ち、近年人口の高年齢化に伴って医療機器の分野が注
目されるようになってきた。その中で難聴対策として補
聴器の需要も急速に伸びてきつつあり、これに付ずいし
て電源電池への要求も高まってきている。
That is, in recent years, as the population ages, the field of medical devices has been attracting attention. Under these circumstances, the demand for hearing aids as a countermeasure for hearing loss is rapidly increasing, and along with this, the demand for power batteries is also increasing.

従来より、補聴器の電源としては水銀電池が比較的よく
使用されている。
Conventionally, mercury batteries have been relatively commonly used as a power source for hearing aids.

水銀電池の場合、その利点として(ム)容量当りのコス
トが安価であること、j131電7圧が安定しているこ
となどがあげられる。ところが一方では■、補聴器用電
源としては比較的重量が重く、例えば直径11.6朋×
高さ2.6皿のもので約3.0y−であり、@、電池容
量が少いために約2週間で電池の取り換えが必要であΣ
こと。θ、水銀電池に用いる正極活物質自身が公害の原
因となりうるなどの問題があった。
In the case of mercury batteries, their advantages include low cost per capacity and stable voltage. However, on the other hand, it is relatively heavy as a power source for hearing aids, for example, a power source with a diameter of 11.6 mm x
It has a height of 2.6 plates and is approximately 3.0y-, and the battery capacity is low, so the battery needs to be replaced every two weeks.
thing. θ, and the positive electrode active material used in mercury batteries itself may cause pollution.

これらの諸問題に対応して注目されてきた電池としてボ
タン型空気−亜鉛電池があげられる。
A button type air-zinc battery is a battery that has received attention in response to these problems.

この電池の特徴は、正極の活物質として空気中の酸素を
用いるために、負極のだめの容器内容積を大きくすると
とが可能で、電池の高容量化がはかれる。又比較的放電
電圧が安定している。低公害性でありかつ軽量化がはか
れるなどの利点がある。
A feature of this battery is that since oxygen in the air is used as the active material of the positive electrode, it is possible to increase the internal volume of the negative electrode reservoir, thereby increasing the capacity of the battery. Also, the discharge voltage is relatively stable. It has the advantages of being low-pollution and lightweight.

しかしながら、水銀電池のような密封型電池では、電池
内での内容積変化はなく何ら膨れの問題は生じない。し
かし外部かあ正極活物質である酸素を取り入れるタイプ
の電池では、負極の反応形態から負極側の体積は10〜
2o%増大する。従って放電が進行するにつれて徐々に
体積が膨張して電解液を遊離させ、更には空気極を圧迫
し、ついには正極の空気取入孔より漏液する。
However, in a sealed battery such as a mercury battery, there is no change in internal volume within the battery, and no problem of swelling occurs. However, in a type of battery that takes in oxygen as the positive electrode active material from an external source, the volume on the negative electrode side is 10~
Increases by 2o%. Therefore, as the discharge progresses, the volume gradually expands, liberating the electrolyte, and further compressing the air electrode, which eventually leaks from the air intake hole of the positive electrode.

本発明は、このようなボタン型空気−亜鉛電池の保存特
性を向上させたものである。以下、本発明の実施例を直
径11.6mmX高さ5.4朋公称容量360 mAh
のボタン型空気−亜鉛電池を例に説明する。
The present invention improves the storage characteristics of such a button-type air-zinc battery. Hereinafter, an example of the present invention will be described.
This will be explained using a button type air-zinc battery as an example.

第1図は本実施例におけるボタン型空気−亜鉛電池の半
断面図を示し、図中1は正極ケース、2は正極ケースに
もうけられた空気取入孔で、直径0.5闘の孔が2〜4
個あけられている。3は空気室に置かれたセルロース系
の多孔性紙で、空気極より出てきた電解液を吸収させる
ものである。4はフッソ樹脂を基材とする撥水膜で漏液
を押えるだめのものである。5はニッケル多孔体を集電
体とした空気極、6はセパレータ、7はアルカリ電解液
含液材である。8はナイロン樹脂よりなるガスケットで
封口板9とカップリングしている。10は本発明の特徴
とする亜鉛負極である。即ち8のガスケットとカップリ
ングされた封口板内容積は230μβであり、この中に
氷化亜鉛粉末とアルカリ電解液とが充填されたものであ
る。この時、封口板内容積に対する亜鉛粉末量と電解液
量との充填率は76〜85チが好ましい。その理由とし
て第2図に示すように、封口板内への充填率が76チ以
下の場合、電池電圧に影響は認められないが、内部抵抗
において著しく高くなると共にそのバラツキも極めて太
きく12、特に高率放電に影響を受は易い。また内部抵
抗値に関しては充填率75チ以上ではほとんど差は認め
られなかった。
FIG. 1 shows a half-sectional view of the button-type air-zinc battery in this example. In the figure, 1 is a positive electrode case, and 2 is an air intake hole made in the positive electrode case. The hole has a diameter of 0.5 mm. 2-4
It has been opened. 3 is a cellulose-based porous paper placed in the air chamber, which absorbs the electrolyte coming out from the air electrode. 4 is a water-repellent film based on fluorocarbon resin that prevents liquid leakage. 5 is an air electrode using a nickel porous body as a current collector, 6 is a separator, and 7 is an alkaline electrolyte-containing material. 8 is a gasket made of nylon resin and is coupled to the sealing plate 9. 10 is a zinc negative electrode that is a feature of the present invention. That is, the internal volume of the sealing plate coupled with the gasket No. 8 was 230 μβ, and the frozen zinc powder and the alkaline electrolyte were filled therein. At this time, the filling ratio of the amount of zinc powder and the amount of electrolyte to the internal volume of the sealing plate is preferably 76 to 85 inches. The reason for this is that, as shown in Figure 2, when the filling rate in the sealing plate is 76 inches or less, there is no effect on the battery voltage, but the internal resistance increases significantly and its variation becomes extremely large12. It is particularly susceptible to high rate discharge. Further, regarding the internal resistance value, almost no difference was observed when the filling rate was 75 inches or more.

一方、充填率が96%以上では電池組立時に直後漏液が
発生する。又、充填率が86係以上の電池では直後漏液
は認められないが、放電を行ないその放電深さが70係
以上になると、正極板より漏液が認められる。この度合
は封口板内への負極の充填率が高くなればなる程大きく
なることがわかった。従って、封口板内への充填率は7
6〜85チが電池特性、耐漏液特性において最も優れて
いるものである。
On the other hand, if the filling rate is 96% or more, leakage will occur immediately after battery assembly. Further, in a battery with a filling factor of 86 or more, no liquid leakage is observed immediately after discharge, but when the discharge depth reaches 70 or more after discharge, liquid leakage is observed from the positive electrode plate. It has been found that this degree increases as the filling rate of the negative electrode into the sealing plate increases. Therefore, the filling rate into the sealing plate is 7
6 to 85 inches are the most excellent in terms of battery characteristics and leakage resistance.

なお充填率は次のようにして算出した。Note that the filling rate was calculated as follows.

充填率= 亜鉛粉末の体積+氷化に用いた水銀の体積+アノvh’
)@、解液量封ロ板内容積 × 100 一方、電池の高容量化をはかるだめには、限られた封口
板内に負極活物質とアルカリ電解液とを効率よく゛充填
する必要がある。しかも亜鉛の反応を考えると量的に多
くの電解液を必要とし、亜鉛と電解液量との体積比は電
解液量が大となる。そこで、封口板内で負極活物質と電
解液量の体積比に2元配置による実験を行なって求めた
結果、負極活物質の占める体積1に対して、電解液は1
.3〜1.7のときが最も適していることを見出した。
Filling rate = Volume of zinc powder + Volume of mercury used for freezing + Anno vh'
)@, Amount of dissolved solution: Internal volume of the sealing plate x 100 On the other hand, in order to increase the capacity of the battery, it is necessary to efficiently fill the limited sealing plate with the negative electrode active material and alkaline electrolyte. . Moreover, considering the reaction of zinc, a large amount of electrolyte is required, and the volume ratio of zinc to the amount of electrolyte becomes large. Therefore, we performed an experiment using a two-way arrangement to determine the volume ratio of the negative electrode active material and electrolyte in the sealing plate, and found that for every 1 volume of the negative electrode active material, the electrolyte was
.. It has been found that a value of 3 to 1.7 is most suitable.

即ち、その比が1.3以下の場合、電池にして放電する
と、特に高率放電時に放電曲線の゛V−坦+(°がなく
なる。又、放電末期に電解液律速から2段曲線となる。
In other words, when the ratio is 1.3 or less, when the battery is discharged, the discharge curve loses the ゛V-flatness (°), especially during high-rate discharge.Also, at the end of discharge, the electrolyte becomes rate-limiting, resulting in a two-stage curve. .

逆に電解液の比率を1.7以上にすると、曲鉛の充填量
が低下すると共に、封口板内に遊離の電解液が存在し、
正極群と負極群との封ロカノブリング時に漏液現象が起
こる。又、放電の深さと共に負極の膨潤によって電解液
が押されて漏液の現象が認められる。
On the other hand, if the ratio of the electrolytic solution is set to 1.7 or more, the filling amount of curved lead will decrease, and free electrolytic solution will exist in the sealing plate.
A leakage phenomenon occurs when the positive electrode group and the negative electrode group are sealed together. In addition, as the depth of discharge increases, the electrolyte is pushed by the swelling of the negative electrode, causing leakage.

従って、ここでは封口板内容積への充填率を80%、亜
鉛量6Bom9.負極活物質と電Wr液との体積比を1
対1,6とした。なお、用いた電解液は10MのKOH
に酸化亜鉛を飽オロしたものを用いた。
Therefore, here, the filling rate to the inner volume of the sealing plate is 80%, and the amount of zinc is 6Bom9. The volume ratio of the negative electrode active material and the electric Wr solution is 1
It was set to 1,6. The electrolyte used was 10M KOH.
Zinc oxide was used in this method.

次に本発明の効果について述べる。本発明の構成〔ム〕
、即ち封口板内容積への充填率を80先負極活物質と電
解液との体積比を1対1.5とじた構成を中心に充填率
と体積比を変化させて表−1これらA〜工の各構成によ
り第1図の電池を試作し、特性評価を行なった。
Next, the effects of the present invention will be described. Structure of the present invention [mu]
In other words, by changing the filling rate and volume ratio with a configuration in which the filling rate to the inner volume of the sealing plate is 80 and the volume ratio of the negative electrode active material to the electrolyte is 1:1.5, Table 1 These A~ The batteries shown in Figure 1 were prototyped using various constructions, and their characteristics were evaluated.

表−2には電池組立後、46℃の温度で16時間エージ
ングした後の内部抵抗値を示す。
Table 2 shows the internal resistance values after battery assembly and aging at a temperature of 46° C. for 16 hours.

表−2 その結果、構成り、C,Dでの70%の充填率では内部
抵抗が3.3〜5.o8Ωとなり、その値が高いばかり
でなく、そのバラツキも極めて大きいと言える。
Table 2 As a result, for configurations C and D with a filling rate of 70%, the internal resistance was 3.3 to 5. o8Ω, and it can be said that not only is the value high, but its variation is also extremely large.

構成に、A、F、G、H,Iの充填率8Q係以上になる
と、その値は低く、かつそのノくラツキも小さく安定し
ている。
When the filling factor of A, F, G, H, and I becomes 8Q or higher in the configuration, the value is low and the fluctuation is small and stable.

この原因としては、電池を構成する要素の密着性が充填
率によって影響を受けると考えられる。
The reason for this is thought to be that the adhesion of the elements constituting the battery is affected by the filling rate.

表−3に620Ω抵抗によって放電した時のAの構成を
100とした容量指数を示す。なお、終止電圧は1.1
vとした。
Table 3 shows the capacity index with the configuration of A as 100 when discharging with a 620Ω resistor. In addition, the final voltage is 1.1
v.

表−3 この結果、充填率70係の構成り、C,Dでは内部抵抗
が高いために、構成Aに比べて低い値しか得られなかっ
た。これは充填率が低いだめに、亜鉛の絶対量が少ない
結果である。
Table 3 As a result, in configurations C and D with a filling factor of 70, only a lower value was obtained than in configuration A because the internal resistance was high. This is a result of the absolute amount of zinc being small as the filling rate is low.

充填率80%構成のE ’、 A 、 F 、 G 、
 H、Iでは他の充填率に比べて放電容量指数は高い。
E', A, F, G with a filling rate of 80%,
At H and I, the discharge capacity index is higher than at other filling rates.

その中で負極活物質体積/電解液体積=1/2のものは
、充填する絶対亜鉛量が少なく、又1/1のものは電解
液吐が少なく、電解液律速反応となり平坦電圧が低く、
安定した放電曲線が得られない。
Among these, those with negative electrode active material volume/electrolyte volume = 1/2 have a small amount of absolute zinc to be filled, and those with 1/1 have little electrolyte discharge, resulting in a rate-limiting reaction of the electrolyte, resulting in a low flat voltage.
A stable discharge curve cannot be obtained.

ところが、充填率9oφでは他の充填率の様な原田によ
るものではなく、他の原因による容量低下であることが
明らかになった。
However, at a filling rate of 9oφ, it became clear that the capacity reduction was not due to Harada like the other filling rates, but was due to other causes.

即ち、前に述べたように Zn+−02−Zn。i.e. as mentioned before Zn+-02-Zn.

の放電反応から、02が外気から吸収されているために
放電が進むと共に負極側の体積が膨張するために、触媒
層が圧迫され、更には負極側の電解液が押しttfされ
、撥水膜の機能はなく、02は供給され々いようになる
From the discharge reaction, 02 is absorbed from the outside air, and as the discharge progresses, the volume on the negative electrode side expands, which presses the catalyst layer, and furthermore pushes the electrolyte on the negative electrode side. There is no function of 02, and 02 is rarely supplied.

その結果、電池は窒息状態になり、負極の電位によって
正極よりガス発生し、これらによってついには空気孔よ
り漏液現象をきた才ようになる。
As a result, the battery becomes suffocated, gas is generated from the positive electrode due to the potential of the negative electrode, and this eventually causes leakage from the air holes.

この傾向は放電率が高くなる程、大きくなる。This tendency becomes larger as the discharge rate becomes higher.

従って放電容量指数も低くなる。総合的に判断すると、
充填率7o%では容量的に問題があり、又、90%では
容量的にも低く、かつ漏液も生じ易い。
Therefore, the discharge capacity index also becomes low. Judging overall,
At a filling rate of 70%, there is a problem in terms of capacity, and at a filling rate of 90%, the capacity is low and leakage is likely to occur.

表−4に組立て直後の漏液数(サンプルは各12個)を
示す。
Table 4 shows the number of leaks immediately after assembly (12 samples each).

表−4 この結果、充填率90%以上では7〜9個の直後漏液が
認められた。しかも、前述したように180Ω、300
Ωの高率放電になると、直後漏液の起っていない電池も
空気孔からの漏液があった。
Table 4 As a result, 7 to 9 leaks were observed immediately when the filling rate was 90% or higher. Moreover, as mentioned above, 180Ω, 300Ω
When high-rate discharge of Ω occurred, even batteries that did not immediately leak leaked from the air holes.

ちなみに水銀電池、銀電池では封口板充填率が90%に
なっても直後漏液、放電途中、放電後での漏液は全く認
められなく、ボタン型空気−亜鉛電池特有の問題であり
、この傾向は封口板への充填率76〜85%においては
認められなかった。
By the way, in mercury batteries and silver batteries, even when the filling rate of the sealing plate reaches 90%, no liquid leakage is observed immediately after discharge, during discharge, or after discharge, which is a problem peculiar to button-type air-zinc batteries. No tendency was observed when the filling rate to the sealing plate was 76 to 85%.

又、亜鉛と電解液との体積比1/1.3〜1/L7にお
いても同様な結果であった。
Further, similar results were obtained when the volume ratio of zinc to electrolyte was 1/1.3 to 1/L7.

即ち、その比率が1/1では充填する亜鉛量に比べて電
解液量が少ないだめ亜鉛の反応が電解液律速となって放
電曲線が2段曲線となり、電池電圧の平坦性もなくなる
。又、1//2では充填される絶対亜鉛量が少なく、か
つ電解液量が多いために、放電容量が少ない。
That is, when the ratio is 1/1, the amount of electrolyte is smaller than the amount of zinc to be filled, so the reaction of zinc becomes rate-limiting to the electrolyte, the discharge curve becomes a two-step curve, and the flatness of the battery voltage is lost. Further, in case of 1/2, the absolute amount of zinc filled is small and the amount of electrolyte is large, so the discharge capacity is small.

従って、本発明に示すように充填率76〜85チ、充填
する亜鉛の体積/電解液体積が1/L3〜1/L7のと
き高容量を有し、かつ耐漏液性能のすぐれたものにでき
る。
Therefore, as shown in the present invention, when the filling rate is 76 to 85 cm and the volume of zinc to be filled/volume of electrolyte is 1/L3 to 1/L7, it is possible to have a high capacity and excellent leakage resistance. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図はボタン型空気−亜鉛電池の部分断面図、第2図
は負極の封口板内への充填率と内部抵抗との関係を示す
図である。 1・・・・・正極ケース、2・・・・・・空気取入孔、
3・・・・・多孔性紙、4・・・・・・撥水膜、5・・
・・・・空気極、6・川・・セパレータ、7・・・・・
含液剤、8・・・・・・ガスケット、9・・・・・・封
口板、10・・・・・負極活物質。 代理人の氏名 弁理士 中 尾 敏 男 はが1名第1
図 第2図 @極/l圭、B仮円へ0光r賽率(刈
FIG. 1 is a partial sectional view of a button-type air-zinc battery, and FIG. 2 is a diagram showing the relationship between the filling rate of the negative electrode into the sealing plate and the internal resistance. 1...Positive electrode case, 2...Air intake hole,
3... Porous paper, 4... Water repellent membrane, 5...
...Air electrode, 6. River... Separator, 7...
Liquid-containing agent, 8... Gasket, 9... Sealing plate, 10... Negative electrode active material. Name of agent: Patent attorney Toshio Nakao (1st person)
Figure 2 @ Goku/l Kei, 0 light r die rate (Kari) to B provisional circle

Claims (1)

【特許請求の範囲】 (11正極活物質に酸素、負極活′物質に氷化亜鉛粉末
、電解液にアルカリ水溶液をそれぞれ用い、負極活物質
と電解液とを収納する負極収納容器−の内容積に対して
、前記負極活物質と電解液との充填率を75.〜86チ
に規制することを特徴とするボタン型空気−亜鉛電池の
製造法。 (2)前記負極収納容器に収納する負極活物質の体積1
に対して、電解液体積を1.3〜1.7の範囲に規制し
たことを特徴とする特許請求の範囲第1項記載のボタン
型空気ゝ亜鉛電池の製造法。
[Scope of Claims] (11) Internal volume of a negative electrode storage container that uses oxygen as the positive electrode active material, frozen zinc powder as the negative electrode active material, and alkaline aqueous solution as the electrolyte, and stores the negative electrode active material and the electrolyte. A method for manufacturing a button-type air-zinc battery, characterized in that the filling rate of the negative electrode active material and electrolyte is regulated to 75. to 86 cm. (2) A negative electrode stored in the negative electrode storage container. Volume of active material 1
2. The method for manufacturing a button-type zinc-air battery according to claim 1, wherein the electrolyte volume is regulated to a range of 1.3 to 1.7.
JP56186289A 1981-11-19 1981-11-19 Preparation of button-shaped air-zinc cell Granted JPS5887781A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56186289A JPS5887781A (en) 1981-11-19 1981-11-19 Preparation of button-shaped air-zinc cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56186289A JPS5887781A (en) 1981-11-19 1981-11-19 Preparation of button-shaped air-zinc cell

Publications (2)

Publication Number Publication Date
JPS5887781A true JPS5887781A (en) 1983-05-25
JPH0445938B2 JPH0445938B2 (en) 1992-07-28

Family

ID=16185699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56186289A Granted JPS5887781A (en) 1981-11-19 1981-11-19 Preparation of button-shaped air-zinc cell

Country Status (1)

Country Link
JP (1) JPS5887781A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6197445B1 (en) 1998-03-06 2001-03-06 Rayovac Corporation Air depolarized electrochemical cells

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5221625A (en) * 1975-08-07 1977-02-18 Varta Batterie Primary cell having alkaline electrolyte and hydrophobic air electrode

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5221625A (en) * 1975-08-07 1977-02-18 Varta Batterie Primary cell having alkaline electrolyte and hydrophobic air electrode

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6197445B1 (en) 1998-03-06 2001-03-06 Rayovac Corporation Air depolarized electrochemical cells
US6203940B1 (en) 1998-03-06 2001-03-20 Rayovac Corporation Tubular air depolarized cell
US6210826B1 (en) 1998-03-06 2001-04-03 Rayovac Corporation Seals, and electrochemical cells made therewith
US6210827B1 (en) 1998-03-06 2001-04-03 Rayovac Corporation Elongate air depolarized electrochemical cells
US6296961B1 (en) 1998-03-06 2001-10-02 Rayovac Corporation Composite carbon sheet, and electrochemical cells made therewith
US6436571B1 (en) 1998-03-06 2002-08-20 Rayovac Corporation Bottom seals in air depolarized electrochemical cells
US6461761B1 (en) 1998-03-06 2002-10-08 Rayovac Corporation Air depolarized electrochemical cells

Also Published As

Publication number Publication date
JPH0445938B2 (en) 1992-07-28

Similar Documents

Publication Publication Date Title
US7153607B2 (en) Alkaline zinc secondary cell and method for preparation thereof
EP1218957A1 (en) Rechargeable nickel-zinc cells
JPS5928027B2 (en) Rechargeable chemical battery or storage battery
JPS5887781A (en) Preparation of button-shaped air-zinc cell
JPH0425676B2 (en)
US7022434B2 (en) Nickel-metal hydride storage battery and production method thereof
JP3030893B2 (en) Manufacturing method of metal oxide-hydrogen storage battery
JP2547816B2 (en) Solid electrolyte secondary battery
US3578504A (en) Method of activating a silver oxide-zinc primary cell
JP2517936B2 (en) Air zinc battery
JPH0737609A (en) Alkaline storage battery
CN209133640U (en) Deep discharge resistant alkaline battery
JP2561127Y2 (en) Spacer for storage battery
JPH0582158A (en) Sealed rectangular alkaline storage battery
KR20130037092A (en) A lithium thionyl chloride battery of 1/3n size
JPS601770A (en) Button-type air zinc battery
JPH06215796A (en) Cylindrical nickel-hydrogen storage battery
JP2726849B2 (en) Sealed lead-acid battery
JP2809634B2 (en) Manufacturing method of sealed lead-acid battery
JPS5923457A (en) Enclosed lead storage battery
JP2980618B2 (en) Organic electrolyte primary battery
JP3103781B2 (en) How to inject the battery
Appelt et al. A cylindrical R-20 Size Zinc—Air Primary Cell
JPS6049572A (en) Sealed lead-acid battery
JPH0538540Y2 (en)